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ABSTRACT Exocytosis from the rod photoreceptor is stimulated by submicromolar Ca2þ and exhibits an unusually shallow
dependence on presynaptic Ca2þ. To provide a quantitative description of the photoreceptor Ca2þ sensor for exocytosis, we
tested a family of conventional and allosteric computational models describing the final Ca2þ-binding steps leading to exocytosis.
Simulations were fit to two measures of release, evoked by flash-photolysis of caged Ca2þ: exocytotic capacitance changes from
individual rods and postsynaptic currents of second-order neurons. The best simulations supported the occupancy of only two
Ca2þ binding sites on the rod Ca2þ sensor rather than the typical four or five. For most models, the on-rates for Ca2þ binding and
maximal fusion rate were comparable to those of other neurons. However, the off-rates for Ca2þ unbinding were unexpectedly
slow. In addition to contributing to the high-affinity of the photoreceptor Ca2þ sensor, slow Ca2þ unbinding may support the fusion
of vesicles located at a distance from Ca2þ channels. In addition, partial sensor occupancy due to slow unbinding may contribute
to the linearization of the first synapse in vision.
INTRODUCTION
Synaptic exocytosis from rod photoreceptors shows an

unusually high affinity for calcium, with release evoked by

submicromolar calcium (1,2). The shallow dependence of

release rate on calcium in rods is consistent with fusion initi-

ated by the binding of no more than three calcium ions to a

sensor (1). This weak cooperativity may contribute to the

linear relationship between calcium influx and release at

photoreceptor synapses (1) and contrasts with release at other

ribbon and conventional synapses, which show fourth- or

fifth-order calcium dependence (3–6).

The mechanism(s) responsible for the unusual features of

rod exocytosis is not clear. The conventional model of a

calcium sensor that triggers release only after it binds four

or five calcium ions fails to describe the rod data (1). One

possibility is that photoreceptors use a unique sensor. Alter-

natively, they may use a conventional calcium sensor that

behaves in an allosteric manner, triggering release with

low cooperativity at low calcium levels, when fewer binding

sites are occupied, and with higher cooperativity at higher

calcium levels, when more of the binding sites are occupied

(7). An allosteric sensor could thus potentially accommodate

both the unusual properties of rod exocytosis and release at

other synapses. Finally, rods might use a calcium sensor

similar to that proposed to control asynchronous release at

the calyx of Held, which has been modeled with only two

calcium binding sites (8).

We tested a family of allosteric and conventional compu-

tational models to describe the final calcium binding steps of
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exocytosis from rod terminals. Measurements of release

included exocytotic capacitance changes (1) and postsyn-

aptic currents obtained during simultaneous whole cell re-

cordings from photoreceptors and postsynaptic OFF bipolar

and horizontal cells. Both were evoked by the abrupt eleva-

tion of intraterminal calcium produced by flash-photolysis

of caged-calcium. The best descriptions of release were

obtained with models in which two calcium binding sites

were occupied. For all models, the sensor was more sensitive

to calcium relative to other neurons by approximately an

order of magnitude. This high sensitivity arose from an un-

usually slow rate of calcium unbinding. Thus, the photore-

ceptor calcium sensor exhibits properties that contribute to

the unique features of photoreceptor synaptic transmission.
METHODS

Recordings were obtained from retinal neurons of aquatic tiger salamanders

(Ambystoma tigrinum; 18–25 cm in length). Animals were handled accord-

ing to protocols approved by the UNMC Institutional Animal Care and Use

Committee. The salamander was decapitated and the brain and spinal cord

were rapidly pithed. Retinal slices were prepared as described previously

(9). Slices were superfused at ~1 mL/min with an oxygenated solution

containing (in mM): 111 NaCl, 2.5 KCl, 1.8 CaCl2, 0.5 MgCl2, 10 HEPES,

5 glucose, 0.1 picrotoxin, 0.001 strychnine (pH 7.8). The use of HEPES

minimized effects of vesicular protons (10,11).

Whole cell recordings were obtained from rods or cones and simulta-

neously from OFF bipolar or horizontal cells using 8–15 MU patch elec-

trodes pulled from borosilicate glass (1.2 mm O.D., 0.95 mm I.D., with

internal filament;, World Precision Instruments, Sarasota, FL) on a PP-830

micropipette puller (Narishige, East Meadow, NY). The pipette solution

for second order neurons contained (in mM): 94 CsGluconate, 9.4 TEACl,

1.9 MgCl2, 9.4 MgATP, 0.5 GTP, 0.5 EGTA, 32.9 HEPES (pH 7.2).

Photoreceptors were held at�70 mV using an Optopatch amplifier (Cairn

Instruments, Faversham, UK). Bipolar cells were voltage clamped at

�50 mV and horizontal cells at �60 mV using an Axopatch 200B (Axon
doi: 10.1016/j.bpj.2010.02.003
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FIGURE 1 Schematic of models. (A) An allosteric model in which release

can occur from any occupancy state of a calcium sensor with five calcium

binding sites. (B) Conventional model with three Ca2þ binding sites. In

this model, release is restricted to the fully-occupied sensor and there is

no additional cooperativity between binding sites. (C) Conventional two-

site model.

TABLE 1 Parameter ranges

Range a (M�1s�1) b (s�1) b g (s�1) i (s�1) f

Minimum 1 � 10�5 1 � 10�5 0.1 100 1 � 10�4 5

Maximum 1 � 109 1 � 109 1 10,000 5 � 10�3 40

Step size 3 3 0.1 10 6 � 10�4 1.2
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Instruments, Foster City, CA). Recording pipettes were positioned with

Huxley-Wall micromanipulators (Sutter Instruments, Novato, CA). Currents

were acquired using Digidata 1320 interfaces and pClamp 8.1 software

(Axon Instruments). Horizontal and OFF bipolar cells were distinguished

by their response characteristics (12) and anatomically by sulfarhodamine

B (0.5 mg/mL) added to the pipette solution. Charging curves for rods,

cones, bipolar cells, and many horizontal cells could be fit by single expo-

nentials, indicating compact electrotonic structures (9). The finding that a

single exponential fitted the charging curves of most horizontal cells exam-

ined indicates that they were largely uncoupled from their neighbors in the

retinal slice preparations used for these studies.

Flash photolysis of the photolyzable Ca2þ chelator, DM-nitrophen, allows

rapid and spatially homogenous increases in intracellular Ca2þ throughout

the terminal and gives the ability to estimate the Ca2þ concentration near

the release site. The pipette solution for photoreceptors consisted of (in mM):

10 DM-nitrophen (Invitrogen, Carlsbad, CA), 5 CaCl2, 4 MgCl2, 26 CsGluc-

onate, 7.8 HEPES, 6.5 TEACl, 11 Na2ATP, 0.5 GTP, 0.5 Oregon Green

BAPTA 6F (Invitrogen), (pH 7.4). DM-nitrophen was photolyzed by flashes

of UV light derived from a Xenon arc flash lamp (Rapp Optoelectronic,

Hamburg, Germany). Near maximal voltage settings (3 capacitors, 300 V)

were used for most experiments. With these settings, photodiode measure-

ments of flash lamp output reached peak intensity within ~5 ms and lasted

~1.5 ms total. Response latencies were often <1.5 ms, indicating that

Ca2þ was uncaged rapidly after the flash reached its peak. Postsynaptic

current latency was measured from a time point 100 ms after the flash

reached its peak.

Photoreceptors were imaged with a confocal microscope containing a laser

confocal scanhead (Ultraview LCI; Perkin Elmer, Waltham, MA), cooled

CCD camera (Orca ER; Hamamatsu USA, Bridgewater, NJ), and upright

compound microscope (E600 FN; Nikon, Melville, NY). Images were

acquired at 60-ms intervals with single frame durations of 48–56 ms and

pixel values were binned 2 � 2. Images were analyzed using UltraView

Imaging Suite software (Perkin Elmer). To determine changes in Ca2þ

with OGB-6F, we used the following formula (13):

D
�
Ca2þ

i

�
¼
��

Ca2þ �
rest
þKdðDF=FÞ=ðDF=FÞmax

�

=1� ðDF=FÞ=ðDF=FÞmax

�
:

(1)

DF/F represents the fractional change in fluorescence resulting from stimu-

lation. (DF/F)max was determined from the maximal fluorescence change

produced by a 500-ms depolarization to �10 mV. We used the Kd of

3 mM for OGB-6F provided by Invitrogen. The resting Ca2þ concentration

([Ca2þ]rest) for each solution was determined ratiometrically using 0.2 mM

Fura-2 as described previously (1). As a test of the Ca2þ measurements ob-

tained with Eq. 1, we compared OGB-6F measurements with measurements

made using a higher affinity dye, OGB-BAPTA 1 (Kd ¼ 0.17 mM). Despite

differences in the Kd, depolarizing test steps of �70 to �10 mV yielded

similar intraterminal [Ca2þ] measured with both dyes (14).

To mathematically model the calcium-dependence of both the rate and

latency of exocytosis, calcium-dependent exocytosis was modeled as a series

of calcium-binding steps followed by a calcium-independent fusion step

(Fig. 1; see also Thoreson et al. (1), Heidelberger et al. (3), and Lou et al.

(7)). The transitions between the steps were represented mathematically as

a system whose dynamics are governed by a set of linear ordinary differen-

tial equations. For each model, an associated set of parameters was found

using the Metropolis-Hastings algorithm (15). The range of parameters

was restricted to physiologically realistic values (Table 1). In addition,

possible values of a and b were further restricted such that a R b, and

I*f 5 was restricted to values %6500 s�1. Where indicated, a rate of

400 s�1 at 10 mM calcium, adapted from Kreft et al. (16), was added to

the rate versus calcium data set and given quadruple weighting. In addition,

our estimated rate of spontaneous release was assigned a calcium concentra-

tion of 1 � 10�9 M, except where noted, and given quadruple weighting.

Simulations were run in the MATLAB environment (The MathWorks,

Natick, MA) on an Apple G5 dual-core Intel Xeon computer (2.66 GHz)

or a Penguin computing high performance 64-bit architecture Beowulf
cluster. Each simulation was initialized at six starting points chosen

randomly and allowed to explore the parameter space for 1 � 106 iterations.

The sum of squared errors cost-function was used to simultaneously provide

the best fit to the rate versus calcium and latency versus calcium data sets. In

keeping with the literature on Metropolis-Hastings (15,17), ~15–50% of the

1 � 106 proposed parameters were kept by using a manually tuned step-size

(Table 1). The range of permissible a- and b-values was much larger than the

other parameters, so these two dimensions of the parameter space were

explored in log-space. To visualize the multidimensional posterior distribu-

tion of parameter choices from Metropolis-Hastings, parameter sets were

plotted using the parallel coordinates method and weighted by their good-

ness of fit (17). For a and b, the normalization was carried out in log-space.

The criterion for statistical significance was chosen to be p < 0.05 and

evaluated with Student’s t-tests. Variability is reported as 5 SE.
RESULTS

When exocytosis is evoked by the rapid and homogeneous

photolytic release of caged-calcium, the measured change

in spatially-averaged calcium is believed to reflect the local

calcium concentration near release sites, whereas the kinetics

of exocytosis reflect the calcium binding properties of the

calcium sensor that triggers exocytosis (3,18). In rod photo-

receptors, the elevation of intraterminal Ca2þ to submicro-

molar levels by flash-photolysis of caged-calcium stimulates

capacitance changes consistent with exocytosis (1,2). This

finding, along with the unusually shallow relationship

between the rate of exocytosis and intraterminal calcium,

raised the question of whether photoreceptors use a novel

calcium sensor for driving neurotransmitter release. To
Biophysical Journal 98(10) 2102–2110



FIGURE 2 Example of latency measurements obtained with a paired

recording from a rod and horizontal cell. Top graph shows intraterminal

Ca2þ increase evoked by flash photolysis of DM-nitrophen. OGB-6F

fluorescence was measured within the synaptic terminal of the rod shown

in the control and postflash images above the graph. Scale bar ¼ 5 mm.

The trace at the bottom of the figure shows the postsynaptic current of the

horizontal evoked by flash photolysis of caged Ca2þ in this rod. Latency

was measured from the occurrence of flash to the beginning of the postsyn-

aptic current indicated by the arrows.
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address this question, we chose a quantitative modeling

approach that required knowledge of both the calcium-

dependence of the rate of release, obtained in our previous

study (1), and new information about the calcium depen-

dence of the latency to the first fusion event. Such informa-

tion was difficult to obtain from the capacitance records due

to their noise and slow rates of rise (1).

We measured the calcium-dependence of the latency to

release by stimulating release from photoreceptors in retinal

slices using flash-photolysis of caged-calcium and mea-

suring the postsynaptic currents recorded simultaneously

from horizontal or OFF bipolar cells. To visualize calcium

changes in individual rod terminals in the retinal slice during

paired recordings, we used a confocal microscope and the

calcium-sensitive dye, Oregon Green BAPTA 6F (Fig. 2).

In the experiment illustrated in Fig. 2, flash photolysis

of the caged calcium compound, DM-nitrophen, caused

an abrupt increase in intraterminal calcium levels from

~100 nM to ~900 nM and produced a postsynaptic current

in the simultaneously recorded second order horizontal

cell. Images of the rod before and after flash photolysis are

shown above the graph.

We measured the latency from the flash to the initial

inflection point of the excitatory postsynaptic current, i.e.,

the time to first vesicle fusion (Fig. 2, arrows). Fig. 3 A
shows latencies measured from 26 rod/horizontal cell or

rod/OFF bipolar cell pairs. Consistent with results from

capacitance experiments (1,2), submicromolar Ca2þ levels

evoked fast excitatory postsynaptic currents in second order

neurons with a threshold for detectable postsynaptic currents

of ~400 nM. Response latency diminished with higher

calcium levels, approaching 0.6 ms when calcium levels

exceeded 1 mM. These are similar to the synaptic delays at

conventional CNS synapses (19). The time required for the

postsynaptic current to reach its peak after flash photolysis

of caged Ca2þ also diminished with increasing Ca2þ levels

(Fig. 3 B).

Release from cones showed the same latency to fusion and

time to peak as release from rods (Fig. 3 A) with a threshold

of ~400 nM and minimum latency of 0.65 ms (N ¼ 21).

These results are consistent with FM1-43 measurements

(20) suggesting that release mechanisms in rods and cones

have the same Ca2þ dependence.

To estimate the rate of spontaneous release from rods, we

counted the number of individually distinguishable minia-

ture excitatory post-synaptic currents recorded during the

first 200 ms of responses to saturating 580 nm light flashes

in OFF bipolar or horizontal cells (48.5 5 7.7 v/s; N ¼ 13;

8 OFF bipolar cells, 5 horizontal cells). We estimated the

number of photoreceptors that contact each second order

neuron by comparing the size of actual light-evoked currents

to the size of postsynaptic currents evoked in the same OFF

bipolar and horizontal cells by using a rod light response as

the voltage clamp waveform in simultaneously recorded

rods. The actual light-evoked current was 10.6 5 1.7 times
Biophysical Journal 98(10) 2102–2110
(N ¼ 13; 9 horizontal cells, 4 OFF bipolar cells) larger than

the postsynaptic current evoked by a light response wave-

form applied to a single rod suggesting that each second

order neuron received inputs from ~10 rods. Together, these

results suggest release during a saturating bright light of

~5 vesicles/rod/s. Assuming a total releasable pool size

of 3500 vesicles (1), this corresponds to a release rate

of z1.4� 10�3 s (5 v s�1/3500 v). This is an upper estimate



FIGURE 3 Ca2þ dependence of postsynaptic currents in OFF bipolar and

horizontal cells evoked by flash photolysis of caged Ca2þ in rods. (A)

Latency to beginning of postsynaptic versus intraterminal [Ca2þ] measured

using OGB-6F. (B) Latency to the peak of the postsynaptic current versus

[Ca2þ]. Squares, rods; triangles, cones.
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of spontaneous release because it assumes that depolariza-

tion-associated release is entirely prevented by a saturating

light flash. To depict results in log-space, the estimated spon-

taneous release rate was assigned a calcium value of 1 nM

rather than 0.

Five-site allosteric model

To quantitatively examine the nature of the calcium sensor

that drives release in the rod photoreceptor, we constructed

mathematical models of the final calcium-dependent steps

in the secretory pathway and compared the ability of these

models to simultaneously simulate the calcium dependence

of both the rate of exocytosis and the latency to first fusion

event. In the five-site allosteric model (Fig. 1 A), release

can occur from any occupancy state of a calcium sensor

with five calcium binding sites. With zero calcium ions

bound, there is a spontaneous release rate of i, and for

each calcium ion that binds, the release rate becomes faster

by a factor of f (7). With this model, the slope of the rate

of fusion versus calcium relationship could range from
zero to five, depending on the occupancy state of the calcium

sensor. For the conventional models, release only occurs

when all binding sites are occupied, and there is no term

for spontaneous release.

For simplicity, we assumed that the calcium binding sites

were equivalent and independent and modified the forward

and backward rate constants, a and b, by the number of

available binding sites. The parameter b, also called the

cooperativity factor (3), was included in the backward

(unbinding) direction. Values of b less than unity imply

that there is something favorable about the fully-occupied

state of the sensor that makes it more difficult for a calcium

ion to dissociate, but as calcium ions begin to dissociate, it

becomes progressively easier to remove the remaining ions.

The simulation with the five-site allosteric model that most

closely matched both the rate and latency data is shown in

Fig. 4, A and B, solid curve (see also Table 2). The on-

rate, a, was 1.26 � 108 M�1 s�1, comparable to the fastest

on-rate reported for the calyx of Held, a conventional fast,

spiking neuron (7). By contrast, the off-rate, b, of 145 s�1

was approximately an order of magnitude slower than that

of other neurons (3,5,6,8). The ratio of b/a, 1.15 mM, was

indicative of a high-affinity receptor. Inspection of the poste-

rior distribution of parameters (the conditional distribution of

the parameters given the data) shows that the choice of a and

b are tightly constrained by the data (Fig. 4 C, left). Param-

eter b was found to be close to 1.

The best simulation did not require that the rate of release

continue to greatly rise as the Ca2þ concentration exceeded

~5 mM (Fig. 4 A, solid curve). Accordingly, the slope of

the rate versus calcium relationship did not rise above

~2.5. To ascertain whether the rod photoreceptor might be

capable of achieving a steeper relationship between rate

and calcium at higher calcium concentrations, we needed

data at higher calcium concentrations than we had attained.

An earlier study suggested that increasing calcium >20 mM

stimulated fusion at rates of z400 s�1 in rod photoreceptors

(16). Using this observation as a guide, we extended our data

set by adding a single weighted data point at 10 mM calcium

with a rate of 400 s�1.

The best simulation obtained using the extended data

set achieved a maximal rate of release at limiting calcium

of 6490 s�1 (Fig. 4, dashed curve; Table 2). This is compa-

rable to the maximal rates reported for the calyx of Held

(4–6,8). However, the slope of the rate versus calcium curve

remained relatively shallow (Fig. 4 A). The preferred value

for parameter b remained close to unity (Table 2). Inspection

of the posterior distribution of parameters showed again that

a and b are tightly constrained (Fig. 4 C, right). The on-rate,

a, decreased with addition of the weighted high point;

however, at 4.6 � 107 M-1s�1, it was comparable to other

estimates of neuronal on-rates (3,5,6). The value of b,

146 s�1, was not appreciably affected by the addition of

the weighted high point (Table 2), whereas the ratio b/a

increased to z3.17 mM (Table 3).
Biophysical Journal 98(10) 2102–2110
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FIGURE 4 Simulations with the five-site allosteric model. (A) The rate of

fusion plotted versus intraterminal [Ca2þ]. Open circles represent rates of

fusion derived from Thoreson et al. (1) and our estimate of spontaneous

release. Open square depicts a weighted highpoint adapted from Kreft

et al. (16). Shown are the best simulations to the data in the absence (solid

curve) and presence (dashed curve) of the weighted highpoint (dashed
curve). (B) Latency to postsynaptic current onset plotted against the intrater-

minal [Ca2þ]. The best simulations using five-site allosteric model in the

absence (solid curve) and presence (dashed curve) of a weighted high point.

(C) Parallel coordinates plot of posterior distribution of normalized param-

eters in the absence (left) or presence of a weighted highpoint (right). Darker

lines indicate better fits. Green and red lines are the mean and best fit,

respectively.

TABLE 2 Best parameter sets

Model a (M�1s�1) b (s�1) b i (s�1) f

Maximum

rate (s�1) c2

Five-site A 1.3 � 108 145 1.0 1.5 � 10�3 9.2 100 52

Five-site A* 4.6 � 107 146 1.0 1.5 � 10�3 21.1 6490 68

Five-site A*y 5.0 � 107 133 1.0 2.2 � 10�4 31.3 6448 76

Five-site A*z 4.2 � 107 148 1.0 5.0 � 10�3 16.7 5899 62

Five-site Ax 1.5 � 108 161 1.0 1.4 � 10�4 14.7 100 60

Five-site A*x 5.4 � 107 141 1.0 2.0 � 10�4 30.7 5369 77

Three-site C{ 2.3 � 107 54 2976 60

Three-site A 1.6 � 107 73 1.0 1.4 � 10�3 168 6453 42

Three-site A*k 3.3 � 107 151 1.0 1.2 � 10�3 129 2631 61

Two-site C{ 7.1 � 106 14 3634 40

A, allosteric model; C, conventional model.

*With weighted high point.
yWith spontaneous point at 2e�4.
zWith spontaneous point at 5e�3.
xWith spontaneous point at 50 nM Ca2þ.
{No weighted high point, no spontaneous point.
kb not well-defined, selected to be near 1.

TABLE 3 Comparison with other neurons

Model

b/a

(mM)

Time to leave

fully-bound

state (ms)

Off-rate

of first Ca2þ

to unbind (s�1)

Time for

last Ca2þ

to leave (ms)

Five-site A 1.15 1213 145 6.8

Five-site A* 3.17 143 146 6.8

Five-site A*y 2.61 165 141 7.1

Three-site A 4.69 150 73 13.7

Three-site A* 4.5 325 148 6.6

Three-site Cz 2.32 319 54 18.5

Two-site Cz 1.98 273 14 71.4

Bipolar cell (3) 214 285 128 0.5

Hair cell (6) 77 508 55 0.465

Calyx five-site C (5) 105 103 37 0.105

Calyx five-site A (7) 40 138 250 0.25

Calyx dual sensor,

fast (8)

38 164 23 0.172

Calyx dual sensor,

slow (8)

44 160 130 7.69

Chromaffin cell

three-site C (31)

z10 700–2000 z130 7.69

A, allosteric model; C, denotes conventional model.

*With weighted high point.
yWith spontaneous point at 50 nM Ca2þ.
zNo weighted high point, no spontaneous point.
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To assess how the spontaneous release rate influences

model parameters, the estimated spontaneous release rate in

the extended date set was first decreased by approximately

one order of magnitude to 2 � 10�4 s, the estimated sponta-

neous release rate at the calyx of Held (7). As expected, this

caused a reduction in i in the model (Table 2), resulting in

a compensatory increase in f, and a corresponding increase

in if 5, the maximal fusion rate. Importantly, the reduction

in the rate of spontaneous release did not appreciably influ-

ence the forward and backward rate constants (a, b) or the co-

operativity factor (b) (Table 2). The ratio of b/a decreased
Biophysical Journal 98(10) 2102–2110
somewhat to 2.66 mM. We then asked how an increase in

the estimated spontaneous release rate to 5� 10�3 s�1 would

alter model parameters. This resulted in changes in both i and

f as expected, and relatively minor changes in a and b

(Table 2). b/a increased somewhat from 3.17 mM to 3.52 mM.

In the above simulations, we assumed that the estimated

spontaneous release was calcium-independent. To determine

how the simulations would be affected if the estimated spon-

taneous release were instead driven by basal calcium, we set

the estimated spontaneous release rate at 50 nM calcium. For

both our data set and the expanded data set, neither the

forward and backward rate constants (a, b) nor b were

greatly affected (Table 2). However, the spontaneous release
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FIGURE 5 Simulations with two- and three-site conventional models. (A)

Rate of fusion versus intraterminal [Ca2þ] simulated with the three- (solid

curve) and two-site (dashed curve) models. (B) Latency to the beginning

of the postsynaptic current versus intraterminal [Ca2þ] simulated with the

three- (solid line) and two-site (dashed line) models.
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rate, i, decreased by almost an order of magnitude, becoming

virtually identical to that reported in the calyx of Held (7).

This is consistent with the interpretation that our estimate

of spontaneous release rate may include contributions from

calcium-dependent release. The decrease in i was accompa-

nied by a compensatory increase in f (Table 2).

Other models

Given the shallow slope of the data and the five-site allosteric

model simulations, we asked whether a calcium sensor with

three calcium binding sites would be sufficient to describe

our data (see also Thoreson et al. (1)). We therefore coded a

conventional three-site model (Fig. 1B) in which calcium-

dependent release was restricted to the fully-occupied

sensor and there was no interaction between binding sites

(i.e., b ¼ 1). The conventional three-site model does not

explicitly provide for spontaneous, calcium-independent

release, so we removed the spontaneous release rate datum

from the data set.

The three-site conventional model provided an acceptable

fit to both the rate and latency data (Fig. 5). The on-rate (a)

was respectably fast for a neuron at 2.3 � 107 M�1s�1.

However, the off-rate, b, was unusually slow for a neuron

at 54 s�1 (2,4,5,8). The ratio of b/a was 2.32 mM. The

maximal release rate, g, for the best three-site simulation

was z2976 s�1, which is comparable to the maximal fusion

rate in bipolar cells (3).

For completeness, we also encoded a three-site allosteric

model. We ran this model inclusive of the estimate of spon-

taneous release and also with the extended data set. As

shown in Table 2, the parameter sets fall into the general

pattern described for the previous two models. The on-rates

were consistent with neuronal exocytosis, and the off-rates

were unusually slow, indicative of a high-affinity binding

site. The maximal release rates were also in the range typical

of neurons (3,5,6,8).

It has been suggested recently that a neuron might contain

both a traditional five-site calcium sensor and a second,

unidentified two-site conventional calcium sensor (8).

A two-site conventional model (Fig. 1 C) with the parameter

set shown in Table 2 matched both the rate and latency data

quite well (Fig. 5) and was better than the three-site model

(Table 2). Both a and b were slower in the two-site model

(Table 2). Interestingly, a was comparable to the on-rate

suggested for the two-site sensor in the calyx of Held (8),

whereas the off-rate was slower than that of the calyx by about

an order of magnitude. The ratio of b/a was 1.98 mM, consis-

tent with a high-affinity receptor. The maximal release rate, g,

was z3634 s�1, similar to the maximal release rate of other

neurons (3,5,6,8).
DISCUSSION

At the photoreceptor synapse, light-evoked changes in

membrane potential alter the likelihood of calcium channel
opening. Unlike many synapses (21–25), both rod and

cone photoreceptor synapses show a linear relationship

between ICa and release (1,26). Although such linearity can

arise from a linear relationship between the number of active

release sites and number of open calcium channels (27–30),

it may also arise at the level of the secretory machinery (1).

Our results indicate that a conventional two-site model, the

most parsimonious model from a computational perspective,

provides an excellent description of the physiological data.

The data were also well-simulated with allosteric sensors

with three or more calcium binding sites, but not conventional

sensors with more than three binding sites. Interestingly, with

all of the models, the rod photoreceptor sensor appeared

unique among neurons in that it exhibited a profoundly slow

rate of Ca2þ unbinding. These features are likely to contribute

to the unusual linearity of this first synapse in vision.

Functional implications

The best simulations, irrespective of model form, share

several features. For models of a similar form, the on-rates
Biophysical Journal 98(10) 2102–2110
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for Ca2þ binding predict that when given the appropriate

Ca2þ stimulus, the photoreceptor release machinery is

capable of driving release with minimal latencies that are

comparable to other neurons, including a fast, spiking

neuron, the calyx of Held (3,5,6,8). For most of the models,

the simulated maximum fusion rates were also comparable

among neurons. Thus, the photoreceptor Ca2þ sensor seems

quite capable of rapidly signaling a change in illumination

from light to dark.

The most profound finding is that each of the models

predicted an unusually slow rate for the unbinding of Ca2þ

from the rod sensor relative to other neurons (b, Table 2).

However, the slow off-rate does not necessarily imply that

release will be more asynchronous in photoreceptors than

in other neurons. With the conventional models, if Ca2þ

were to instantaneously fall to zero (31), the rate at which

release ceases will be similarly rapid across neurons because

the emptying of the fully-bound state is dominated by the

forward fusion rate, rather than the backward rate, b (Table 3).

For the conventional models, rod release would be predicted

to cease within z300 ms. This contrasts with the high

affinity sensor of the adrenal chromaffin cell, a nonneuronal

secretory cell, which requires ~1000 ms to turn off release

(31). On the other hand, with the five-site allosteric model,

cessation of release from the fully-occupied state could

take as little as z150 ms or as long as z1000 ms, depending

on the maximal fusion rate. However, if we accept the data

point adapted from Kreft et al. (16), then the five-site allo-

steric model predicts a rapid cessation of release that is

consistent with other neurons and the results of the conven-

tional rod models (Table 3). That said, the rate at which

release ceases under physiological conditions will be gov-

erned to a large extent by the rate at which the presynaptic

calcium concentration falls below threshold for release.

The rate of unbinding of the first Ca2þ ion from the

fully-loaded sensor is a function of the off-rate, b, and the

cooperativity factor, b, which is raised to a power, the value

of which depends on the model. Parameter b has a value

close to one for the rod photoreceptor (Table 2) but is frac-

tional for other neurons (3,5,6,8). In consequence, despite

the profound difference in b between photoreceptors and

other neurons, the unbinding rate of the first Ca2þ ion to

unbind from the fully-loaded sensor is not appreciably

slower for the rod (Table 3).

The consequence of the slow off-rate, b, is best appreci-

ated when there are fewer bound Ca2þ ions, which dimin-

ishes the role of b. Our models indicate that the final one

or two Ca2þ ions to leave the photoreceptor Ca2þ sensor

do so relatively slowly (Table 3). Indeed, the last Ca2þ ion

to leave the rod sensor can remain bound for up to tens of

milliseconds. By contrast, for the bipolar cell, hair cell, and

the calyx of Held, the last Ca2þ ion to unbind typically

does so within a few hundred microseconds (Table 3).

Furthermore, although the two-site sensor for the calyx of

Held, believed to trigger asynchronous release, and the
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three-site sensor for hormone release in the adrenal chro-

maffin cell, show occupancy states of several milliseconds,

photoreceptor models of a similar form suggest even longer

occupancy times. According to the two-site model, during

the tens of milliseconds, when a single Ca2þ binding site

remains occupied, the binding of a single, additional Ca2þ

ion could trigger release. Indeed, for any of the models,

the longer Ca2þ ions remain bound, the fewer the number

of additional Ca2þ ions needed to either trigger or increase

the rate of release.

The slow off-rate might be particularly relevant during the

dark, when Ca2þ is high at the base of the synaptic ribbon,

a slow tonic release rate is observed and ribbon bases are

depleted of vesicles (14,32,33). Slow off-rates may allow

for partial occupancy of the sensors on the vesicles that are

next in-line for fusion, contributing to linearization at the

synapse. Slow-off rates have also been suggested to permit

vesicles at a distance from an open Ca2þ channel to undergo

fusion (8,34). Thus, the slow off-rate might allow a photore-

ceptor in the dark, which exhibits a loss of vesicles at the

base of the synaptic ribbon and nearest the Ca2þ channels

(33), to trigger the fusion of vesicles located a little farther

up the ribbon or at nonribbon release sites (35,36). The

slow off-rate may also promote the coordinated fusion of

vesicles (37,38) by allowing vesicles at differing distances

from a Ca2þ channel to attain suprathreshold Ca2þ levels

at nearly the same time.
Molecular implications

The quantitative description of the photoreceptor Ca2þ

sensor places some conditions on the candidate molecules.

For example, the conventional sensors for fast neuronal

exocytosis, synaptotagmins 1, 2, and 9, all have five calcium

coordinating sites corresponding to the binding of three Ca2þ

ions to the C2A domain and two Ca2þ ions to the C2B

domain (reviewed by Rizo and Rosenmund (39) and Südhof

and Rothman (40)). To accommodate the Ca2þ-dependent

properties of rod exocytosis described here, synaptotagmin

molecules might act in an allosteric manner (see Fig. 1 A)

or in a conventional manner with release ultimately triggered

by the binding of Ca2þ ions to a single C2 domain. Support

for the latter comes from the relative importance of the C2B

domain, but not C2A domain, for fusion (41,42), the distinct

energetics of the two C2 domains of synaptotagmin (43), and

the suggestion that the C2A domain may be shielded by

interdomain interactions until very late in the exocytotic

process (44). Thus, an appealing interpretation is that a syn-

aptotagmin-like molecule could trigger photoreceptor release

in a manner that is less than fifth-order, depending on the

availability of the C2 domains and/or local Ca2þ dynamics.

The Kd of each Ca2þ binding site predicted by our models

is in the low micromolar range. By contrast, at other syn-

apses, the Kd for Ca2þ at each binding site may range from

micromolar to hundreds of micromolar, depending on b/a
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and the magnitude and power of the cooperativity factor b.

One interpretation is that photoreceptors use a Ca2þ sensor

with a higher affinity for Ca2þ than other neurons. Perhaps

one of the high-affinity synaptotagmins, synaptotagmin 3

and 7, participates in release, as reported for neuroendocrine

cells (45,46). Synaptotagmin 3 has been localized to ribbon

synapses of the goldfish retina (47). Alternatively, the sensi-

tivity of a conventional sensor might be modified. For

example, a single point mutation in the C2A domain of the

synaptotagmin can alter the apparent Ca2þ affinity of release

(42). In addition, binding partners, such as complexins

(48,49) can modulate the Ca2þ dependence of release, and

complexin 3 and 4 isoforms are selectively localized to

retinal ribbon synapses (50). Cysteine string protein-alpha

also enhances the Ca2þ sensitivity of release (51); loss of

this protein causes rapid degeneration of photoreceptor

terminals (52).

Exocytosis at the photoreceptor synapse could involve a

Ca2þ sensor other than a member of the synaptotagmin

family. A ferlin protein with multiple Ca2þ-binding C2

domains homologous to those of synaptotagmin 3 is found

in the eye (53), and otoferlin has been proposed as the

Ca2þ sensor for release from hair cells (54). Other proteins

with C2 domains include Doc2 proteins, which bind Ca2þ

with high affinity (55–57), and Munc13-1 (39). Ca2þ also

binds to C2B domains on rabphilin, although the affinity

seems too low (Kd ~18 mM (58)) to account for release at

photoreceptor synapses, unless modified. Finally, there is

the unidentified sensor for asynchronous release at the calyx

of Held (8) and cortical synapses (42), which exhibits a

similarly shallow slope to that of the rod.

In conclusion, we find that photoreceptors use release

mechanisms with three unusual properties: high Ca2þ

affinity, an unusually slow off rate, and an unusually shallow

relationship between rate of release and presynaptic Ca2þ.

These properties constrain candidate molecules and mecha-

nisms of release at the photoreceptor synapse. They are

also advantageous for improving the postsynaptic detection

of small light responses by promoting linearity between

Ca2þ influx and release, thereby enhancing the graded nature

of synaptic signaling.
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