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ABSTRACT The role of conformational dynamics in allosteric signaling of proteins is increasingly recognized as an important
and subtle aspect of this ubiquitous phenomenon. Cooperative binding is commonly observed in proteins with twofold symmetry
that bind two identical ligands. We construct a coarse-grained model of an allosteric coupled dimer and show how the signal can
be propagated between the distant binding sites via change in slow global vibrational modes alone. We demonstrate that modu-
lation on substrate binding of as few as 5–10 slow modes can give rise to cooperativity observed in biological systems and that
the type of cooperativity is given by change of interaction between the two monomers upon ligand binding. To illustrate the
application of the model, we apply it to a challenging test case: the catabolite activator protein (CAP). CAP displays negative
cooperativity upon association with two identical ligands. The conformation of CAP is not affected by the binding, but its vibra-
tional spectrum undergoes a strong modification. Intriguingly, the first binding enhances thermal fluctuations, yet the second
quenches them. We show that this counterintuitive behavior is, in fact, necessary for an optimal anticooperative system, and
captured within a well-defined region of the model’s parameter space. From analyzing the experimental results, we conclude
that fast local modes take an active part in the allostery of CAP, coupled to the more-global slow modes. By including them
into the model, we elucidate the role of the modes on different timescales. We conclude that such dynamic control of allostery
in homodimers may be a general phenomenon and that our model framework can be used for extended interpretation of
thermodynamic parameters in other systems.
INTRODUCTION
Cooperative binding of two or more ligands (protein allo-

stery) is crucial to the function of the majority of proteins.

Some aspects of protein allostery are not fully understood,

particularly the role of conformational fluctuations. Yet it

is now accepted that the fluctuations contribute, or in some

cases, even drive, the long-range communication (1–5).

Allostery is a thermodynamic phenomenon. The coopera-

tivity is driven by the free energy differences between

the individual binding steps. Traditional views of allostery

(6–8), primarily concentrated on the structural changes,

ignore the ligand-induced changes in flexibility of the pro-

tein. However, both experiments and computer simula-

tions suggest that the backbone structural changes are not

sufficient to explain the cooperativity of multiple systems

(2,9–12), implying contribution of protein motions to the

allosteric effect. Furthermore, general considerations of pro-

tein physics suggest that dynamics most likely plays some

role in all allosteric proteins (4,13). It is therefore important

to address this phenomenon, which has wide potential impli-

cations for molecular biology and the drug design within the

pharmaceutical industry (5,14,15).

Here we investigate homotropic allostery in homodimers.

Proteins with twofold symmetry constitute a large and

important group of proteins. Many DNA-binding proteins,
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antibodies, and receptors are either present in the cell as

dimers or are composed of two identical domains (16).

Homotropic allostery, where a ligand binding to one proto-

mer affects the protein’s affinity for the second, identical

ligand associating with the other protomer, is widely present

among homodimers (17–22).

Thermal fluctuations of the protein’s native environment

excite a whole spectrum of internal vibrations. These may

contribute to long-range allosteric signaling, principally

through slow internal motions. A slow, global mode involves

a whole structural unit such as a helix or a domain. Perturba-

tion of such motion therefore directly influences distant

protein sites. Fast modes, such as side-chain movements,

are typically localized in proteins (23), and consequently

only affect a few residues within their localization length.

However, they can couple to slow motions and become

involved in the communication indirectly (24).

The suggestion to include dynamical changes in the model

of allostery came from Cooper and Dryden (13), who dem-

onstrated theoretically that alterations in protein dynamics

constitute an alternative mechanism for long-range commu-

nication. Hawkins and McLeish (25,26) have expanded their

ideas into the form of concrete models of several classes of

proteins: DNA and tubulin binding proteins to account for

allosteric entropy in rigid dimers and coiled coils, respec-

tively. The Met repressor is an example of a protein in which

dynamics can give rise to both entropic and enthalpic contri-

butions to the allosteric free energy (24). Other more recent

efforts have focused on identifying sets of linked residues in
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FIGURE 1 Residues 1–138 of crystallographic structure of CAP (PDB

entry 1G6N) binding the ligand cAMP (red) and a sketch of the correspond-

ing coarse-grained model of the system. The large X represents the backbone

of one subunit whose one internal mode is simulated by a scissorlike move-

ment of the rods. The little protrusions represent small structures moving fast

relative to the slow scissorlike motion of the rods. The internal mode of each

subunit and the coupling is defined by the elastic constant k and kc, respec-

tively. The constants are altered upon binding by factors a and b.
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proteins, the so-called allosteric pathway along which sig-

nals are communicated (5,27). Communication can proceed

via structural changes and/or altered vibrations of the linked

residue. However, these studies concentrate on detecting the

pathways rather than the mechanism by which the interaction

proceeds.

We would like to understand the role of the motions from

both ends of the frequency spectrum in connection with allo-

stery and calculate their possible contribution to the overall

allosteric effect. We try to achieve this by combining and

refining previous models into a single model that is more

complex, which can serve to describe a different class of

real systems. Slow modes involve concerted motion of large

groups of residues over long timescales that are impossible to

capture with current or foreseeable atomistic simulation.

Coarse-grained representation of the system is therefore

required to gain an insight into the mechanism. Elastic and

Gaussian network models (28–30), and other algorithms

(31–35) for systematic coarse-graining open the door to

simulating systems over longer timescales. They show that

residues distant in space can be coupled by changes in the

vibrational structure of the protein (33). We coarse-grain

systems even further, to describe the motions in an analytic

way. Such description, while losing the detail of local

structure, has the advantage of providing an intuitive under-

standing of the possible mechanism of the signal propaga-

tion, as well as the ability to reveal and investigate the

dynamical parameter space that evolution of protein struc-

ture can, in principle, explore. We treat structurally compact

parts, such as subdomains, helices, sheets, etc., as rigid or

nearly rigid structures. We assume local harmonic potential

fields between the structures. An important assumption is

that their effective spring stiffness can be altered locally,

but not distantly, by a ligand binding. Fast modes are

included purely locally, but coupled to the amplitude of

slow modes to reflect the consequences of internal protein

motions for local structural order (24).

In this article, we first introduce a general model of

dynamic homotropic allostery in a homodimer and then

test the validity of the theory on a representative homodimer,

the catabolite activator protein (CAP). CAP has been

recently shown to display negative cooperativity without a

significant conformational change upon binding two iden-

tical ligands called cAMP (2). Nuclear magnetic resonance

(NMR) measurements revealed that CAP’s fluctuations

undergo a counterintuitive change upon binding, whereby

binding of the first cAMP molecule slightly enhanced, and

the second completely suppressed, the amplitude of global

motions. Application of the model to the CAP system reveals

a possible mechanism and internal design of the protein

interactions that yield the complex and intriguing allosteric

behavior without the requirement of the structural change.

In addition, this model is applicable to systems where vibra-

tional changes go hand-in-hand with structural changes, as

has been shown on the example of Lac repressor (25).
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MODEL OF A HOMODIMER

Single slow mode

A homodimer in this context is a protein consisting of two

identical subunits, each of which binds a ligand. In the first

and simplest approximation of the equilibrium dynamics of

such protein, we assign one internal breathing mode to

each subunit and then elastically couple the subunits. This

very simple and coarse-grained model is designed to explore

only the qualitative features of dynamic allostery in the

system. For the unliganded protein, the internal mode and

coupling strength are characterized by spring constants k
and kc, respectively. Binding of a ligand is modeled as

changes of the spring constants.

We concentrate on the symmetric case where the two

ligands and their binding sites are identical. We make two

assumptions on the effect of the ligand binding. The first

follows from the symmetry of the system and requires that

both binding events have the same effect on the spring

constant representing the protein. In the second, we assume

locality: the effect of binding is not directly propagated to the

distant subunit. At this level of model, locality means that

ligand binding to one subunit affects only the stiffness of

its own internal mode and the coupling to the other subunit,

but no direct effect on the internal stiffness of the other

subunit. The ligand binding alters chemical bond structure

locally and therefore only the spring constants that directly

derive from these bonds are likely to change. However, the

subunits are elastically coupled and thus the thermal motions

of the distant subunit are indirectly modified too, leading to

the dynamic allosteric effect. The assumptions are demon-

strated in Fig. 1. We define nondimensional parameters

describing the effect of substrate binding as follows: the first

binding event changes the local subunit spring constant by

a factor b and the coupling spring constant by a factor a.
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FIGURE 2 (a and b) Allosteric free energy landscapes for a single slow

mode. (c and d) Allosteric free energy landscape for one (blue), two (yellow)

and three (red) slow modes. The plane DDG ¼ 0 is shown to highlight the

border between positive (DDG < 0) and negative cooperativity (DDG > 0).
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Introduction of the second ligand evokes the same alteration

in the other subunit.

The system is mathematically described by a Hamiltonian:

H ¼ 1

2
pTM�1p þ xTKx: (1)

The inertia matrix M is approximately constant during the

binding events and therefore can be left out from the subse-

quent calculations. For the unliganded protein, the elastic

part of the Hamiltonian reads

H ¼ xTKx ¼ ðx1 x2Þ
�

k þ kc �kc

�kc k þ kc

��
x1

x2

�
; (2)

where x1 and x2 are the generalized amplitudes of the internal

modes in each of the individual subunits. The partition func-

tion of the coarse-grained dimer undergoing structural fluctu-

ations is obtained from the Hamiltonian and reads Z¼ pkBT/

jKj1/2, where kB is the Boltzmann constant. The free energy

is then, G ¼ –kBT ln Z. We are only interested in the free

energy differences between the ligation states, and therefore

all terms that stay constant during the binding can be

ignored. We wish to calculate only the dynamic contribu-

tions and therefore other contributions such as entropy of

desolvation or hydrophobicity of the binding pockets are

not included in this calculation.

The requirements for the two constraints of symmetry and

locality of binding are implemented by introducing coeffi-

cients a and b into the matrix K as illustrated in Fig. 1.

The difference between the free energy change of each

binding step (DDG) measures the degree of cooperativity,

DDG ¼ (G2:1 – G1:1) – (G1:1 – GAPO); 2:1 refers to doubly

liganded, and 1:1 to singly liganded, protein. DDG s 0 indi-

cates cooperativity, DDG < 0 corresponds to a positively

cooperative system, and DDG > 0 to negatively cooperative

system. A larger absolute value of DDG signifies a more

cooperative system. The evaluation yields

DDG ¼ 1

2
kBTln

 �
b2 þ 2a2bKc

�
ð1 þ 2KcÞ

ðb þ aKc þ abKcÞ2

!
; (3)

where the crucial quantity DDG is now expressed using three

dimensionless parameters: Kc ¼ kc/k the ratio between the

subunit and the coupling spring constant; a, the dimension-

less enhancement of the coupling strength on binding; and b,

the dimensionless enhancement on the local subunit mode

stiffness (Fig. 1). The dimensionless character of the equa-

tion is advantageous for the parameterization from experi-

mental results, because only relative changes in the spring

stiffness contribute to DDG. We look for areas in the param-

eter space yielding DDG s 0. To picture the three-parameter

space we make two fixed choices in each of two qualitative

regimes for the parameter a, and plot DDG as a function of

the remaining two parameters (Fig. 2, top).

The parameter space is divided into two subspaces: a > 1,

which corresponds to stiffening of the coupling between
subunits on binding of a ligand, and a < 1, which corre-

sponds to coupling loosening. The shape of the DDG land-

scape is nontrivial for a s 0; regions of positive and

negative cooperativity are observed in both subspaces. The

qualitative character in the landscape is independent of the

choice of the value of a within each subspace, but there

are substantial differences between the two subspaces

(Fig. 2). In the case in which coupling stiffens, positive or

negative cooperativity is achieved by carefully choosing b;

if the coupling loosens, Kc becomes the critical parameter

instead. The second major difference is that as a tends to

0, DDG becomes more positive. When a > 1, the values

in the area where DDG > 0 are slightly enhanced, whereas

for larger values of b, the landscapes cross and the sys-

tem becomes increasingly cooperative (Fig. 2). This sug-

gests that positively cooperative systems are exploring the

subspace a > 1, and negatively allosteric system, the

subspace a < 1. The borderline case of a¼ 1 does not result

in negative cooperativity for any choice of the remaining

parameters.

The allosteric free energy (Eq. 3) is directly proportional

to the temperature, implying that the slow mode change

gives rise to purely entropic allostery (in the isothermal

case).

A good measure of slow mode amplitudes is provided by

the mean relative fluctuations h(x1 – x2)2i, which we evaluate

for each ligation state as

hðx1 � x2Þi2¼
1

Z

ZZ
dx1dx2ðx1 � x2Þ2exp

�
�Hðx1; x2Þ

kBT

�
:

Four types of behavior are observed:
Biophysical Journal 98(10) 2317–2326
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FIGURE 3 Four regions with different change in fluctuations mapped

onto the DDG landscape for a ¼ 1/2 (a) and a ¼ 2 (b). Color code: In

the red region, the loosening-tightening effect is observed. The fluctuations

of the doubly liganded system are smaller than that of the apo-protein. The

blue region is characterized by the weak loosening-tightening effect,

whereby the doubly liganded system moves more than the apo-protein,

but less than the 1:1 system. The green region is characterized by sequential

stiffening of the protein upon binding. In the gray region, each binding

increases the fluctuations. The green region for a > 1 is hidden behind

the peak in this view.
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Case 1. Sequential increase of fluctuation amplitude.

Case 2. Decrease of fluctuation amplitude.

Case 3. Amplified fluctuation, then quenching: Fluctuations

are amplified upon the first ligand binding but

quenched upon the second binding. The fluctuation

amplitude of the doubly liganded state is smaller

than that of the unliganded protein.

Case 4. Amplitude increase, then decrease: Increase in the

amplitude is followed by decrease; however, the

fluctuation amplitude of the doubly liganded state

is now larger than that of the unliganded system.

The four types of behavior are mapped onto the allosteric

free energy surface in Fig. 3. We observe that for a < 1, all

four types of behavior are present for large regions of the

parameter space. The most interesting observation, however,

is that to maximize negative cooperativity (DDG > 0) the

loosening-tightening effect is required (Case 3). In the case

of a > 1, the fluctuations tend to be sequentially quenched

upon the binding; this is especially the case for a positively

cooperative system. However, a negatively cooperative sys-

tem whose coupling would get stronger upon binding is

again likely to display the loosening-tightening effect.

Even the simplest level of coarse-grained model shows

that allosteric effects can arise in coupled dimers purely

from spatial fluctuations. The evaluation of the fluctuations

demonstrates that the loosening-tightening effect is required

to produce strong negative cooperativity, whereas strong

positive cooperativity is accompanied by sequential tight-

ening of the system. However, the allosteric free energy is

of purely entropic origin and its values of DDG match the

generally observed values of few kBT only for limiting cases

of parameters tending to 0 or N. That represents unphysical

conditions and we conclude, as might be expected on
Biophysical Journal 98(10) 2317–2326
physical grounds, that additional modes which are naturally

present in the system must take part in the allosteric sig-

naling. These fall into two classes: fast local modes and addi-

tional, global, slow modes.

The effect of fast modes on the allostery have been inves-

tigated before (24), and it has been shown that the net values

of DDG are not amplified but that the free energy is split into

compensating entropic and enthalpic parts, which them-

selves do acquire enhanced absolute values. The effect of

including fast modes in the model of a homodimer will be

discussed at the end of this section.

Multiple slow modes

We extend our model to include M slow modes per subunit.

We assume that the modes are harmonically coupled to each

other across the subunits. This corresponds to a Hamiltonian

H ¼
X2

i¼ 1

XM

j¼ 1

ki;jx
2
i;j þ

X2

i;k¼ 1

XM

j<l

l½i;j�½k;l�
�
xi;j � xk;l

�2
; (4)

where xi, j is a coordinate of jth mode on the ith subunit with

the respective spring stiffness ki, j. The coupling constants

l[i, j][k, l] are, in principle, different for all modes and can

be parameterized from experiments or simulations. At this

level, to probe the properties of the model while avoiding

a proliferation of arbitrary parameters, we constrain their

value by reasonable simplifying assumptions. We set all

coupling and internal subunit constants equal to each other

for the free symmetric protein, i.e., l[i, j][k, l] ¼ kc, and

ki, j ¼ k, ci, j, k, l. The Hamiltonian reduces to

H ¼
X2

i¼ 1

XM

j¼ 1

k x2
i;j þ

X2

i;k¼ 1

XM

j<l

kc

�
xi;j � xk;l

�2
: (5)

We further assume that, as in the one-mode case, 1), ligand

binding affects only the local elastic constants plus the

coupling constants; and 2), binding of the ligand to either

subunit has the same effect—all internal subunit stiffnesses

change by a factor b and coupling constants by a factor a.

The resulting Hamiltonian of the apo-protein in matrix form

is H ¼ xTK0x, where

K0i;j
¼ ðk þ 2MÞdi;j � kc; i; j ¼ 1;.; 2M (6)

and d denotes the Krönecker delta. The matrix K1 of

the singly liganded complex has alternating terms bk þ
a(2M – 1)kc and k þ a(2M – 1)kc on the diagonal, and the

off-diagonal terms are equal to –akc. The diagonal terms of

the matrix K2 of the doubly liganded complex are bk þ
a2(2M – 1)kc, the off-diagonal –a2kc. The allosteric free

energy is obtained from the partition function as previously

described,

DDG ¼ 1

2
kBTln

 
jK0jjK2j��K1j2

!
: (7)
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Here, DDG is a function of four dimensionless parameters a,

b, and Kc and number of modes M. The exact formula

depends on the number of modes included and is shown in

the Appendix A. The central result is that the free energies

are indeed modified with increasing number of slow modes

as is shown in Fig. 2.

In particular, this extension confirms that negatively allo-

steric systems are likely to live in the a < 1 subspace and

positively cooperative in a> 1 subspace. In these subspaces,

including extra slow modes leads to the amplified allosteric

effect in question. In the subspace a > 1, this amplification

is observed also in the region with DDG> 0 but is much less

pronounced than in the other subspace. DDG values of

55 kBT are observed for as few as 5–10 slow modes. The

values in connection to experiments will be discussed in

more detail in the next section.

The fluctuation changes are evaluated in the form of the

fluctuation matrix C:

Cij ¼
��

x1;i � x2;j

�2�
: (8)

As more slow modes are added to the system, the fluctuation

amplitude per mode,

1

M2

XM

i;j¼ 1

Cij;

decreases, whereas the total fluctuations,

XM

i;j¼ 1

Cij;

increase. The comparison of the fluctuations of three ligation

states yields again the same four types of behavior as the

simple-mode case depending on the parameter choice

(Fig. 3). This is observed for any number of modes M. The

mapping onto the allosteric free energy landscape results in

a picture analogous to that of the simple-mode case, with

the four classes of behavior spanning the same regions of

the DDG landscape.
Fast modes

In contrast to the slowest modes, fast modes are typically

localized (involve only a few atoms) and are therefore

unlikely to transmit allosteric signals across large distances

by themselves (23). However, they can couple to the slow

modes and so become involved in the transmission, modi-

fying its amplitude. Here we draw on previous work (24)

to couple several fast modes to the global, slow ones.
DDG ¼ 1

2
kBTln

�
ðb þ a2Kc þ ANÞ2�
ðb þ aKc þ AN
We can picture the situation as shown in Fig. 1. The slow

breathing mode of the subunit is represented as a scissorlike

movement of the two rods. Fast motions of smaller structures

within the subunit such as side chains are represented as

vibrations of little protrusions attached to the rods. Here

we derive the results for one slow mode and multiple fast

modes, and then generalize the result for multiple slow and

fast modes in the next section.

The coupling is based on the idea that the flexibility of the

fast modes increases with the amplitude of the slow mode.

Physically, local structures are freer to move when their envi-

ronment is disrupted. We assume therefore that the rigidity of

the fast mode depends on the displacement xs of the larger

structure within the slow mode. If xs is small, the localized

structures are in their native environment, experience a

deep, narrow potential, and move only slightly about the

equilibrium position. If the slow mode becomes more flex-

ible and thus xs larger, the fast mode environment becomes

disrupted, and the corresponding potential becomes flatter.

A further physically motivated assumption made is that the

fast modes are only coupled to the local slow mode (Fig. 1).

We implement the idea by modifying the Hamiltonian to

H ¼ Hs þ
X2N

i¼ 1

Vfi
; (9)

where Hs is the Hamiltonian of the slow modes (Eq. 2) and

the sum adds up the fast modes. N fast modes are enslaved to

each subunit, the ith enslaved mode experiences a potential

Vfi
. If the fast mode is not coupled to the slow mode,

its effective potential is the harmonic approximation Vfi
¼

�Vf0
þ kfx

2
fi
=2; the potential depth Vf0

and the mode stiff-

ness kf are assumed as in the previous work (24) to be the

same for all fast modes. The width and depth of the potential

are assumed to be affected by the slow mode in the coupled

case. The increased flexibility of the slow mode corresponds

to a flatter and wider potential Vfi
, for which we take the

functional parameterization

Vfi
¼ �Vf0

�
� kvx2

s

kBT
þ 1

�
þ 1

2

 
kf

exp
	 kkx2

s

2kBT



!

x2
fi
: (10)

Here, xs ¼ x1, x2 is the slow mode coordinate, xfi
the ith fast

mode coordinate, and kv, kf, and kk are coupling constants

(given, without loss of generality, the dimensions of a spring

constant). The choice of coupling functions is arbitrary; the

only requirement is smooth widening and flattening of the

potential with increasing jxsj. We repeat the statistical

mechanics calculation with the modified Hamiltonian and find
�a4K2
c

��
ð1 þ Kc þ ANÞ2�K2

c

�
Þð1 þ aKc þ ANÞ � a2K2

c

�2
; (11)

Biophysical Journal 98(10) 2317–2326
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where

A ¼ Vf0 kv

kkBT
� kk

4k
: (12)

The parameters a, b, and Kc define the slow mode during the

two binding steps (see Fig. 1).

Including fast modes increases the region of the parameter

space a, b, and Kc, yielding DDG > 0. However, the abso-

lute maximal value of DDG is always slightly lower than

in the nonenslaved case. The structure of the coupled model

is most clearly seen if we make the simplifying choice of

A¼ 0, which would correspond to a system at a fixed special

temperature. Now DDG is identical to the nonenslaved case.

However, the free energy is now composed of compensating

entropic and enthalpic terms. This enthalpic contribution

arises naturally from the coupling between the mean energy

adopted within the local mode potentials and the amplitude

of the global dynamics, and can be calculated by standard

application of thermodynamic relations to our model.

For isothermic changes,

H ¼ kBT2vlnZ

vT
; (13)

and thus,
DDH ¼ NVf0
Kv

�
b þ a2Kc

b2 þ 2a2bKc

� 1 þ b þ 2aKc

b þ abKc þ aKc

þ 1 þ Kc

1 þ 2Kc

�
: (14)
An example: catabolite activator protein (CAP)

To illustrate the utility of our model, we apply it to an exam-

ple homodimer, the catabolite activator protein (CAP).

The transcriptional activator in Escherichia coli, it consists

of two identical subunits, each of which binds a small acti-

vator called cyclic adenosine monophosphate (cAMP). The

cAMP molecules serve as an allosteric activator that greatly

increases the CAPs affinity for DNA. The binding of the two

cAMP molecules to the protein is itself allosteric and nega-

tively cooperative; the binding of the first cAMP molecule

reduces the affinity for the second by nearly two orders of

magnitude (36). The distance between the two cAMP ligands

is 10 Å (37), excluding electrostatic or any other direct

interactions.

Each subunit of CAP is composed of two distinct

domains—the cAMP binding domain (residues 1–138) and

the DNA binding domain (residues 139–209). The negative

cooperativity upon cAMP binding takes place independently

of the presence of the DNA binding domain and according to

Heyduk et al. (38), becomes even stronger in its absence.

Popovych et al. (2) studied the allosteric binding of cAMP

in the truncated version of CAP (CAPN, residues 1–138).

Their NMR relaxation measurements ruled out ligand-

induced conformational change in the binding site of the
Biophysical Journal 98(10) 2317–2326
second ligand but observed a substantial modification in

the dynamic behavior. The slow backbone motions (micro-

second-to-millisecond timescale) exhibited a nonintuitive

pattern whereby binding of the first cAMP molecule slightly

enhanced, and the second completely suppressed, the ampli-

tude of these global motions. Fast motions of the backbone

on the picosecond-to-nanosecond timescale changed far

less than the slow motions. Thermodynamic potentials of

the individual binding steps were obtained from calorimetric

measurements. The measured positive value of the allosteric

free energy DDG ¼ 4.7 kBT confirms negative cooperativity,

yet the enthalpic term (DDH ¼ –1.8 kBT) actually favors

binding of the second cAMP ligand. Popovych et al. (2)

concluded that the strongly unfavorable entropy (TDDS ¼
–6.5 kBT) drives the negative cooperativity.

In the previous section, we derived the structure of the

allosteric free energy landscape arising from ligand-induced

change in slow motions for a coupled dimer. The main

assumptions were that the individual ligand bindings have

local and identical effect on the slow modes of the protein.

To check the validity of these assumptions for the case of

CAP, we used the Gaussian network model (29), imple-

mented on the webserver iGNM (http://ignm.ccbb.pitt.edu)

(39), to study the lowest normal modes of the protein. All
simulations were performed on CAPN; the atomic model was

obtained from the crystal structure of the doubly liganded

full-length protein (Protein DataBank (PDB) entry 1G6N)

by selecting desired residues and stripping off cAMP ligands

for the singly liganded and unliganded version.

The evolution of the dynamic behavior is best manifested

on the dynamical cross-correlation maps, Lij ¼ hDRi � DRji
between residues i and j (Fig. 4). We observe that the two

main subunits of CAP are very little correlated in the apo-

protein, which implies that subunits move as weakly coupled

individual units. cAMP binding strengthens correlation

between the central helices and the b-sheet structure of the

liganded monomer, confirming that communication between

the two subunits does not proceed directly but only through

the interface (central helices). The dynamical pattern of the

unliganded subunit is approximately unperturbed, which

also motivates the assumption we make on the coarse-

grained effect of coupling.

From the derived structure of the DDG landscape, we con-

cluded that negative cooperativity can arise in a coupled

dimer for a particular choice of parameters. We inferred

that for negative cooperativity to arise, the parameter a is

most likely to be <1. This corresponds to coupling between

subdomains weakening upon the ligand binding. We also

found from our exploration of the general model that DDG

http://ignm.ccbb.pitt.edu
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FIGURE 5 The allosteric free energy landscapes in the case in which

a single slow mode is coupled to a set of identical fast modes, for a ¼ 1/2,

2 with the area displaying the loosening-tightening effect plus DDH < 0

highlighted in red. The projection of the area into the Kc-b plane is shown

in orange.

FIGURE 4 Cross-correlation map, Lij, between residue

i and j, for three ligation states of CAPN, obtained from

the Gaussian network model implemented on the web-

server iGNM. A pair subjected to a fully correlated motion

(Lij ¼ 1) is colored dark red, fully anticorrelated motions

(Lij) are not present, and moderately correlated motions

are colored dark blue. cAMP binding disturbs correlations

in the liganded monomer (top-left corner of the middle
picture) but introduces correlation between the central

helices and the liganded monomer. Binding of the second

cAMP reestablishes symmetry in the motion pattern and

removes correlations of the central helices to the b-sheet

structures. Main parts of the secondary structure of CAP

are shown above the APO-CAP map; a-helices are

represented as magenta cylinders, and b-sheets as gray

rectangles.
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is maximal when the loosening-tightening effect is present,

suggesting that optimal design of a negatively cooperative

system displays such a change in fluctuation amplitudes.

Experiments have demonstrated that the loosening-tight-

ening effect indeed occurs in CAP during the cooperative

binding, strongly supporting our hypothesis (2). In the fol-

lowing, we want to use the remaining experimental results

to determine whether the dynamical structure of CAP is

captured by our model, and if it is, to further localize CAP

in the parameter space and gain further insight into the mech-

anism of its cooperativity.

We showed that the experimental value of DDG¼ 4.7 kBT
can be recovered by including additional slow modes.

To account for the favorable enthalpy change (DDH ¼
–1.8 kBT), we need to add fast modes as reviewed above.

Enthalpy has been experimentally found in the CAP system

to favor the second ligand binding, which corresponds to

DDH < 0. By plotting Eq. 14, we can find the region of

the parameter space with negative enthalpy.

The amplitude of the slow mode fluctuations are also iden-

tical to the nonenslaved case if A ¼ 0 (Eq. 12). We localize

the part of the parameter space with properties matching

experimental results, i.e., DDG > 0, DDH < 0, and display-

ing the loosening-tightening effect upon binding. This area

also coincides with high allosteric free energy (see Fig. 5).

Fast fluctuations hx2
fi
i evaluated from our model cannot

be compared directly to the experiment because the NMR

experiments only measured fast motions of the backbone.

Our model incorporates small structures such as side chains

into hx2
fi
i. A 40-ns molecular dynamics simulation performed

by Li et al. (40) does, however, report on the fast motions of

the whole molecule. The root-mean-square deviation of

the whole structure was found to decrease upon binding.

This measure accounts for both side-chain and backbone

motions, but is the best guideline available to us. We there-

fore add the decreasing fast fluctuations to the desired

properties of our model. The fast mode fluctuations hx2
fi
i

calculated with our model display a sequential tightening

during the two binding steps for b T 1 and sequential loos-

ening for b ( 1. Only in the case of a < 1 does the area with
DDH < 0 and the loosening-tightening effect stretch to large

values of b (Fig. 5). This supports the hypothesis that the

coupling between the CAP subunits is weakened upon the

ligand binding.

This is a very significant advance. However, we found that

the addition of fast modes alone does not capture the exper-

imental magnitudes of DDG. This suggests that multiple

slow modes are active in the allosteric effect alongside

with the fast modes.

The most complex model we studied is composed of

multiple slow and fast modes. The fast potential is assumed

to depend on the superposition of the local slow modes, i.e.,

fast modes on the subunit 1 depend on the displacement

x2
s1
¼ x2

1;1 þ.þ x2
1;M. The allosteric free energy was evalu-

ated, but the exact formula is not shown because of its length

and complicated dependency on number of slow modes.

Analysis of the result shows that the characteristic properties

of the one slow mode case are retained. Let us again denote

A ¼ Vf0
kv=kkBT � kk=4k and set A ¼ 0 for simplification.

The free energy then equals the free energy of the slow

modes only, and is split into enthalpic and entropic parts.

The enthalpic part is directly proportional to the number

of enslaved fast modes and the region of parameter space
Biophysical Journal 98(10) 2317–2326
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with properties matched to experiment, i.e., DDG > 0,

DDH < 0, in which the loosening-tightening effect and

doubly suppressed fast modes span the ridge of high DDG
in the subspace of a < 1 (Fig. 5 a). The doubly suppressed

fast modes now completely rule-out the case of a > 1.

It is possible to use the thermodynamic data to constrain

both the number of global (slow) and local (fast) modes.

Including more slow modes and amplifying the change in

coupling constant induced by cAMP binding (choosing the

value of a further away from 1) both increase the allosteric

free energy. The experimental observations may be quantita-

tively recovered for the highly suggestive value of six global

modes (M¼ 6), a¼ 1/4, b¼ 8, and Kc¼ 1/2. The number of

fast modes N can be fitted from the value of DDH ¼ 1.8 kBT.

The form of the derived equation for DDH is preserved

from the one slow mode case (Eq. 14), i.e., DDH ¼
NVf0

Kvf ða; b;KcÞ. We estimate the value of Vf0
Kv to be

(kBT. For Vf0
Kv ¼ 0:1 kBT and M ¼ 6, a ¼ 1/4, b ¼ 8,

and Kc ¼ 1/2, we need 15 fast modes per subunit to recover

the DDH value. For a smaller value of Vf0
Kv ¼ 0:5 kBT, also

consistent with the data and identical remaining parameters

only three fast modes (N ¼ 3) are required.

As noted in the case of the Lac dimer (25), there are six

mutual global modes of motion between two internally rigid

domains (three relative translations, three relative rotations),

suggesting that each monomer of CAP is composed of two

semirigid subunits. This is confirmed by Gaussian network

model simulations in which the b-sheet structure and the

long central helix (C-helix) are observed to move as semi-

rigid bodies. Their relative motion is also evident from the

correlation maps. The b-sheets of each domain are highly

correlated with each other and the small uncorrelated islands

in the pattern correspond to the long b-hairpin that moves

fast on its own. The mobility of the structure (data not

shown) increase with the increasing distance from the central

helix, demonstrating that the structure moves with respect to

the nearly stationary helices that are uncorrelated with the

rest of the domain.

The intersubunit coupling is provided by the long

C-helices. The role of the helices has been studied by

Heyduk et al. (38) and it was found that when the DNA

binding domain and the helix are missing, cAMP binding

still occurs with the same affinity as in the full version of

CAP, although the binding is noncooperative. This corre-

sponds to the case when coupling is not modified upon

binding (a ¼ 1) and no cooperativity occurs. When, on the

other hand, the helix is present, but the DNA binding domain

is removed, the binding is tighter and more anticooperative

than in the complete CAP. Popovych et al. (41) showed

that cAMP binding introduces a coil-to-helix transition in the

untruncated version of CAP, where residues 125–136 are

turned from a random coil in apo-CAP to a-helix in the

liganded CAP. The a-helices in the coiled-coil conformation

interact more strongly than the random coils. This transition

might therefore act against the coupling loosening present
Biophysical Journal 98(10) 2317–2326
in the truncated version and might, therefore, reduce the

strength of the cooperativity.

The parameter set of the minimal quantitative coarse-

grained model is underdetermined by current experimental

data. It is, however, still possible to conclude that the number

of fast modes enslaved by the CAP dimer has a range

between a few and a few tens, a physically reasonable range.
SUMMARY AND CONCLUSIONS

We have attempted to add to the understanding of the allo-

stery of coupled dimers by constructing a simple but intuitive

coarse-grained model based on the basic thermodynamic

principles of ligand binding and protein dynamics. We

derived a model that describes the propagation of the allo-

steric signal in a coupled dimer purely via slow global

motions. We have shown that such a model can account

for positive and negative allostery. This is achieved by

fine-tuning of three parameters.

The parameter space is naturally divided into two

subspaces (a > 1 and a < 1), each of which supports a

different type of cooperativity. In the subspace where

coupling becomes stronger upon binding (a > 1), the system

is very likely to be positively cooperative. In the opposite

case, when the coupling becomes weaker upon binding

(a < 1), the remaining parameters would need to reach

unphysical values if a significant positive cooperativity

were to occur.

The relative fluctuations were evaluated for the homo-

dimer and four distinct types of responses to the consecutive

binding were found. When mapped onto the allosteric free

energy landscape, predictions can be made as to what type

of response is likely to occur for different types of coopera-

tivity. An anticooperative system is expected to display

a loosening-tightening effect whereas the fluctuation ampli-

tudes of a positively cooperative protein are most likely to

be suppressed by each binding.

The model containing one slow mode only is very instruc-

tive; however, the magnitudes of the allosteric free energy

are significantly smaller than in real systems. We therefore

speculated that more slow modes are active in the allosteric

signaling. We extended our model to include the extra modes

and indeed found that values of DDG are noticeably ampli-

fied. Values of several kBT corresponding to common bio-

logical systems were recovered for 5–10 slow modes. The

character of the relative fluctuations was preserved from

the single mode model.

We then validate our approach on a test case homodimer:

the catabolite activator protein (CAP). We focused on

explaining the internal mechanism and the origin of the ther-

modynamic parameters measured in experiments. From the

findings of the first section we knew that slow, global modes

are responsible for the free energy value but on their own

produce a purely entropic effect. The value of DDG increases

with the number of slow modes involved. To account for the
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compensating enthalpic and entropic parts, fast modes were

added to the system using the method of Hawkins and McLe-

ish (24). Fast modes, despite being localized, can contribute

to the allosteric signaling as enslaved by the slow modes.

They are responsible for splitting the free energy coming

from change in dynamics into enthalpic and entropic parts.

The extent of this split is determined by the number of

enslaved fast modes; the larger the number of fast modes,

the larger the compensating enthalpic and entropic terms.

According to experiments and simulations, the overall

change in enthalpy DDH < 0 and fast fluctuations decrease

during the two binding steps. These results, along with the

loosening-tightening effect displayed by the slow modes,

were captured by the full model containing multiple slow
DDG ¼ 1

2
kBTln

"
bðb þ 2Ma2KcÞ2M�1ð1 þ 2MKcÞ2M�1

ðb þ 2MaKcÞ2M�2ð1 þ 2MaKcÞ2M�2ðb þ MabKc þ MaKcÞ2

#
: (15)
and fast modes. It also enabled us to localize CAP in the

model’s parameter space. The examination of the allosteric

free energy landscapes suggests that a < 1, i.e., the coupling

between subunits becomes softer upon cAMP binding. The

other requirements overlap in a small region of the parameter

space highlighted in red in Fig. 5 a. This region covers

a narrow strip of the free energy landscape with the highest

values of DDG, a feature that is preserved also when mul-

tiple slow modes are introduced. Furthermore we recover

observed calorimetric values quantitatively in the case of

six global and ~10–20 fast modes per subunit. The case of

six internal modes is very suggestive, because there are six

mutual global modes of motion between two internally rigid

domains (three relative translations, three relative rotations).

The CAP subunits do indeed contain two principal units (the

long a-helix and the b-sheet structure) as demonstrated by

performing a GNM simulation. It should not prove exces-

sively difficult to identify these structures experimentally

even though NMR measurements are currently mapped

onto spatial, rather than modal, dynamics. In addition,

the change in fluctuations seems to be optimized for the

maximum anticooperative effect.

We elucidated the effect, puzzling at first sight, in which

binding of two identical ligands to a completely symmetric

dimer has entirely different consequences. We have also

shown that a change in protein dynamics can produce a

nonzero enthalpy change and suggested how measured ther-

modynamic parameters can be interpreted. They indicate

how many slow and fast modes are being harnessed for the

allostery and how the local stiffnesses change. The impor-

tance of the coupling between the subunits of a dimer has

been highlighted, and the different extent of cooperativity

in both truncated and complete versions of CAP has been

explained.
Employing our model as an analytical tool of current

experimental data allows us to make new predictions and

to suggest new experiments. Specifically we expect to find

that coupling between subunits weaken on cAMP binding,

that two structures dominate the global dynamics, and

~10–20 local structures couple to the global fluctuations.

However, the exact determination of the parameters relies

on either new analysis of available data or new experimental

and/or computer simulation results.
APPENDIX A

Evaluation of Eq. 7 yields the allosteric free energy for

M slow modes per subunit
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