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ABSTRACT We have analyzed protein-coding sequences
of Escherichia coli and find that codon-pair utilization is highly
biased, reflecting overrepresentation or underrepresentation
of many pairs compared with their random expectations. This
effect is over and above that contributed by nonrandomness in
the use of amino acid pairs, which itself is highly evident; it is
much weaker when nonadjacent codon pairs are examined and
virtually disappears when pairs separated by two or three
intervening codons are evaluated. There appears to be a high
degree of directionality in this bias: any codon that participates
in many nonrandom pairs tends to make both over- and
underrepresented pairs, but preferentially as a left- or right-
hand member. We show a relationship between codon-pair
utilization patterns and levels of gene expression: genes encod-
ing proteins expressed at high levels tend to contain more
abundant, but more highly underrepresented, codon pairs,
relative to genes expressed at low levels. The nonrandom
utilization of codon pairs may be a consequence of their effects
on translational efficiency, which in turn may be related to the
compatibility of adjacent aminoacyl-tRNA isoacceptors at the
A and P sites of a translating ribosome.

The protein-coding regions of genes in all organisms are
subject to a wide variety of functional constraints, some of
which depend on the requirement for encoding a properly
functioning protein, as well as appropriate translational start
and stop signals. However, several features of protein-coding
regions have been discerned that are not readily understood
in terms of these constraints; two important classes of such
features are those involving codon usage and codon context.

It has been known for a considerable time that codon
utilization is highly biased and varies considerably among
various organisms (1-3). Codon-usage patterns have been
shown to be related to the relative abundance of tRNA
isoacceptors (4-6) and genes encoding proteins of high
versus low expression show differences in their codon
preferences (6, 7). The possibility that biases in codon usage
can alter peptide elongation rates has been widely discussed,
although direct effects of codon choice on translation have
been difficult to demonstrate (8, 9). Other constraints on
codon-usage patterns have been proposed, including optimi-
zation of the fidelity (10, 11) and kinetic efficiency (12) of
translation.

Apart from the nonrandom use of codons, considerable
evidence has accumulated that codon/anticodon recognition
is influenced by sequences outside the codon itself, a phe-
nomenon termed codon context. There exists a strong influ-
ence of nearby nucleotides on the efficiency of suppression
of nonsense codons (see refs. 13-15) as well as missense
codons (16). Clearly, the abundance of suppressor activity in
natural bacterial populations (17), as well as the use of a
termination codon to encode selenocysteine (18), require that
termination be context-dependent. Similar context effects

have been shown to influence the fidelity of translation (19,
20) as well as the efficiency of translation initiation (21-23).

Statistical analyses of protein-coding regions of Esche-
richia coli have demonstrated yet another manifestation of
codon context. The presence of a particular codon at one
position has been shown to correlate with the frequency of
occurrence of certain nucleotides in neighboring codons, and
these context constraints differ markedly for genes expressed
at high versus low levels (24-26). In addition, Nussinov (27)
has demonstrated biases in dinucleotide frequencies within
coding regions that imply the existence of constraints be-
tween codons.

It has been suggested that "suppression context" effects
may be mediated through interactions between adjacent
aminoacyl-tRNA molecules on the surface of ribosomes
during the process of peptide elongation (13-15). Such
interactions could also represent an important factor limiting
or regulating gene expression by varying translational rates.
If interactions between tRNA molecules binding to adjacent
codons are generally important, then several consequences
ought to follow. First, there should be a substantially non-
random pattern of utilization of the 3721 (612) possible pairs
of codons in protein-coding DNA sequences. Second, this
pattern should be related (although possibly in complex
ways) to the structure and abundance of tRNA isoacceptors
and to the level of expression of different genes. Further-
more, these patterns might be expected to differ between
organisms and, therefore, to have important consequences
for the expression of foreign genes in genetically engineered
expression systems. In this report we present an analysis of
the pattern of codon-pair utilization in protein-coding genes
of E. coli.

METHODS
Data base. The source of DNA sequences was the Gen-

Bank data base (Release 40.0, February 1986). Two hundred
thirty-seven chromosomal E. coli protein-coding regions
greater than 100 base pairs long were used for analysis (212
contained a termination codon) encompassing a total of
235,920 nucleotides and 78,403 codon pairs.
Computer Analysis of Codon Pairs. The set of programs we

refer to as CODPAIR was written in TURBO PASCAL (Borland
International, Scotts Valley, CA) running in an MS-DOS
environment. For each sequence in the data base, CODPAIR
enumerates the total number of codons, the frequency of
each codon, and the number of occurrences of each codon
pair. The expected frequency of each codon pair is then
calculated as the product of the frequencies of its two
component codons, assuming they are used randomly; the
expected number of occurrences of each codon pair is the
product of its expected frequency and the total number of
codon pairs in the sequence. CODPAIR adds the values for
observed and expected occurrences of codon pairs to two
global tables and then goes on to the next sequence. (Al-
though our initial approach was to calculate the expected
values by using global codon usage frequencies, the use of
locally evaluated frequencies, as described above, is more
conservative. If, for example, a sequence has an unusually
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high proportion of rare codons, it will also tend to have a high
proportion of rare codon pairs made up of these codons,
simply by virtue of their local abundance.)
The result ofthese calculations is a list of 3721 codon pairs,

each with an expected and observed number of occurrences,
together with a value for x2 (X2)

xi2 = (observed - expected)2/expected.
The sum of these x2 values is that for a distribution with

3720 degrees of freedom. The expected value of x2 is equal
to the number of degrees of freedom, N, with a variance of
2N (40).
To remove the contribution by nonrandomness of amino

acid pairs, a new value (Xi) was calculated in the following
manner. For each group of codon pairs encoding the same
amino acid pair (i.e., 400 groups), the sums of the expected
and observed values were tallied; if amino acid pairs were
utilized in a random fashion, these two values would be
equal. Therefore, each of the expected values within the
group was multiplied by the factor (sum observed/sum
expected), so that the sums of the expected and observed
values within the group were now equal. The new ,X2, was
evaluated using these expected values. This manipulation
reduces the number of degrees of freedom by 400, resulting
in a distribution with 3320 degrees of freedom. We omitted
from these calculations all codon pairs for which the expected
value was less than 3, to avoid high x2 values generated
simply by very low expected values. This correction results
in a loss of 507 records, leaving 2813 degrees of freedom; the
sum of the x2 values for this distribution (x2, calculated as
described above) has an expected mean of 2813 with a
standard deviation (SD) of 75.
The distribution of amino acid pair occurrences was also

evaluated; the sums of the expected and observed values for
codon pairs corresponding to each ofthe 400 amino acid pairs
were used to calculate ax2 value for this distribution with 399
degrees of freedom.

RESULTS
Utilization of Codon Pairs in E. cofi. An example of the

output of CODPAIR is shown in Table 1 (see also Table 2). It

Table 1. Sample output of codon pair analysis
aal aa2 Codl Cod2 Exp. Obs. xi xi
Asn Gln AAC CAA 24.4 14 4.4 2.5
Asn Gln AAC CAG 67.1 50 4.3 1.3
Asn His AAC CAC 23.9 20 0.6 0.1
Asn His AAC CAT 17.8 19 0.1 0.6
Asn Pro AAC CCA 14.8 15 0.0 3.1
Asn Pro AAC CCG 51.8 98 41.3 2.9
Asn Pro AAC CCC 5.7 5 0.1 1.8
Asn Pro AAC CCT 10.3 13 0.7 Q.7
Leu Glu CTG GAA 213.0 271 15.8 17.8
Leu Glu CTG GAG 86.0 78 0.7 0.5
Leu Asp CTG GAC 115.6 67 20.4 23.2
Leu Asp CTG GAT 131.8 147 1.8 0.8
Leu Ala CTG GCA 93.5 159 45.8 27.3
Leu Ala CTG GCG 155.1 272 88.2 54.2
Leu Ala CTG GCC 98.9 48 26.2 36.1
Leu Ala CTG GCT 92.7 115 5.4 1.1

aal and aa2, left and right amino acids, respectively; Codl and
Cod2, left and right codons of a pair, respectively; Exp. and Obs.,
expected and observed number of occurrences of each codon pair,
respectively; X, x2 based on the indicated expected and observed
values; 2, X calculated so as to remove any contribution by
nonrandom association ofamino acid pairs. These data represent two
groups of eight consecutive codon pairs selected from a complete
listing.

is evident that although many codon pairs occur at levels
close to those expected, some are highly overrepresented
(e.g., CTG-GCA or CTG-GCG) or underrepresented (CTG-
GAC or CTG-GCC). Examples can also be seen of the effect
of correcting XI for amino acid pair nonrandomness to yield
x2. For CTG-GCG, x2 is very much smaller than x2 (although
still extremely high at 54); for AAC-CCG, the very large value
of 41 for xi is reduced to only 2.9 for x2. In the ensuing
discussion we shall deal only with this latter value, x2.
Although this is a conservative approach, it is important to
note that the difference between Xi and XI does not neces-
sarily imply that part of the codon pair nonrandomness is the
consequence of amino acid pair nonrandomness; the direc-
tion of causation is indeterminate, and it is equally possible
that the amino acid pair nonrandomness is driven by selection
on codon pairs.
As illustrated in Fig. 1, the sum of the x2 values for the E.

coli data base (ECO) is 12,105, which is 124 SD higher than
its expected mean. Although overrepresented pairs represent
a minority of all pairs (45%), they account for almost 60% of
the total x2 value.
Two kinds of controls were evaluated. First, a "jumbled"

data base was generated by randomizing the order of the
codons (excluding the initiatingAUG and termination codon)
in each sequence. Analysis of this randomized data base
(RAND, Fig. 1) yields a x2 value of 2701, which is within 2
SD of its expected mean. A second control involved evalu-
ating codon pairs separated by one, two, or three intervening
codons. As seen in Fig. 1, separation by a single codon (+1)
reduces the x2 value derived from ECO to only 4031; this is
considerably lower than the original 12,105, but still 16 SD
away from its expected mean. Separation by two or three
intervening codons (+2, +3) reduces the x2 value to 3062 and
3047, respectively, only 3 SD away from the expected mean.
Thus, the influence driving nonrandomness in codon pair
utilization acts only over a very short distance.
A strong correlation is evident between the sums of x2

values for the overrepresented and underrepresented pairs
made by any given codon; this holds for codons as left-hand
members (correlation coefficient, r = 0.86) as well as right-
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FIG. 1. Sums of x2 values generated by CODPAIR. The numbers
above each bar represent the number ofstandard deviations by which
that value differs from its expected mean. The total x2 value has an

expected mean of 2813 with a standard deviation of75; the horizontal
lines represent this mean (solid line) ± 3 SD (broken lines). ECO, E.
coli data base; RAND, randomized E. coli data base; +1, +2, or +3,
results of evaluating nonadjacent codon pairs in the E. coli data base,
separated by 1, 2, or 3 intervening codons, respectively.
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hand members (r = 0.84). However, the correlation is much
less striking when comparing codons as left- versus right-
hand members of a pair (r = 0.32 - 0.51), and no evident
relationship exists between the values of x2 for a codon pair
and its reverse counterpart (r = 0.10). There is little rela-
tionship between the abundance of a codon pair (number of
occurrences) and its degree of nonrandom representation Cd)

for either overrepresented (r = 0.26) or underrepresented (r
= 0.15) pairs. In general, therefore, any codon that partici-
pates in many nonrandom pairs tends to make both over- and
underrepresented pairs, but does so preferentially as a left- or
a right-hand member. The high degree of directionality in this
bias may be important in understanding its biochemical basis
(see Discussion).
Codon Pair Utilization and Codon Context. Shpaer (26) has

reported that the codon AAA (lysine) is preferentially fol-
lowed by GXX, and AAG (lysine) is followed by CXX, where
X is an unknown base. These results are amply confirmed by
our own findings (X2 = 36 and 88, respectively); in addition,
we find a highly significant deficit in pairs of the form
AAG-GXX (X2 = 80), but a random representation of
AAA-CXX (x2 = 1.5). Although our data are, therefore, quite
consistent with those of Shpaer (26), our results more closely
define the nature of the nonrandom patterns. For example, it
is evident (as seen in Table 2) that the high degree of
overrepresentation of the 16 pairs of the form AAA-GXX is
due mainly to only 4-6 pairs; 1 pair is markedly underrep-
resented (AAA-GCT; x2 = 7.2), and others are close to
random. Similar results hold for pairs of the form AAG-CXX
(data not shown). The same situation exists for at least some
of the results of Yarus and Folley (25). For example, their
finding of an excess of pairs of the form GCC-XGX is
confirmed by our results (X2 = 64; data not shown); however,
while 8 of these 16 codon pairs are substantially overrepre-
sented (X2 ranges from 9 to 88), several occur at levels close
to their random expectations, and one (GCC-GGC) is grossly
underrepresented (X2 = 39).

Thus, although analyses of codon context may correctly
describe the "average" behavior of sequences adjacent to
particular codons, representation of individual codon pairs
may differ markedly from this average.
Nonrandom Utilization of Amino Acid Pairs. Table 3 lists

Table 2. Codon AAA (lysine) preceding GXX

Cod2

GAA (Glu)
GAC (Asp)
GAG (Glu)
GAT (Asp)
GCA (Ala)
GCC (Ala)
GCG (Ala)
GCT (Ala)
GGA (Gly)
GGC (Gly)
GGG (Gly)
GGT (Gly)
GTA (Val)
GTC (Val)
GTG (Val)
GTT (Val)

Total

Exp. Obs. X2

154.8
81.1
58.8
91.0
71.3
64.1
99.7
72.1
15.8
94.1
22.1

104.6
44.9
37.6
66.8
81.1

1159.9

137*
105
125
113
71
78
153
51*
11*

113
40
94*
39*
43
104
86

1363

1.7
4.0

77.2
2.7
0.1
2.2

24.8
7.2
1.3
4.8
15.8
0.6
1.6
0.3

15.3
0.0

Expected, observed, and Xi values for all codon pairs consisting
ofAAA (lysine) followed by a codon beginning with G (see Table 1).
Pairs of this form are found, overall, more frequently than expected
(X2 = 35.7), although several pairs (marked by an asterisk) are
underrepresented (AAA-GCT significantly), and several more are

observed close to their random expectation. Abbreviations are as in
Table 1.

Table 3. Most highly nonrandom amino acid pairs

aal aa2 Exp. Obs. x2

Asn
Trp
Ser
Ile
Glu
Gln

Gly
Ile
Phe
Glu
Leu
Ile

Most highly overrepresented
Pro 126.5 202
Gln 38.8 68
Gly 332.7 415
Asn 185.1 246
Gln 230.6 296
Gln 171.7 226

Most highly underrepresented
Pro 236.1 152
Gln 196.0 123
Met 74.6 38
Asp 292.8 226
Gln 336.4 266
Ile 291.3 227

45.1
22.0
20.4
20.0
18.5
17.2

30.0
27.2
18.0
15.2
14.7
14.2

Six most highly overrepresented and underrepresented amino acid
pairs in the E. coli data base are presented. aal and aa2, left and right
amino acids of a pair, respectively; Exp. and Obs., expected and
observed number of occurrences of each pair, respectively; x2, x2
value based on the indicated expected and observed values. The sum
of the x2 values for the entire distribution (399 degrees of freedom)
is 1219, or 29 SD higher than its expected mean (see Results).

the six most highly overrepresented and underrepresented
amino acid pairs in our data base, together with their
expected, observed, and x2 values. The sum of the x2 values
derived from the amino acid pair distribution is 1219, more
than 29 SD away from its expected mean, and contributed
roughly equally by over- and underrepresented pairs. Thus,
there exists a highly significant degree of nonrandomness in
the occurrence of amino acid pairs in E. coli proteins.

Termination Codons. As has been noted (28), the overall
use ofthe three termination codons by E. coli is highly biased;
among 212 sequences that include stop codons, we find that
152 (72%) use TAA, 49 (23%) use TGA, and only 11 (5%) use
TAG. Some unusual features of the nearest neighbors of stop
codons are shown in Table 4. Several codons are overrep-
resented to a significant degree, most notably GGG (glycine)
and the two lysine codons (AAA and AAG) adjacent to TAA,
and the GCC (alanine) and TCC (serine) codons next to TGA.

Several amino acids are also represented in a significantly
nonrandom fashion adjacent to particular stop codons. Ly-
sine is highly overrepresented next to TAA, while isoleucine
is underrepresented, and proline and threonine are never seen
adjacent to a TAA stop codon. Serine, on the other hand, is

Table 4. Codons and amino acids preceding termination codons

Amino
Codon acid Terminator Exp. Obs. P

GCT (Ala) TAA 3.1 8 0.014
GGG (Gly) TAA 1.2 7 0.00025
AAA (Lys) TAA 6.0 15 0.0014
AAG (Lys) TAA 1.9 9 0.00016
TAC (Tyr) TAA 2.2 6 0.025
GCC (Ala) TGA 1.1 5 0.0054
TCC (Ser) TGA 2.8 9 0.0024

Ile TAA 8.9 3 0.023
Lys TAA 7.8 24 0.0000025
Arg TAA 8.6 13 0.097*
Pro TAA 6.1 0 0.0022t
Thr TAA 7.9 0 0.00037t
Ser TGA 2.8 9 0.0024

Codons and amino acids that are substantially over- or underrep-
resented immediately adjacent to a termination codon. P, Poisson
probability. Other abbreviations are as in Table 1.
*The overrepresentation of arginine-TAA is not statistically signif-
icant and is presented only for comparison with lysine above.
tAlthough proline occurs three times preceding TGA, threonine is
never found before any stop codon.

Genetics: Gutman and Hatfield
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seen more frequently than expected next to TGA. Therefore,
in spite of the limited amount of data available, there is an
evident lack of homogeneity both in the use of termination
codons and in the codons and amino acids immediately
preceding them.

Codon-Pair Utilization in Proteins Expressed at High Versus
Low Levels. Coding regions for E. coli proteins expressed at
high versus low levels are known to differ in both codon usage
and codon context (7, 25). Therefore, we have examined the
utilization of codon pairs in representatives of these two
classes of proteins. We have arbitrarily defined abundant
pairs as those occurring 90 times or more in the data base, and
nonabundant pairs 15 times or less (each category represent-
ing about 18% of all pairs). For underrepresented pairs
(observed < expected), we have chosen a lower limit of 3 for
x, and for overrepresented pairs (observed > expected), we
have chosen a lower limit of 12 (each comprising about 11%
of all pairs).

Fig. 2 shows the proportion of abundant versus nonabun-
dant (rare) pairs, as well as overrepresented versus under-
represented pairs, in the two classes of proteins. Codon pairs
that are abundant in the data base as a whole are used almost
three times more frequently than rare ones in highly ex-
pressed proteins but are used less frequently than rare ones
in genes of low expression; this may be, at least in part, a
reflection of the known avoidance of rare codons in genes for
proteins expressed at high levels. Highly underrepresented
pairs are used almost twice as frequently as overrepresented
ones in highly expressed genes, whereas in poorly expressed
genes overrepresented pairs are used more frequently. Thus,
proteins expressed at high levels tend to favor more abun-
dant, but more highly underrepresented, codon pairs; con-
versely, proteins expressed at low levels favor less abundant,
but more highly overrepresented, pairs.

20
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Low High
expression expression

FIG. 2. Evaluation of frequencies of various categories of codon

pairs (expressed as percent of total) within genes encoding proteins
expressed at high (four bars to the right) or low (four bars to the left)
levels [from Yarus and Folley (25)]. Nonrand+ and Nonrand-,
codon pairs that are highly overrepresented (observed > expected,
X2 2 12) or underrepresented (observed < expected, X2 2 3) in the
E. coli data base, respectively; Abund+ and Abund-, codon pairs
that are used abundantly (290 times) or rarely (<15 times) in the E.

coli data base, respectively. Vertical bars represent ± 1 SD.

DISCUSSION
Codon Pairs. Our analyses show that many codon pairs are

highly over- or underutilized in E. coli compared with random
expectations and that this effect is in addition to any contri-
bution by nonrandomness in codon use or in amino acid pair
utilization. We have also shown that the pattern of codon-pair
utilization differs between genes whose protein products are
expressed at high versus low levels. Powerful constraints
must, therefore, exist on the utilization of codon pairs, and
these constraints may be related to translational efficiency.

Several groups have lent support to the idea that codon
usage patterns may relate to differences in peptide elongation
rates (9, 29) or to the efficiency of translation initiation (30).
Others have argued for the central importance of constraints
based on the fidelity (10, 11) or kinetic efficiency (12) of
translation. The constraints on codon pairs we describe may
be important in clarifying such relationships; elongation rates
(or other features of the translation process) could be varied
independently of the known relationship between codon use
and tRNA abundance, at the same time placing minimal
constraints on the structure of the encoded protein.

It is clear that the relationship among codon choice, tRNA
abundance, and the translation process cannot at this time
yield to any simple interpretation. For example, the work of
Holmes et al. (31) showed in E. coli that although the the most
abundant leucine tRNA isoacceptor (anticodon CAG) does,
in fact, correspond to the most abundant leucine codon
(CUG), the tRNA that is actually utilized at these positions
in vivo under normal growth conditions is a minor isoacceptor
that recognizes CUG by nonconventional base pairing (an-
ticodon GAG); only at rapid growth rates, when the minor
tRNA is fully utilized, does the major species participate
significantly. Certainly, much still needs to be known to
explain these relationships.
Amino Acid Pairs and Termination Codons. We have also

examined the pattern of utilization of amino acid pairs and of
termination codons in the E. coli data base. Amino acid pairs
are utilized in a highly nonrandom fashion, which may be a

consequence of constraints on codon pairs or may be due to
global constraints on protein structure within E. coli; these
possibilities are certainly not mutually exclusive.

Doolittle (32) has evaluated dipeptide frequencies in a

protein sequence data base that includes prokaryotes, eu-

karyotes, and viruses, and he has identified a number of pairs
that are significantly overrepresented (notably most ho-
modimers) or underrepresented. However, the most highly
nonrandom pairs in our E. coli data base and in Doolittle's
global data base (22) produce nonoverlapping lists, and we

find few of the 20 homodimers significantly overrepresented
in E. coli. These differences appear to reflect a high degree
of species specificity in the constraints on amino acid pair
utilization.
Although our evaluation of termination codons is limited

by their relatively small numbers, we have found several
examples of nonrandom use of codons and of amino acids
immediately preceding termination codons. The nonrandom
occurrence of codons preceding terminators may relate to the
complex phenomenon of termination efficiency. On the other
hand, the bias in amino acid occurrence at the C-terminal
position may simply be a consequence ofthe codon-pair bias,
since there is no reason to believe this position is of particular
significance in protein structure.

Significance of Codon Pair Nonrandomness. The codon pair
nonrandomness we have described acts only over a short
distance and is highly directional. Both of these features are

consistent with the view that the effect is mediated through
interactions between aminoacyl-tRNAs bound to adjacent
codons on the translation complex, a concept that has been
invoked to explain the context effect on termination suppres-
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sion (13-15). In fact, variation in chemical modification of
tRNAs can markedly affect the efficiency of termination
suppression (13, 33-35) and peptide elongation rates (36).
The relationship between specific codon pairs and rates of
translation initiation and elongation, as well as the influence
of tRNA modification, ought to be fruitful areas for investi-
gation.
One area in which our ability to control translation effi-

ciency is of special importance is the expression of heterol-
ogous genes in E. coli or other organisms. If patterns of
codon-pair utilization turn out to differ substantially between
organisms, our approach might provide rules for modifying
coding sequences for the purpose of altering translation
efficiency or regulating peptide folding in genetically engi-
neered expression systems. Another increasingly important
problem is our ability to identify protein-coding regions in
open reading frames of DNA sequences, particularly given
the current exponential increase in published nucleotide
sequences and the planned project for sequencing the entire
human genome. Various approaches have been described
that take advantage of nonrandom features of codon utiliza-
tion (37, 38) as well as other statistical features of protein-
coding regions (39), but none has proven completely satis-
factory. Application of the nonrandom features we have
described, for codon pairs and amino acid pairs, could
contribute significantly to such analyses.
The coevolution of protein-coding regions with the protein

synthetic machinery has led to complex species-specific
relationships between the structure and abundance of tRNA
isoacceptors and the pattern of utilization of codons and
codon pairs. Elucidation of these relationships will clearly
have many important practical and theoretical consequences.
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