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ABSTRACT We present a novel sampling approach to explore large protein conformational transitions by determining unique
substates from instantaneous normal modes calculated from an elastic network model, and applied to a progression of atomistic
molecular dynamics snapshots. This unbiased sampling scheme allows us to direct the path sampling between the conforma-
tional end states over simulation timescales that are greatly reduced relative to the known experimental timescales. We use
adenylate kinase as a test system to show that instantaneous normal modes can be used to identify substates that drive the
structural fluctuations of adenylate kinase from its closed to open conformations, in which we observe 16 complete transitions
in 4 ms of simulation time, reducing the timescale over conventional simulation timescales by two orders of magnitude. Analysis
shows that the unbiased determination of substates is consistent with known pathways determined experimentally.
INTRODUCTION
Large conformational transitions play an important role in

protein functions, including enzyme catalysis (1), force gen-

eration in motor proteins (2), allosteric communication in

proteins (3), and changes in the selectivity filter of potassium

channels (4). How to understand the molecular origins of

these long timescale motions is limited by the considerable

timescale heterogeneity of native protein fluctuations that

are responsible for functional conformational motions. For

example, a recent study on adenylate kinase (AdK) shows

that there is a close connection between fast local atomic

fluctuations and long timescale conformational transitions.

This linkage between local and global fluctuations seems

to be a general property of the protein energy landscape (5).

A comparison between a thermophilic and mesophilic AdK

suggests that fast timescale local fluctuations, although

different between the proteins at a given temperature, lead

to very similar long timescale collective motions when mea-

sured equidistant from their respective melting tempera-

tures (6). Another ensemble-based analysis reveals that local

conformational fluctuations facilitate the coupling between

proton binding and global structural transitions (7).

Atomistic molecular dynamics (MD) is, in principle, a

powerful approach for exploring the molecular mechanisms

of functional protein transitions, especially the local confor-

mational fluctuations that occur on short timescales. How-

ever, it is still a challenge to obtain a good ensemble estimate

of large conformational transitions that often occur on the

timescale of milliseconds to seconds. By contrast, global

fluctuations can be captured based on collective protein

displacements near the native state energy minimum when
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described by normal modes (8–10). A more general elastic

normal mode analysis, which uses a Hookean potential

model (11), provides a G�o-like representation of the native

reference structure that removes the model dependencies of

normal modes derived from empirical protein force fields.

This has been successfully used to study protein dynamics

by analyzing static experimental x-ray or nuclear magnetic

resonance data of various endpoint conformational states

(12–14), as well as for predicting large conformational tran-

sition pathways (15–19). For example, Miyashita et al. (18)

adopted a scheme to iteratively deform the initial native state

conformation along one or several lowest frequency modes

to explore how cracking or partial unfolding happens during

conformational transitions. However, it is still unclear how a

protein reaches such large collective motions over long time-

scales by coupling to higher frequency local fluctuations,

especially when the reaction coordinate is unknown a priori.

In this work, we develop a general method that uses

atomistic MD simulations to evaluate time progressions of

instantaneous low-frequency normal modes generated from

an elastic network model, while retaining the underlying

anharmonic nature of the atomistic motion. The working

hypothesis of our computational approach is the growing

appreciation that inherent short timescale fluctuations of

the apo form of enzymatic proteins involve a sampling of

conformational states that are templated for binding of rele-

vant ligands and other proteins, or at least anticipate some

functional states occurring on a longer timescale (20,21).

We illustrate the approach using equilibrium MD trajecto-

ries of the closed state of AdK (1AKE (22)) to find low-

frequency motions that simultaneously probe normal modes

that are similar to its open state (4AKE (23)). These instan-

taneous normal mode trajectories give rise to common

intermediate substates, some of which drive the structural

fluctuations of AdK from its closed to open state, in which
doi: 10.1016/j.bpj.2010.01.044
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we observe 16 complete conformational transitions in 4 ms of

simulation time, compared to the experimental transition

timescale for AdK (without ligand) of ~0.1 ms (20). The

key result of our study is that no a priori definition of a

reaction coordinate is necessary to characterize transition

pathways between two known protein end-states.
METHODS

Elastic normal-mode analysis

Normal mode analysis provides an approach for analytically solving the

equations of motion under the assumption that the system is well approxi-

mated by a harmonic potential energy near the global native minimum (14),

~riðtÞ ¼
1ffiffiffiffiffi
mi
p

X3N

j¼ 1

Cjeijcos
�
ujt þ fj

�
; (1)

where~riðtÞ is the displacement of atomic coordinate i at time t, mi is the cor-

responding atomic mass, eij represents the ith coordinate of normal mode j,

uj
2 corresponds to the frequency of the jth normal mode, and Cj and fj

are the amplitude and phase of mode j, respectively, which are determined

by the initial conditions.

The solution of Eq. 1 depends on the potential energy model. Tirion (11)

introduced a simple pairwise Hookean spring potential based on the known

structure of the native protein which naturally corresponds to the global

energy minimum. The basic principle of this framework is to treat the inter-

action potential between two atoms as an elastic spring,
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where~ri and~rj denote the position vectors for atom i and j, and~rij ¼~ri �~rj.

The zero superscript indicates the reference structure, and C is a phenomeno-

logical constant. Expanding Eq. 2 to second order about~r 0
ij yields

E
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~ri;~rj
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; (3)

where D~rij ¼~rij �~r0
ij. The total potential energy within a molecule is then

given by

E ¼
X
j~rijj<Rc

E
�
~ri;~rj

�
; (4)

where Rc is an interaction cutoff parameter which effectively defines the

number of elastic springs. Within the harmonic approximation, the second

derivative of potential energy with respect to atomic coordinate results in

the formulation

E ¼ C

2

�
~r �~r 0

�T�H �
�
~r �~r 0

�
; (5)

where~r is the 3N-dimentional vector representing the Cartesian coordinates

of N atoms, and H is the Hessian matrix, that when diagonalized, generates

the normal mode eigenvectors,~ej, and corresponding eigenvalues (frequen-

cies), uj
2.
Structural similarity measured
by normal-mode overlaps

The overlap of two normal modes is simply defined as the inner product

between two normal mode eigenvectors,~ei and~ej,
d ¼ j~ei � ~ejj�� ��: (6)

j~eij � ~ej

In our study, we use the normal mode overlap to define the structural simi-

larity between two different configurations a and b of a given molecule; the

normal modes and frequencies of each conformation can be calculated from

an elastic network model under the assumption that every configuration is

treated as a reference structure independently. We then fix the frequency

order of all normal modes, ~ei
a, in set a, and then search for the normal

mode~ej
b in set b, with the highest overlap to the low-frequency mode~ei

a, i.e.,

da;b
i ¼ max

j

j~ei
a � ~ej

bj
j~ei

aj � j~ej
bj: (7)

The structural similarities between conformation a and b are then defined as

weighted normal mode overlaps,

sa;b ¼
Xtc

i¼ 1

1=
�
ua

i

�2

Ptc
i¼ 1

1=ðua
i Þ

2

� da;b
i ; (8)

where (ui
a)2 is the frequency of target normal mode ei

a, and tc is number of

chosen normal modes. The value of sa,b varies between 0 and 1, where larger

values correspond to greater similarity than smaller values.

Fluctuation correlation coefficient

The fluctuation correlation, mij, between the ith and jth a-carbon atom atoms

is defined as

mij ¼

D�
xi � xi

�
�
�
xj � xj

�E
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�	q ;

(9)

where xi and xj are coordinate vectors of a given snapshot, xi and xj are the

corresponding average coordinate vectors evaluated across the trajectory,

and h.i denotes an ensemble average. Negative values of mij correspond

to residues i and j moving in opposite directions, whereas positive values

correspond to the same directional movement between residues i and j.
Molecular dynamics and instantaneous normal
mode simulations

Molecular dynamics (MD) simulations were run on the closed state of

Escherichia coli adenylate kinase using only chain A without the ligands

and crystal waters found in PDB entry 1AKE. Simulations were run with

the GROMACS 4.0.3 package (24) using the OPLS-AA all-atom force field

(25) with 14,714 TIP4P water molecules (26) and four Naþ ions to neutralize

overall charge. We employed cubic periodic boundary conditions as well as

particle-mesh Ewald (27) using a 1-nm real-space cutoff for the electrostatic

interactions, and a 1.4-nm cutoff was used for van der Waals interactions.

The simulations were run in the NPT ensemble at constant temperature

(300 K) and pressure (1 bar) using the Berendsen coupling scheme (28)

for both temperature and pressure, with a step size of 2 fs, and all bonds

were constrained with the LINCS algorithm (29). A 500-ps position

restrained (heavy atoms) molecular dynamics (MD) simulation was carried

out at target temperature to solvate waters and ions after energy minimiza-

tion procedure. The initial 2 ns of the MD trajectory starting from 1AKE

were defined to be part of the equilibration phase, and the subsequent 8 ns

were used to sample 15 frames to launch 20 independent simulations for

each frame by regenerating velocities. These 300 initial conditions were

simulated for a further 5 ns; ~10% of these trajectories were continued for
Biophysical Journal 98(10) 2356–2364
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another 15 ns for a total of 20 ns. From these production simulations, normal

modes were generated from the elastic network model every 10 ps over each

5-ns or 20-ns simulation. The cutoff we used for the elastic network model

was 15 Å, which allowed for the best differentiation between the lowest

frequency normal modes between 1AKE and 4AKE, and we utilized the

three lowest frequency normal modes to calculate normal mode similarity

(Eq. 8) to the 1AKE and 4AKE reference states.
RESULTS

Fig. 1 a illustrates the time progression of the instantaneous

normal mode (INM) similarity of the initial trajectory start-

ing from the 1AKE PDB structure. The INMs decay quickly

from the closed (1AKE) start state (i.e., values of ~1.0), but

remain stable around relatively high similarity values of ~0.7

to the closed state and relatively low similarity of ~0.55 to

the open (4AKE) state, clearly indicating that no transition

has occurred. These INM similarity values reflect largely

fluctuations in the 1AKE native basin. Fig. 1 b illustrates

the root-mean-square deviation (RMSD) progression with

respect to the 1AKE and 4AKE reference structures. Clearly

the 1AKE ensemble is broad and with large fluctuations
FIGURE 1 (a) Instantaneous normal mode similarity and (b) RMSD with

respect to both reference states 1AKE (blue solid line) and 4AKE (red

dashed line) over 30 ns. The INM values are largely measuring equilibrium

fluctuations in the 1AKE basin.
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around its native basin, but clearly no transition is evident

as measured by the complete lack of RMSD similarity to

4AKE. Another independent trajectory (data not shown)

shows the same trend.

We picked 15 snapshots from the 1AKE equilibrium

ensemble in the first 10 ns, and launched 20 independent

5-ns trajectories for each snapshot to look for INM similarity

change that signals a possible transition away from 1AKE

toward the 4AKE end state. A vast majority of these 300

short simulations largely sample the 1AKE basin, with

INM similarity values to 1AKE remaining R0.7, while the

INM similarity to 4AKE is %0.6. But for ~25% of trajecto-

ries, the time progressions of the INM similarity when

projected against the 1AKE and 4AKE states show high-

frequency motions that progress to large conformational

changes of three types. Specifically, a majority of trajectories

(~20%) measure a normal mode similarity to 1AKE that is

small and remains stable at <0.6, but this does not corre-

spond to any greater similarity to 4AKE (Case 1). A much

smaller number of trajectories (~4%) show large fluctuations

of INM similarity between the 1AKE and 4AKE reference

states that are nearly anticorrelated (Case 2). Finally, a dif-

ferent case (<1%) corresponds to a small and stable value

of the INM similarity to 1AKE, whereas the INM similarity

to 4AKE is quite flexible, fluctuating greatly between values

of 0.5 and 0.9 (Case 3). These are the primary candidates for

productive reaction coordinates, distinguished by either

greater INM dissimilarity to 1AKE and/or increased INM

similarity to 4AKE. To verify whether the three cases are

relatively stable substates, 25 of these trajectories were con-

tinued for 20 ns to clarify that the three general cases held for

longer simulation times, which they did as shown in Fig. 2,

a–c; in fact, one of trajectories restarted from the 1AKE

ensemble reached the 4AKE ensemble within 20 ns.

Given these three stable substates on the 20-ns timescale,

we took 10 snapshots over one of the longer 20-ns trajectory

for each case, and ran 10 independent 5-ns simulations for

each snapshot to push further along the three possible INM

reaction coordinates. For trajectories launched from Case

3, we recorded two transition events for the 100 independent

5-ns simulations that appear to unambiguously reach the

open state based on small and stable INM similarity values

of 0.5 to 1AKE and high similarity values to 4AKE that

remain stable at >0.9 (Fig. 2 d). Forty-one trajectories start-

ing from Case 3 reverted to the Case 1 substate, while

another 28 remained as a Case 3 substate. Another 29 of

the 5-ns trajectories for Case 3 showed evidence for time

progression toward even larger INM similarity values to

4AKE, and when these trajectories were continued-out for

an additional 15 ns, eight of them showed a complete transi-

tion to a now stable 4AKE ensemble. By contrast, ~76% of

the trajectories starting from Case 2 continued to show

strongly anticorrelated INM similarity trends, ~18% reverted

back to the 1AKE ensemble, and 6% of these trajectories

converted to the Case 3 substate. When we continued 20



FIGURE 2 Instantaneous normal mode (INM) similari-

ties to both reference states 1AKE and 4AKE along

20-ns MD trajectories. (Solid blue line and dashed red

line) INM similarity to 1AKE and 4AKE, respectively.

(a) Case 1 shows no INM similarity to either state; (b)

Case 2 shows anticorrelated motions of the INM similarity

metric; (c) Case 3 shows low similarity to the 1AKE refer-

ence and a developing resemblance to 4AKE; and (d)

a trajectory starting from Case 3 transitions to the 4AKE

ensemble.
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of the 5-ns trajectories for an additional 15 ns, starting from

Case 2 as well as the 6% trajectories that transitioned to the

Case 3 substate, we measured no clear transition to the

4AKE ensemble. When they were continued-out to 40 ns,

however, two of them transitioned to 4AKE. Finally,

whereas most of the Case 1 trajectories continued to maintain

the low INM similarity to both 1AKE and 4AKE, 12 trajec-

tories evolved to Case 3, and when these were continued for

an additional 15 ns, three trajectories showed a transition to

the 4AKE reference state. The details of these INM trajecto-

ries are reported in Table 1. Note that we only follow the

normal-mode similarity to the 1AKE and 4AKE end-states,

and thus do not dictate a reaction coordinate a priori. In what

follows, we analyze the INM trajectories more carefully to

determine the origin of the substates and pathways that we

observe.
TABLE 1 Conformational transitions among substates, 1AKE,

and 4AKE by following instantaneous normal mode similarity

INM

Similarity

type

1AKE

ensemble Case 1 Case 2 Case 3

4AKE ensemble

<20 ns 30 ns 40 ns

Case 1 0 88 0 12 3

Case 2 18 0 76 6 1 1

Case 3 0 41 0 57 10

Case numbers refer to different INM similarity trends to 1AKE and 4AKE

(see text).
INM trajectory analysis

We have shown that instantaneous normal modes from an

elastic network model provide an excellent reaction coordi-

nate to monitor progress of large and long timescale confor-

mational transitions between known end-states, and hence

will be general to arbitrary protein system. Based on the

information in Table 1, the transitions based on INM simi-

larity suggest a mechanism as outlined in Fig. 3 a.

We now explore the specific biological implications of

INM similarity trajectories for the 1AKE to 4AKE transition

for AdK by analyzing MD simulation trajectories for rele-

vant domain motions by measuring average domain dis-

tances, defined as the geometric center distance between

two domains (based only on a-carbons), to mechanistically

understand the corresponding structural changes. AdK is

composed of three domains comprising a central and stable

CORE domain (residues 1–29, 68–117, and 161–214) and

the flexible LID (residues 118–160) and NMP (residues

30–67) domains. In going from the closed to the open state,

domain distance from NMP to CORE must increase from

18 Å to 22 Å, and that from LID to CORE must change

from 21 Å to 30 Å.

In the initial simulation around 1AKE (Fig. 1), we find the

INM similarity is measuring fluctuations of the NMP-CORE

distance, whereas the LID-CORE distance remains virtually

unchanged from the closed state. For Case 1, the NMP

domain is open, but the LID domain largely fluctuates
Biophysical Journal 98(10) 2356–2364



FIGURE 3 Mechanistic information to complete a transition from the

closed (1AKE) to open (4AKE) states. (a) Mechanistic information based

on INM similarities to both reference states 1AKE and 4AKE. (b) Mecha-

nistic information based on combining INM similarity trajectories and

domain distances to complete a transition from the closed to open states.
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around the closed state (Fig. 4 a). For Case 2, the NMP

domain fluctuates between partially open and closed state,

whereas the LID domain motion is anticorrelated to the given

NMP state: when the LID is closed, then NMP is partially

open; and when LID is half open, then the NMP state is

closed (Fig. 4 b). For Case 3, the NMP domain is stably

open, whereas the LID domain progresses to the open state

(Fig. 4 c). Finally, when the INM similarity records evidence

of a complete and stable transition to 4AKE, both the NMP

and LID domains have settled into their open conformations

with respect to the CORE domain (Fig. 4 d, which corre-

sponds to Fig. 2 d).

Combining the INM similarity mechanism in Fig. 3 a with

the corresponding domain distance trends in Fig. 4, we can

now assign a more detailed mechanism for AdK in which

the 16 complete transition pathways from the closed to

open state always involve the NMP domain opening first,

accompanied by significant fluctuation of the LID domain

to a partially open state (Case 3). We also observe a substate

in which the NMP domain is open and the LID domain is

closed (Case 1), and the Case 2 substate showing anticorre-

lated motions of a closed (partially open) NMP and partially
Biophysical Journal 98(10) 2356–2364
open (closed) LID domain. Fig. 3 b details the mechanism

from 1AKE to 4AKE based on domain transition path-

ways and the contents of Table 1, all derived from INM simi-

larity trajectories based solely on information of the protein

end-states.
Fluctuation correlation analysis

We use a fluctuation correlation analysis to explore the

coupling among anharmonic motions of residues in the

various substates to enable us to understand how they couple

to the global scale conformational transition. The resulting

correlations are biased by the scheme of how the simulation

trajectory is aligned to the reference structure, which we

attempted to mitigate by aligning all trajectories to the

CORE domain, as nuclear magnetic resonance data showed

that there are no significant internal conformational changes

in this domain (20), unlike the residues in the hinge regions

and NMP and LID domains. Equilibrium trajectories were

selected to calculate residue fluctuation correlations using

Eq. 9 for each substate type outlined in Fig. 3 a.

We found that residue pairs do not show strong negative

Pearson correlation coefficients, and therefore do not show

any differences among different substates (data not shown

here). However, strong positive correlations are observed

that do, in fact, differentiate the substates. Fig. 5 illustrates

the statistics of positive correlations only, using a cutoff of

0.4 that is large enough to detect same directional move-

ments without the statistical noise of using a lower value.

Generally, fluctuations in different substates share many sim-

ilarities. Apparently, the NMP and LID domains move

concertedly in the same direction, except for small

regions—which is highly consistent with the gross transition

mechanisms of AdK. However, the correlation metric also

defines new regions such as C1 labeled in Fig. 5, which

involves the connectivity among four adjacent b-strands

(residues 1–7, 28–31, 81–85, and 193–198) that make up

a b-sheet in CORE domain and also connect to the NMP

and LID domains. It has been experimentally shown that

the thermal stability of AdK is not significantly influenced

by NMP and LID domains, but is largely defined by the

CORE domain (30). The strong positive correlations in

Fig. 5, C1, imply that this b-sheet probably plays an impor-

tant role in the thermal stability of the protein because it is

observed in all substates.

However, differences among different substates also exist

as shown in Fig. 5. For the Case 1, Case 3, and 4AKE ensem-

bles, region A1 shows some degree of strong correlations that

does not exist in the 1AKE and Case 2 ensembles. By contrast,

the 1AKE and Case 2 ensembles show higher frequency of

strong positive correlation in region A2 than the other ensem-

bles. These differences can be explained by the fact that resi-

dues 81–100 in the CORE domain of region A1 come into

close proximity and thereby stabilize the NMP domain in its

open state. By contrast, the hinge residues 156–167 between



FIGURE 4 Domain distance changes along trajectories.

(Solid blue line) Interdomain distance between the NMP

and CORE domains. (Dashed red line) Interdomain dis-

tance between the LID and CORE domains. (a) Case 1

substate; (b) Case 2 substate; (c) Case 3 substate; and (d)

a trajectory starting from Case 3 transitions to the 4AKE

ensemble.
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the LID and CORE domains, which define the A2 region,

stabilize the NMP domain in its closed state. Overall the

LID and NMP domains are highly flexible, although the

different substates show regions corresponding to reduced

fluctuations (i.e., correlation holes) due to hinge residues.

For the LID domain, apparently the positive correlations of

these hinge residues must be activated, as they are in Case 3,

to reach the 4AKE open state, because they are inactive in

Case 1 and hence resemble the 1AKE closed state. The least

productive route for conformational transition from 1AKE

to 4AKE, through the Case 2 substate, shows that the NMP

domain hinge residues show reduced motion consistent with

its closed or partially open form.
DISCUSSION

Throughout hundreds of short independent simulations, we

find that the dominant transition pathway is

1AKE/ Case 1/ Case 3/ 4AKE;

although occasionally 1AKE can directly evolve to Case 3

before transitioning to the 4AKE ensemble. By contrast,

we find that the alternative path

1AKE/ Case 2/ Case 3/ 4AKE

is far less populated. Although the LID domain is flexible,

our simulated pathways clearly show that the LID domain

prefers the closed state, since the reversible rate from
Case 1/ Case 3 or Case 2/ 1AKE
is higher than the corresponding forward rates (Table 1).

These results are consistent with experiments on AdK. Han-

son et al. (31) used high-resolution single-molecule FRET to

quantitatively measure the distance changes between the LID

and CORE domains (fluorescent-labeled residues 127 and

194, respectively) in AdK, concluding that equilibrium

favors the closed state even in the absence of substrates.

Henzler-Wildman et al. (20) also provided experimental

domain distance changes between NMP and LID domains

(labeled residues 52 and 145), via their use of fluorescence

resonance-energy transfer, in which they found that a state

similar to the closed state is sampled to a significant fraction

even without ligand. As both experiments did not measure

the distance changes between NMP and CORE domains,

the flexibility of the NMP domain cannot be directly com-

pared to experiment.

Our unforced reaction coordinate method has found

mechanisms of conformational transition similar to previous

computational studies that have explored conformational

transition pathways along predefined reaction coordinates

for AdK, either from the open to closed form, or vice versa.

Maragakis and Karplus (32) used a coarse-grained mixed

potential to distort structure along an energy-minimum

path between the open and closed end-state to predict that

the LID domain closing precedes the closing of the NMP

domain. Instead of using a single multidimensional potential,
Biophysical Journal 98(10) 2356–2364



FIGURE 5 Statistics on residue-to-residue fluctuation

correlations. The x axis and y axis are residue numbers.

The color bar represents frequency, i.e., the number of

trajectories having strong positive correlation (>0.4)

divided by the total number of trajectories in such substate.

(a–e) 1AKE, Case 1, Case 2, Case 3, and 4AKE ensemble,

respectively.
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Chu and Voth (33) utilized a set of interconnected one-

dimensional coarse-grained potentials, known as the double-

well network model, to introduce roughness into the free

energy model. By using different initial structures, they

found similar pathways to ours, although their model cannot

determine the preference for a particular pathway as we have

found here. Arora and Brooks (34) used atomistic MD simu-

lations and umbrella sampling along a predefined reaction

coordinate to explore the energy landscape in the presence

and absence of ligand, in which they found support for a

population-shift mechanism for ligand binding to AdK.

By contrast, using a coarse-grained model and mapping of

the lowest normal modes of a nonlinear elastic network

model to predefined reaction coordinates (domain distance),

Whitford et al. (35) showed a mixed mechanism in going

from the open to closed state for AdK. In particular, the

LID domain motion follows a population-shift mechanism

whereas the NMP domain follows a ligand-induced mecha-

nism, with a pathway of binding events in which LID

domain motion always precedes NMP motion in either the

opening or closing transitions. Lu and Wang (36) also used

a coarse-grained potential to study the AdK conformational
Biophysical Journal 98(10) 2356–2364
transition, involving a superposition of microscopic two-

well potentials between a-carbons, whose wells are deter-

mined by the known open (4AKE) and closed (1ANK)

structures. Using trajectories that measure RMSD changes

from the 4AKE and 1ANK structures, they determined an

intermediate where the LID domain is closed and the NMP

domain is open, and a second transient intermediate in which

the NMP domain is closed but the LID domain is open. They

found that the latter pathway dominated the conformational

transition for AdK opening, with the LID domain opening

first followed by opening of the NMP domain, contradicting

our atomistic MD results presented here. Finally, Kubitzki

and de Groot (37) provided an interesting study that used

atomistic force fields and replica exchange combined with

essential dynamics to explore the transition pathways for

AdK, which is the most relevant to the work presented

here. They were able to observe two transitions to the open

state within 50 ns by enhanced temperature sampling of the

first five eigenvectors of the principle components around

the 1AKE closed state; they found a dominant pathway in

which the half-opening of the NMP domain precedes a partial

correlated opening of the LID and NMP domains.
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CONCLUSIONS

In this article, we have introduced a novel method (to our

knowledge) for describing the time progression of inherently

anharmonic MD local motions. This is done by generating

a sequence of instantaneous normal modes from an elastic

network model projected against two protein end-states in

order to connect them to more global transitions to either

intermediate substates or the final end-state. Note that the

INM similarity always fluctuates during the trajectory,

even in the local equilibrium states, which is a feature of

the underlying anharmonic local motions. We would argue

that evidence of local cracking, i.e., partial unfolding to aid

large conformational change (18,35), is evident in our INM

projections onto the two end-states. For example, Fig. 2 d
shows that just before the transition to 4AKE, the INMs

are highly dissimilar to both end-states, and thus one could

analyze the underlying anharmonic MD trajectory to deter-

mine the underlying structural origin of possible cracking.

Our INM sampling method shares similarities to transition

path sampling (TPS) (38) in which ‘‘shooting moves’’ are

repeatedly performed to generate better transition pathway

ensembles to move a system from state to state. Clearly

our method is less general than the original TPS, as we are

focusing on proteins and their hierarchical substates (5,39),

in which pathways can be captured in the fluctuation corre-

lations local to a given substate. In TPS the initial pathway

connecting the two end-states must be given, and the refine-

ment accuracy and convergence speed will heavily depend

on this proposed initial pathway. We suggest that the INM

projected against the two end-states, and harvesting from

many independent short-time MD simulations, may provide

a useful scheme for generating this initial protein transition

pathway efficiently without prior knowledge.

Our approach also has great potential for the building of

a Markovian state model (40,41) to accurately predict kinetics

based on the principle of substate interconversion. Our main

goal in this work was to show the ability of INM similarity

to identify unique substates and drive local fluctuations to

gradually move from start- to end-states, and to provide mech-

anistic information, such as substate population and pathway

distribution, as opposed to that provided by a detailed kinetics

model. However, it is similar to a Markovian state model, in

that it clusters trajectories based on similar INM trajectory

profiles that are legitimate substates that interconvert rapidly,

whereas dissimilar INM trajectory profiles defined substates

that did not interconvert rapidly.

In summary, we have presented an approach to explore

large protein conformational transitions by using INM simi-

larity to identify key substates along transition pathways, and

use them to monitor global interconversions among substates

to reach the end-state based on short timescale simulations.

The fluctuation correlation analysis shows that these identi-

fied substates and corresponding short timescale equilibrium

trajectories can convey most aspects of the transition mech-
anism in residue detail, although it may be potentially diffi-

cult to use this unforced treatment to observe complete tran-

sition pathways if the energy minimum of a given substate is

too deep—meaning that local fluctuations may have little

similarity to the other end-state. Nevertheless, we believe

that the INM framework provides a unique method for the

exploration of protein conformational transitions when the

concept of hierarchical substates is valid, in which long-

time collective motions between substates are manifest in

fast local coupled structural fluctuations.
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