
Biophysical Journal Volume 98 May 2010 2215–2225 2215
A Multiscale Red Blood Cell Model with Accurate Mechanics,
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†Division of Applied Mathematics and ‡Division of Engineering, Brown University, Providence, Rhode Island
ABSTRACT Red blood cells (RBCs) have highly deformable viscoelastic membranes exhibiting complex rheological response
and rich hydrodynamic behavior governed by special elastic and bending properties and by the external/internal fluid and
membrane viscosities. We present a multiscale RBC model that is able to predict RBC mechanics, rheology, and dynamics in
agreement with experiments. Based on an analytic theory, the modeled membrane properties can be uniquely related to the exper-
imentally established RBC macroscopic properties without any adjustment of parameters. The RBC linear and nonlinear elastic
deformations match those obtained in optical-tweezers experiments. The rheological properties of the membrane are compared
with those obtained in optical magnetic twisting cytometry, membrane thermal fluctuations, and creep followed by cell recovery.
The dynamics of RBCs in shear and Poiseuille flows is tested against experiments and theoretical predictions, and the applicability
of the latter is discussed. Our findings clearly indicate that a purely elastic model for the membrane cannot accurately represent
the RBC’s rheological properties and its dynamics, and therefore accurate modeling of a viscoelastic membrane is necessary.
INTRODUCTION
A healthy human red blood cell (RBC) has a biconcave

shape with an average diameter of 7.8 mm. Its membrane

consists of a lipid bilayer with an attached cytoskeleton

formed by a network of the spectrin proteins linked by short

filaments of actin. The lipid bilayer is considered to be a

nearly viscous and area-preserving membrane (1), whereas

RBC elasticity is attributed to the attached spectrin network,

as is the integrity of the entire RBC when subjected to severe

deformations in the capillaries as small as 3 mm. The RBC

membrane encloses a viscous cytosol (hemoglobin solution)

whose viscosity is several times larger than that of blood

plasma under physiological conditions.

Mechanical and rheological characteristics of RBCs and

their dynamics are governed by membrane elastic and viscous

properties, bending resistance, and the viscosities of the

external/internal fluids. Various RBC properties have been

measured in a number of experiments, which include micro-

pipette aspiration (2,3), RBC deformation by optical tweezers

(4,5), optical magnetic twisting cytometry (6), and three-

dimensional measurements of membrane thermal fluctua-

tions (7,8). The micropipette aspiration and optical tweezers

techniques tend to deform the whole RBC membrane, to yield

values of the macroscopic shear modulus of healthy cells in

the range of 2–12 mN/m. The optical magnetic twisting

cytometry and measurements of membrane thermal fluctua-

tions probe locally for membrane characteristics and furnish

measurements of local rheological properties (e.g., the com-

plex modulus). These experiments show that the mechanical

response of the membrane is clearly viscoelastic.

RBCs in shear flow respond by tumbling at low shear

rates and tank-treading at high shear rates, as observed in
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experiments (9–12). Theoretical models (10,13), which

attempt to describe this dynamics, indicate that such behav-

ior depends on membrane elastic properties, shear rate, and

viscosities of the membrane and of the internal/external

fluids. RBC dynamics in capillary flow (14,15) is character-

ized by a transition from biconcave to parachute shapes as

the flow rate is increased. The transition appears to be gov-

erned by the RBC membrane elastic and bending properties,

as found in recent simulations (16).

To capture realistic behavior of RBCs, mechanical models

must address:

1. Membrane viscoelasticity with a viscous contribution of

the lipid bilayer and with an elastic contribution of the

spectrin network;

2. Membrane bending resistance;

3. Separate external/internal fluids with distinct viscosities.

Several RBC models have been recently developed at

the continuum level (17,18) and at the mesoscopic level

(16,19–23). Continuum models (17,18) of deformable parti-

cles use immersed boundary or boundary integral methods.

They employ the same external/internal fluids and often

use simplified treatments of the membrane (e.g., purely

elastic membrane) that fail to capture the viscoelastic proper-

ties of real RBCs. In addition, continuum models omit some

phenomena at the mesoscopic scales such as membrane

thermal fluctuations.

Detailed mesoscopic modeling of RBCs at the spectrin

level (19,20) is much limited by the demanding computa-

tional expense. In these works, the RBC membrane was

modeled as a network of elastic springs with fixed connec-

tivity yielding a purely elastic membrane. To improve

computational efficiency, several mesoscopic coarse-grained

models have been developed (16,21–23) using a similar

network membrane representation with many fewer vertices
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than at the spectrin level. Noguchi and Gompper (16) used

multiparticle collision dynamics (24) and employed two

coupled networks to represent a membrane: one with a fixed

connectivity to mimic the spectrin cytoskeleton, and the

other with dynamic flipping between bonds to model the vis-

cous lipid bilayer. Their model takes into account the sepa-

ration between external and internal fluids and incorporates

the main RBC membrane properties; however, it is not clear

whether the model can simultaneously reproduce appropriate

RBC mechanics, rheology, and dynamics. Dupin et al. (21)

coupled a single elastic RBC network to a fluid described

by the lattice Boltzmann method (25). Despite very prom-

ising results, their model does not account for membrane

viscosity and thermal fluctuations, and the same external

and internal fluids are employed. Lim et al. (23) employed

the area-difference-elasticity model (26), which uses two

coupled elastic networks, to capture the full stomatocyte-

discocyte-echinocyte sequence of RBC shapes that may

develop under special conditions. Under physiological

conditions, healthy RBCs retain their biconcave shape,

which can be properly reproduced by a single network. In

addition, RBCs simulated with the area-difference-elasticity

model were only considered in statics, and thus further

model development is required to capture RBC rheology

and dynamics. Pivkin and Karniadakis (22) used dissipative

particle dynamics (27) to simulate a coarse-grained RBC rep-

resented by a single elastic spring network—which is the

starting point of this work.

The RBC model in this article is constructed by a network

of viscoelastic springs combined with bending energy and

constraints for surface-area and volume conservation. The

model is multiscale, as the RBC can be represented on the

spectrin level, where each spring in the network corresponds

to a single spectrin tetramer with the equilibrium distance

between two neighboring actin connections of ~75 nm. On

the other hand, the RBC network can also be highly

coarse-grained with the equilibrium spring lengths of up to

~500–600 nm. Theoretical analysis of the hexagonal

network yields its macroscopic elastic and dynamic proper-

ties explicitly in terms of its microscopic parameters, and

thus completely eliminates adjustment of the model parame-

ters. The multiscale RBC model is able to reproduce realistic

RBC mechanical and rheological properties and their

dynamics. The model is general enough to be used with other

simulation methods such as lattice Boltzmann, Brownian

dynamics, the immersed boundary method, multiparticle

collision dynamics, etc.
MODEL FRAMEWORK

We employ dissipative particle dynamics (DPD) (27),

a mesoscopic simulation technique, to model the motion of

the RBC membrane and of the internal and external fluids.

A DPD system consists of N point particles, where each

particle corresponds to a collection of atoms or molecules
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rather than an individual atom. DPD particles interact

through pairwise soft potentials, whose description can be

found in the Supporting Material.

Red blood cell model

The membrane model is built as a set of vertex points {xi},

i ˛ 1.Nv (DPD particles) that form a two-dimensional trian-

gulated network, similar to that of Discher et al. (19) and Li

et al. (20). The vertices are connected by Ns edges forming Nt

triangles. The potential energy of the system is defined as

VðfxigÞ ¼ Vin�plane þ Vbending þ Varea þ Vvolume: (1)

The in-plane elastic energy mimics the elastic spectrin

network, and is given by

Vin�plane ¼
X

j˛1.Ns

"
kBTlm

�
3x2

j � 2x3
j

�
4p
�
1� xj

� þ kp

ðn� 1Þln�1
j

#
; (2)

where lj is the length of the spring j, lm is the maximum

spring extension, xj ¼ lj/lm, p is the persistence length, kBT
is the energy unit, kp is the spring constant, and n is a power.

Note that the spring forces in membrane are a combination of

conservative elastic forces that can be expressed in terms of

the energy potential above, and dissipative forces, which are

to be defined below. The first term in Eq. 2 is the attractive

wormlike chain (WLC) potential, and the second term

defines a repulsive force for n > 0 to be called the power

force (POW), so that we abbreviate this spring model as

WLC-POW. A nonzero equilibrium spring length is defined

by the balance of these two forces.

The bending energy represents the bending resistance of

the lipid bilayer, and is defined as

Vbending ¼
X

j˛1.Ns

kb

�
1� cos

�
qj � q0

��
; (3)

where kb is the bending constant, qj is the instantaneous angle

between two adjacent triangles having the common edge j,
and q0 is the spontaneous angle.

The area and volume conservation constraints, which

account for area-incompressibility of the lipid bilayer and

incompressibility of the inner cytosol, respectively, are ex-

pressed as

Varea ¼
ka

�
A� Atot

0

�2

2Atot
0

þ
X

j˛1.Nt

kd

�
Aj � A0

�2

2A0

; (4)

Vvolume ¼
kv

�
V � V tot

0

�2

2V tot
0

; (5)

where ka, kd, and kv are the global area, local area, and

volume constraint coefficients, respectively. The terms A
and V are the total area and volume of RBC, while A0

tot and

V0
tot are the specified total area and volume, respectively.

Note, that the above expressions define global area and
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volume constraints, and the second term in Eq. 4 incorporates

the local dilatation constraint. Detailed description and

discussion of the RBC model can be found in Fedosov (28).
Mechanical properties

To obtain a relationship between macroscopic elastic proper-

ties (shear, area-compression, and Young’s moduli) of the

network and model parameters, we extend the linear analysis

of Dao et al. (29) for a regular hexagonal network having

the above energies (see the Supporting Material for details).

The membrane shear modulus is given by

m0 ¼
ffiffiffi
3
p

kBT

4plmx0

 
x0

2ð1� x0Þ3
� 1

4ð1� x0Þ2
þ 1

4

!

þ
ffiffiffi
3
p

kpðn þ 1Þ
4lnþ 1

0

;

(6)

where l0 is the equilibrium spring length and x0 ¼ l0/lm. The

corresponding area-compression and Young’s moduli are

found as

K ¼ 2m0 þ ka þ kd;

Y ¼ 4Km0

K þ m0

:
(7)

The bending coefficient kb of Eq. 3 can be expressed in

terms of the macroscopic bending rigidity kc of the Helfrich

model (30) as kb ¼ 2kc=
ffiffiffi
3
p

. Note that this expression may

not represent actual bending resistance of the RBC mem-

brane as bending of the membrane also results in local

in-plane deformations. Thus, this relation characterizes

contribution of the defined bending energy with respect to

the macroscopic bending model with zero in-plane shear

modulus.

The necessary model parameters can be calculated from

the equations above for given macroscopic RBC properties,

thereby circumventing manual adjustment. An equilibrium

simulation of such a RBC reveals that the cell surface may

develop local bumps manifested as stress anomalies in a

membrane triangulation because all springs have the same

equilibrium length, although a network on a nondevelopable

surface cannot be constructed with triangles having the same

edge lengths. The degree of local stress artifacts depends

on the regularity of triangulation and the ratio of the mem-

brane modulus of elasticity to the bending rigidity expressed

by the Föppl-von Kármán number k ¼ YR0
2/kc, where

R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Atot

0 =ð4pÞ
p

:
To fully eliminate these anomalies, a stress-free model is

obtained by computational annealing. For each spring, the

equilibrium spring length l0
i is adjusted to be the edge length

after triangulation for i ¼ 1,.,Ns. The maximum spring

extension is then set individually to lm
i ¼ l0

i � x0,

where x0 ¼ 2.2; see Fedosov (28). In addition, the spring

parameters are calculated individually for each spring based
on Eq. 6 and a given m0. After this modification, a new

network that is virtually free of irregularities appears.

Membrane viscoelasticity

To incorporate viscous dissipation of the lipid bilayer into

the RBC membrane, the spring definition is modified by

adding viscous contribution through dissipative and random

forces. Such a term fits naturally in the DPD method, where

interparticle dissipative interactions are an intrinsic part of

the method. We follow the general framework of the fluid

particle model (31) to define dissipative FD
ij and random

FR
ij forces for each spring as

FD
ij ¼ �gTvij � gc

�
vij � eij

�
eij; (8)

FR
ij dt ¼

ffiffiffiffiffiffiffiffiffiffi
2kBT

p 	 ffiffiffiffiffiffiffiffi
2gT

p
dWS

ij þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3gC�gT

p tr
�
dWij

�
3

1



� eij;

(9)

where gT and gC are dissipative parameters, vij is the relative

velocity of spring ends, tr[dWij] is the trace of a random

matrix of independent Wiener increments dWij, and

dWS
ij ¼ dWS

ij � tr½dWS
ij 1=3� is the traceless symmetric part.

Note that the last equation imposes the condition 3gC > gT

and these forces satisfy the fluctuation-dissipation balance

providing consistent temperature of the RBC membrane in

equilibrium. The membrane shear viscosity hm is related to

the dissipative parameters gT, gC (see (28) for details) as

hm ¼
ffiffiffi
3
p

gT þ
ffiffiffi
3
p

gC

4
: (10)

Our experience indicates that gT accounts for a large portion

of viscous contribution, and therefore gC is set to gT/3 in all

simulations.

RBC-solvent boundary conditions

The internal and external fluids are modeled by a number

of free DPD particles. External/internal fluid separation

(nonmixing) is enforced by bounce-back reflections of fluid

particles at a moving membrane surface. In addition, the

no-slip boundary conditions at the membrane surface are

enforced through an appropriate choice of a dissipative force

between fluid particles and membrane vertices. We refer the

reader to the Supporting Material and to Fedosov (28) for

more details on boundary conditions.

Scaling of model and physical units

The dimensionless constants and variables in the DPD model

must be scaled with physical units. The superscript M
denotes that a quantity is in model units, while P identifies

physical units (SI units). We define the length scale as

rM ¼ DP
0

DM
0

m; (11)
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where rM is the model unit of length, D0 is the cell diameter,

and m stands for meters. The energy per unit mass (kBT) and

the force unit (N denotes Newton) scales are given by

ðkBTÞM¼ YP

YM

	
DP

0

DM
0


2

ðkBTÞP;

NM ¼ YP

YM

DP
0

DM
0

NP;

(12)

where Y is the membrane Young’s modulus. The timescale is

defined as

t ¼
	

DP
0

DM
0

hP

hM

YM

YP


a

s; (13)

where h is the characteristic viscosity (e.g., internal/external

fluids or membrane) and a is a chosen scaling exponent

similar to the power-law exponent in rheology.
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FIGURE 1 Schematic RBC deformation (a) and stretching response of

the stress-free RBC model for different coarse-graining levels (b) compared

with the experiments of Suresh et al. (5). Nv ¼ 27,344 corresponds to the

spectrin-model.
RESULTS

In this section, the RBC model is compared against several

available experiments that examine RBC mechanics, rhe-

ology, and dynamics. First, stretching simulations of

modeled RBCs are performed and compared with RBC

deformation by optical tweezers (5). Second, the rheological

properties of the modeled membrane are validated against

optical magnetic twisting cytometry experiments (6) and

against experimental measurements of membrane thermal

fluctuations (7,32). In addition, RBC rheological characteris-

tics are tested in a creep test and cell extensional recovery in

comparison with those in the literature (6,33). Finally, RBC

dynamics in shear and Poiseuille flows is simulated and

compared to RBC shearing experiments (9–12) and theories

(10,13), and to experiments of RBCs in a tube flow (14,15).

Stretching test

The RBC membrane network is characterized by Nv vertices,

which define the level of membrane representation or coarse-

graining from the spectrin-level (Nv ¼ 27,344) to the highly

coarse-grained network of Nv¼ 500. Fig. 1 a shows a sketch

of the RBC membrane under deformation. The total stretch-

ing force fM is applied to N– and Nþ vertices (drawn as small
black spheres, N– ¼ Nþ ¼ 3Nv) along the negative and the

positive directions, respectively. These vertices cover a

near-spherical area on the RBC surface with 3¼ 0.02, which

corresponds to the contact diameter of the attached silica

bead with diameter 2 mm used in experiments (5). Note

that the viscous properties of the membrane and of the

suspending medium do not affect final stretching, because

RBC response is measured after convergence to the equilib-

rium stretched state is achieved for given force. Fig. 1 b
compares the simulated axial and transverse RBC diameters

with their experimental counterparts (5). Excellent corre-
Biophysical Journal 98(10) 2215–2225
spondence between simulations and experiments is achieved

for m0 ¼ 6.3 mN/m and Y ¼ 18.9 mN/m independently of the

level of coarse-graining. These are also in agreement with the

RBC mechanical properties that Suresh et al. (5) extracted

from the optical tweezers experiments by finite element

simulations. The small discrepancy between simulated and

experimental transverse diameters is probably a consequence

of the optical measurements being performed from only

a single observation angle. Numerical simulations showed

that RBCs subjected to stretching tend to rotate in the y-z
plane, and therefore measurements from a single observation

angle may result in underprediction of the maximum trans-

verse diameter. However, the simulation results remain

within the experimental error bars.

Membrane rheology from twisting torque
cytometry

Twisting torque cytometry (TTC) is the numerical analog of

the optical magnetic twisting cytometry (OMTC) used in the

experiments (6), in which a ferrimagnetic microbead is

attached to RBC top and is subjected to an oscillating

magnetic field. In simulations, a microbead is attached to

the modeled membrane, and is subjected to an oscillating

torque as shown in Fig. 2 a. In analogy with the experiments,



displacement

oscillating torque

0 2 4 6 8 10 12
−1

−0.75

−0.5

−0.25

0

0.25

0.5

0.75

1

Dimensionless time − tw

T
or

qu
e 

pe
r 

un
it 

vo
lu

m
e 

(P
a)

0 2 4 6 8 10 12
−300

−200

−100

0

100

200

300

D
is

pl
ac

em
en

t (
nm

)

 

 
w = 33.1 Hz

Torque Displacement

f

a

b
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the modeled RBC is attached to a solid surface, where the

wall-adhesion is modeled by keeping stationary 15% of

vertices on the RBC bottom, although other vertices are

free to move. The adhered RBC is filled and surrounded

by fluids having viscosities much smaller than the membrane

viscosity, and therefore, only the membrane viscous contri-

bution is measured. The microbead is simulated by a set of

vertices on the corresponding sphere subject to a rigid

body motion. The bead attachment is modeled by including

several RBC vertices next to the microbead bottom into the

rigid motion.

A typical bead response to an oscillating torque measured

in simulations is given in Fig. 2 b. The bead displacement

has the same oscillating frequency as the applied torque
per unit volume, but it is shifted by a phase angle f depend-

ing on the frequency. The phase angle can be used to derive

components of the complex modulus according to linear

rheology as

g
0 ðuÞ ¼ DT

Dd
cosðfÞ;

g00ðuÞ ¼ DT

Dd
sinðfÞ;

(14)

where g0(u) and g00(u) are the two-dimensional storage and

loss moduli (G0 and G00 in three dimensions), and DT and

Dd are the torque and bead displacement amplitudes. Note

that under the assumption of no inertial effects, the phase

angle satisfies the condition 0 % f < p/2.

Fig. 3 presents components of the complex modulus

compared with the experimental data of Puig de Morales-

Marinkovic et al. (6). A good agreement of the membrane

moduli in simulations with the experimental data is found

for the bending rigidity kc ¼ 4.8 � 10�19 J and the mem-

brane viscosity hm¼ 0.022 Pa $ s. Note that this corresponds

to a bending rigidity that is two times larger than the widely

accepted value of 2.4 � 10�19 J. In general, simulations for

various Young’s moduli and bending rigidities showed the

dependence of g0(u) ~ kc
0.65Y0

0.65. In Fig. 3, only the

membrane bending rigidity is varied, as the Young’s

modulus was obtained in the RBC stretching tests above.

The loss modulus appears to be independent of the RBC

elastic properties and is governed by the membrane

viscosity. The modeled g00 exhibits the exponent 0.85 with

respect to frequency, while the exponent 0.64 was observed

in the experiments. This discrepancy may result from both
Biophysical Journal 98(10) 2215–2225
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simulation and experimental errors because the data is fitted

over only two orders of magnitude in frequency. According

to the obtained exponent, the timescale in Eq. 13 utilizes the

values of a¼ 0.85 and h¼ hm. In addition, RBC rheological

measurements allow us to define a characteristic time tc of

the RBC membrane found as the g0 and g00 intersection,

which uniquely relates the membrane elastic properties and

viscous dissipation. From the intersection in Fig. 3, we

obtain tc ¼ 1/uc z 0.1 s, in agreement with the RBC char-

acteristic relaxation time found in RBC recovery experi-

ments (33).

Note that simulation results for higher frequencies (espe-

cially g0) may be influenced by inertial effects. Absence of

inertial effects was verified by decreasing the mass of the

attached microbead. Rheological data for high frequencies

may be computationally expensive to obtain, because

much smaller timesteps are required to ensure numerical

stability. An additional difficulty appears when g00 domi-

nates the storage modulus, resulting in a substantial drop

in the bead-displacement amplitudes for the fixed torque.

This may greatly affect reliability of experimental measure-

ments at high frequencies, while in simulations bead

displacements of several nanometers can still be success-

fully detected.

Membrane thermal fluctuations

RBC membrane thermal fluctuations were measured in exper-

iments using diffraction phase microscopy (7), where instan-

taneous RBC-height maps were obtained, and using a micro-

rheology technique (32) through dynamical tracking of

microbeads attached to the RBC surface. These measure-

ments can be interpreted in terms of the three-dimensional

complex modulus G* with the components G0 and G00,
analogously to the two-dimensional version described in the

previous section. To mimic the experiments, the attached

RBC is surrounded by a fluid of viscosity ho ¼ 1 � 10�3

Pa $ s and is filled with a fluid of viscosity hi ¼ 5 � 10�3

Pa $ s. The RBC cytosol is a hemoglobin solution whose

viscosity was measured in Cokelet and Meiselman (34) to

be in a range of 3–10 � 10�3 Pa $ s for the physiologically

relevant concentrations of hemoglobin. The membrane

viscosity is set to hm ¼ 0.022 Pa $ s.

Membrane thermal fluctuations are measured on the RBC

top through the mean-square displacement (MSD) hDr2(t)i
of several membrane vertices. Theoretical developments in

microrheology (35) provide a relation between MSD and

G* as

G�ðuÞ ¼ kBT

CLðhDr2ðtNÞi þ iuhDr2ðuÞiÞ; (15)

where i ¼
ffiffiffiffiffiffiffi
�1
p

, hDr2(u)i is the unilateral Fourier transform

of hDr2(t)i – hDr2(tN)i, C is a constant, and L is a length

scale. Note that the corresponding C and L depend on the

physical problem and selected theoretical model. As an
Biophysical Journal 98(10) 2215–2225
example, the MSD of microbeads in a viscoelastic fluid

can be well approximated by the generalized Stokes-Einstein

relation, where C ¼ 6p and L is the bead radius. This inter-

pretation was chosen by Amin et al. (32) for microbeads

attached to the RBC surface. However, the Stokes-Einstein

relation cannot be valid in this case, as the membrane elastic

properties are not taken into account. Several other models

(35) attempt to incorporate effects of the elastic and bending

properties, but there is no agreement as to whether a partic-

ular model yields quantitatively accurate results for RBC

rheology.

Fig. 4 a shows RBC spectral density. Theoretical predic-

tions for viscoelastic vesicles (35) yield the asymptotic

scaling of the spectral density obtained from MSD with

respect to frequency, when the tracked beads are much

smaller than the membrane, as
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Re
��

Dr2ðuÞ
��
� k�1=3

c u�5=3; (16)

where Re denotes the real part. Similar exponents were found

for actin-coated vesicles in the experiments of Helfer et al.

(35). Our simulation results for RBCs show that

Re(hDr2(u)i)) ~ kc
�0.26, close to the theoretical prediction

of �1/3. Furthermore, the power of the spectral density at

high u is found to be �1.85 in simulations, in agreement

with �5/3 in Eq. 16.

Fig. 4 b presents a comparison of experimental and simu-

lation results for the complex modulus. The timescale expo-

nent used here is the same as in the TTC simulations a ¼
0.85, whereas h ¼ ho þ hi þ hm in Eq. 13. This is consistent

with the exponent of G00 found to be 0.85. For the calculation

of G* (Eq. 15), we assumed that C¼ 3p and L¼ 0.25 mm, in

agreement with those used in the experiments (32). Although

the behavior of the loss (viscous) modulus G00 with respect to

frequency provides a reasonable agreement between the

experimental and simulation data, the behavior of the storage

modulus G0 is clearly different. In simulations, G0 shows

a plateau at low frequencies indicating that, in this regime,

the RBC membrane is nearly elastic—which is typical for

viscoelastic solid materials and is consistent with the TTC

results described in the previous section. However, G0 found

in the experiments shows a significant decrease at low

frequencies, which is typical for viscoelastic fluids. This

disagreement may be due to differences in measurement

techniques, because in simulations, three-dimensional

RBC-membrane thermal fluctuations are measured directly

at the network surface, whereas in experiments, displace-

ment of the attached microbeads is tracked. The scatter at

high frequencies in simulations is due to data underresolu-

tion at short times.
Creep test and cell recovery

A creep test is the standard rheological technique to measure

time-dependent deformation of a material under constant

load or stress, whereas a recovery test provides the dynamic

relaxation of a material after deformation. The dynamic

stretching and recovery of a whole RBC was performed by

micropipette aspiration (33) and by optical tweezers (4).

The creep test was also done locally on a RBC membrane

using OMTC (6), where an attached ferrimagnetic microbead

was subjected to a constant magnetic field. The RBC charac-

teristic relaxation time obtained from these experiments

shows qualitative agreement at best, although quantitative

agreement is poor, such that the values of the obtained relax-

ation times may differ by a factor of 3–5.

Several issues, such as those presented by geometry,

stress-and-strain magnitudes, and simplified models for

extracting the parameters of interest, may contribute to quan-

titative disagreement. The whole cell stretching or recovery

measures RBC rheological membrane properties on average,

because membrane strains and stresses are not uniform along
the cell due to a varying cell circumference along the stretch-

ing axes. Recent experiments (36) also showed that the RBC

response in a creep test depends strongly on strain rates

applied. Moreover, the whole cell stretching experiments

subject a RBC to relatively high strains, in which nonlinear

effects may be present, and therefore the application of linear

rheological models to extract RBC relaxation time may not

be correct.

In light of this, local membrane deformation techniques

are more favorable to measure bulk rheological properties

of a RBC membrane as the applied loads are local and

have much smaller magnitudes compared to the whole cell

deformations. For example, in OMTC (6) it is likely that

the applied strains are nearly uniform and RBC deformations

remain within the linear regime. Another complication that

often arises in the rheology of viscoelastic materials is that

a spectrum of relaxation times exists in which a single relax-

ation time may be only relevant within a certain range of

experimental conditions. The complexity of a RBC response

under different experimental conditions requires develop-

ment of accurate and realistic cell models that would allow

for a proper quantitative interpretation of experiments.

The numerical setup for the creep test followed by the cell

recovery is analogous to the RBC stretching in Stretching

Test with the observation of a time-dependent RBC deforma-

tion. Thus, the total stretching force f is applied to N– and

Nþ vertices (Fig. 1 a) in the negative and positive directions,

respectively, while the axial cell diameter is monitored.

Internal/external fluid viscosities are set to hi ¼ 5 � 10�3

Pa $ s and ho ¼ 1 � 10�3 Pa $ s, respectively, whereas the

membrane viscosity is varied. The simulations showed that

the characteristic timescale depends on the RBC membrane

and fluids properties as Y�0.75 and h0.75, where h ¼ ho þ
hi þ hm. Hence, the timescale exponent in Eq. 13 is set

to a ¼ 0.75, which is consistent with the TTC and mem-

brane thermal fluctuations simulations described above. The

assumption of linear dependence (a ¼ 1) of the timescale

with membrane properties made in experiments (33) appears

to be a rather crude approximation.

Fig. 5 a shows RBC creep tests for different membrane

viscosities. Comparison between the experimental data and

simulations suggests that the RBC membrane viscosity lies

in the range of 0.02–0.06 Pa $ s. Fig. 5 b illustrates differ-

ences in the creep response for distinct total applied forces.

This demonstrates the complexity of the RBC membrane

response, which depends on total strains and strain-rates

(36). Results of RBC recovery test after stretching can be

found in the Supporting Material.
RBC dynamics in shear flow

Experimental observations (9–12) of RBC dynamics in shear

flow show RBC tumbling at low shear rates and tank-

treading at high shear rates. This behavior is related to

existence of a RBC minimum energy state shown in the
Biophysical Journal 98(10) 2215–2225
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experiments by Fischer (9), where a RBC relaxed to its orig-

inal state marked by several attached microbeads after some

time of tank-treading motion. Hence, the RBC has to exceed

a certain energy barrier in order to transit into a tank-treading

motion in shear flow.

Theoretical predictions (10,13) attempt to capture RBC

dynamics in shear flow depending on the shear rate and

the viscosity contrast defined as l¼ (hiþ hm)/ho. According

to the theories, for a small l< 3, a RBC tumbles at low shear

rates and tank-treads at high shear rates. Near the tumbling-

to-tank-treading transition there exists a narrow intermittent

region where theories predict an instability such that RBC

tumbling can be followed by tank-treading and vice versa.

In the case of a large viscosity contrast (l > 3), the theories

predict a well-defined tumbling regime followed by an

intermittent region, although stable tank-treading may not

be present. The tank-treading state is also characterized by
Biophysical Journal 98(10) 2215–2225
RBC swinging around the tank-treading axes with certain

frequency and amplitude.

A simulated RBC is suspended into a solvent placed

between two parallel walls moving with constant velocities

in opposite directions. Fig. 6 a shows tumbling and tank-

treading frequencies with respect to shear rates in comparison

with experiments (11,12). Comparison of the simulated

dynamics with experiments showed that a purely elastic

RBC with or without inner solvent (circles and squares)

results in an overprediction of the tank-treading frequencies,

because the membrane assumes no viscous dissipation.

Addition of the membrane viscosity (triangles) reduces

the values of the tank-treading frequencies and provides a

good agreement with experiments for the membrane viscosity

hm ¼ 22 � 10�3 Pa $ s. Note that for all cases, a finite inter-

mittent region is observed and it becomes wider for a nonzero

membrane viscosity. This result is consistent with the
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experiments, but it disagrees with the theoretical predictions.

Similar results for the intermittent region were reported in

simulations of viscoelastic vesicles (37). Moreover, an

increase in the internal fluid or membrane viscosities results

in a shift of the tumbling-to-tank-treading transition to higher

shear rates. Fig. 6 b shows the average RBC tank-treading

angle and the swinging amplitude. The values are consistent

with experimental data (10) and appear to be not very sensi-

tive to the membrane viscosity. Note that the swinging

frequency is equal to twice the tank-treading frequency.

In conclusion, the RBC model accurately captures

membrane dynamics in shear flow, while the theoretical

models can predict RBC dynamics at most qualitatively.

The theoretical models assume ellipsoidal RBC shape and

a fixed (ellipsoidal) RBC tank-treading path. Our simulations

showed that a RBC is subject to deformations along the tank-

treading axis. In addition, modeled RBCs show substantial

shape deformations (buckling) in a wide range around the

tumbling-to-tank-treading transition. A degree of these

deformations depends on the Föppl-von Kármán number k

defined in Mechanical Properties. As an example: if the

RBC bending rigidity is increased by a factor of five, the

aforementioned shape deformations become considerably

smaller, while if the RBC bending rigidity is increased

by a factor of 10, the shape deformations practically subside.

The theoretical models do not take the bending rigidity into

consideration, while experimental data are not conclusive on

this issue. This again raises the question about the magnitude

of bending rigidity of healthy RBCs, as our simulations

(TTC and RBC dynamics in shear flow) indicate that the

RBC bending rigidity may be several times higher than the

widely used value of kc ¼ 2.4 � 10�19 J.

RBC dynamics in Poiseuille flow

RBC dynamics in Poiseuille flow in tubes with a diameter

comparable with the RBC diameter was the subject of inves-

tigation in several experiments (14,15). The main feature of

this flow is the RBC transition from a biconcave shape to

parachutelike shape as the flow rate is increased. Transition

to the parachute shape of a RBC in Poiseuille flow is simu-

lated in a tube of the diameter 9 mm. Poiseuille flow can be

characterized by the mean flow velocity defined as

v ¼
Z

vðrÞdA=A;

where A is the area of the tube cross section, and v(r) is the

axial flow velocity.

To identify the biconcave-to-parachute transition we use

the gyration tensor defined as

Gmn ¼
1

Nv

X
i

�
ri

m � rC
m

��
ri

n � rC
n

�
; (17)

where ri values are the RBC vertex coordinates, rC is the

RBC center-of-mass, and m, n can be x, y, or z. The gyration
tensor characterizes RBC shapes. As an example, the gyra-

tion tensor of a biconcave RBC in equilibrium has two large

eigen-values corresponding to the cell diameter and one

small eigen-value characterizing the RBC height. Thus, the

RBC transition to the parachute shape can be identified by

the smallest eigen-value as it increases from its equilibrium

value to that of an elongated RBC in Poiseuille flow.

Fig. 7 shows a snapshot of the RBC parachute shape

(Fig. 7 a) and the biconcave-to-parachute transition for

different bending rigidities (Fig. 7 b) with respect to the

mean flow velocity. The plot shows that healthy RBCs

transit to a parachute shape at the mean flow velocity as

low as 65 mm/s. Cells with a larger bending rigidity show

the biconcave-to-parachute transition at larger flow rates

with a nearly linear dependence of the transition on the
Biophysical Journal 98(10) 2215–2225
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bending rigidity kc. These results are consistent with the

numerical simulations of Noguchi and Gompper (16).

In addition, note that the biconcave-to-parachute transition

results in a reduction of flow resistance by 10–15%.
SUMMARY AND DISCUSSION

We presented a RBC model that accurately captures RBC

mechanics, rheology, and dynamics. The membrane skeleton

is constructed as a network of interconnected viscoelastic

springs that provide RBC elasticity analogously to the spec-

trin network, and viscous dissipation similarly to that in the

lipid bilayer. This network also incorporates the membrane

bending rigidity to mimic bending resistance of the lipid

bilayer. In addition, local and global area constraints ensure

the membrane incompressibility of real RBCs, while the

volume constraint ensures the incompressibility of the inner

solvent.

Independently of a RBC coarse-graining level (Nv), the

model mechanical properties were found to be in excellent

agreement with those obtained in optical tweezers experi-

ments. This was achieved without ad hoc tuning or adjustment

of the model parameters, because they can be analytically

derived from the imposed macroscopic membrane properties.

In addition, the proposed stress-free model allowed us to elim-

inate existing artifacts of the network triangulation and to set

a realistic Föppl-von Kármán number k of a RBC.

RBC membrane rheology was first probed by TTC,

showing good agreement with the experiments for the

bending rigidity kc ¼ 4.8 � 10�19 J and the membrane

viscosity hm ¼ 0.022 Pa $ s. Our results in Fig. 3 indicate

that the RBC membrane bending rigidity may be 2–3 times

larger than a widely used value of 2.4� 10�19 J. This may be

verified by new OMTC experiments that employ ferrimag-

netic microbeads of different sizes. The TTC simulations

also showed that a characteristic time of the RBC membrane

can be defined by the intersection of g0 and g00 curves in

Fig. 3 and is equal to ~0.1 s consistent with experiments.

The second rheological test monitored membrane thermal

fluctuations, resulting in reasonable agreement with the

analogous experiments. In simulations, three-dimensional

membrane fluctuations were measured directly at the

network; however, in experiments, the motion of attached

to the lipid bilayer microbeads was observed, which may

account for the discrepancies. In addition, membrane undu-

lations measured in experiments may be influenced by poten-

tial metabolic activities (e.g., ATP) suggested by recent

experiments (38) and theories (39,40). However, no depen-

dence of membrane fluctuations on ATP was found in Evans

et al. (41). This issue is not fully resolved and is currently not

addressed in our model. However, it suggests a topic for

future work.

The third rheological test applied time-dependent stretch-

ing and relaxation of a whole RBC. The simulations show

complex behavior due to the nonuniform cell strains, and
Biophysical Journal 98(10) 2215–2225
the dependence of cell response on the applied stresses. In

particular, such tests cannot accurately provide a meaningful

membrane characteristic relaxation time as attempted in

a number of experiments. The experiments also attempt to

fit linear relaxation models, where using the power-law

model would be preferred. The comparison of the simulation

results with the experimental cell response yields the

membrane viscosity to be between 20 and 60 times that of

water.

The RBC dynamics was studied in Couette and Poiseuille

flows. The RBC dynamics in shear flow yields two regimes:

tumbling at low-shear rates and tank-treading at high-shear

rates with a narrow intermittent region of mixed dynamics.

The comparison of the simulation results with the theoretical

predictions showed that RBC dynamics in shear flow can be

predicted at most qualitatively by the existing theories

because they do not take into account the RBC deformations

and bending rigidity. In addition, the simulated RBCs showed

strong membrane deformations around the tumbling-to-tank-

treading transition, which greatly depend on the relative

membrane elastic properties and bending rigidity. The obser-

vation of RBC shapes near the transition in experiments

would be of great interest. Finally, RBC dynamics in Pois-

euille flow showed RBC transition to the parachutelike shape,

which occurs at the mean flow velocity of ~65 mm/s.

Current RBC models are commonly validated to capture

RBC mechanical response, but they are not able to appropri-

ately describe membrane rheology and dynamics. The model

of this work exhibits a number of RBC membrane properties

simultaneously, and thus provides an adequate and realistic

representation of a RBC. The model is general enough and

can be used in other simulation methods, such as lattice

Boltzmann, Brownian dynamics, immersed boundary

method, multiparticle collision dynamics, etc.
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