
2072 Biophysical Journal Volume 98 May 2010 2072–2081
Functional Characterization of Alternate Optimal Solutions of Escherichia
coli ’s Transcriptional and Translational Machinery
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ABSTRACT The constraint-based reconstruction and analysis approach has recently been extended to describe Escherichia
coli’s transcriptional and translational machinery. Here, we introduce the concept of reaction coupling to represent the depen-
dency between protein synthesis and utilization. These coupling constraints lead to a significant contraction of the feasible
set of steady-state fluxes. The subset of alternate optimal solutions (AOS) consistent with maximal ribosome production was
calculated. The majority of transcriptional and translational reactions were active for all of these AOS, showing that the network
has a low degree of redundancy. Furthermore, all calculated AOS contained the qualitative expression of at least 92% of the
known essential genes. Principal component analysis of AOS demonstrated that energy currencies (ATP, GTP, and phosphate)
dominate the network’s capability to produce ribosomes. Additionally, we identified regulatory control points of the network, which
include the transcription reactions of s70 (RpoD) as well as that of a degradosome component (Rne) and of tRNA charging
(ValS). These reactions contribute significant variance among AOS. These results show that constraint-based modeling can
be applied to gain insight into the systemic properties of E. coli’s transcriptional and translational machinery.
INTRODUCTION
Kinetic models of transcription (1,2), translation (1,3), and

the cell cycle (4) have been formulated with systems of

ordinary differential equations. These models describe the

temporal changes in concentration accompanying produc-

tion, degradation, transport, or modification of the molecules

in the network. Although this modeling approach has been

shown to be very useful and mechanistically insightful

for small-scale Escherichia coli networks, such as those of

the Trp operon (5) and the Lac operon (6), it cannot be

readily applied for large-scale, sequence-dependent net-

works due to the paucity of experimentally measured kinetic

parameters.

Constraint-based reconstruction and analysis (COBRA)

can be used to model biological systems without the use of

kinetic parameters. In this approach, the network is formu-

lated as a set of linear equations describing the biochemical

transformations taking place within a cell. The networks are

constructed in a bottom-up fashion based on available

genomic, biochemical, and bibliomic data (BiGG) (7–10).

Information about reaction rates can be incorporated into

the COBRA approach as constraints (bounds) on network

reactions (9,11). This approach is well established for meta-

bolic networks (12). More recently, the COBRA approach

has been extended to the study of other cellular functions

such as signaling (13,14), transcriptional regulation (15),

and protein synthesis (16).

Flux balance analysis (FBA) is a constraint-based optimi-

zation approach, in which the flux through a particular

network reaction is optimized while ensuring that the applied
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biological and physico-chemical constraints are obeyed (11).

FBA relies on linear programming to find the optimal

solution of a given objective function that maximizes or

minimizes a particular flux. Depending on the properties of

the model, however, the identified solution may not be

unique—meaning that there may be an infinite number of

different flux vectors giving an identical optimal objective

value (Fig. 1).

In the context of metabolic models, these flux vectors are

called alternate optimal solutions (AOS) or equivalent phe-

notypic states (17–19). The presence of AOS in constraint-

based models was realized in the early 90s when FBA was

applied to biologically realistic networks (20). Consider the

example shown in Fig. 1 A. An infinite number of AOS

lies on the line with optimal value for the objective function

3w1 þ 3w2, in which the vector for each AOS is different.

Therefore, not all AOS can be determined, but a representa-

tive subset of AOS can be calculated. Different mathematical

methods have been used to determine subsets of AOS, e.g.,

vertex enumeration (19) or flux variability analysis (FVA

(21)). Challenges associated with computing AOS in

genome-scale metabolic networks are due to redundant,

alternate pathways (18). Reed and Palsson (19) calculated

subsets of AOS for E. coli’s metabolic network that differ

in at least one active reaction at different growth environ-

ments, and they determined correlated reaction sets. This

computation is very time-consuming. In this study, we use

FVA to determine AOS that correspond to a subset of

extreme points of the steady-state solution space. In Fig. 1 C,

such extreme points are highlighted.

Recently, we reconstructed the first genome-scale network

of the transcriptional and translational (tr/tr) machinery (16).

This comprehensive reconstruction, named the expression or
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FIGURE 1 (A–C) Schematic illustration of alternate optimal solutions

(AOS), unique solutions, and results of flux variability analysis (FVA) on

a linear toy problem is shown.
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E-matrix, accounts for the sequence-specific synthesis reac-

tion matrix of 423 functional gene products, including

rRNAs, tRNAs, ribosomes, and RNA polymerases. It is

well known that the growth rate of E. coli, as well as that

of other organisms, directly correlates with the cellular abun-

dance of its protein synthesis machinery (22). Although the

E-matrix does not account for metabolism, it does contain

exchange reactions that supply the network with precursors

(i.e., amino acids (aa), nucleotide triphosphates (NTP)) and

remove metabolic by-products from the network (i.e., nucle-

otide monophosphates (NMP) and orthophosphate (Pi)) (16).

When defining systems boundaries around protein synthesis,

one can use these exchange reactions to determine the depen-

dency between tr/tr and metabolism, in silico, under various

environmental conditions. In this study, we determine the

AOS of the E-matrix, characterize their properties, and

compare the in silico expressed genes with experimental

gene essentiality data (23).
MATERIAL AND METHODS

Reconstruction

We used the recently published reconstruction of E. coli’s transcriptional

and translational machinery, termed E-matrix (16). Briefly, 13,694 reactions

and 11,991 components (i.e., metabolites, proteins, RNA molecules, and

intermediate complexes) describe the sequence-specific synthesis reactions

and cellular functions of 423 known gene products involved in this protein

synthesis machinery (Table S1). Gene products include 86 tRNAs, proteins
such as ribosomes (with rRNA incorporated), RNA polymerase, transcrip-

tion, and translation factors. I.e., each transcription and translation reaction

is gene-sequence specific, accounting for all tr/tr necessary (e.g., RNA poly-

merase, ribosomes) and NTP/aa requirements. Note that transcriptional regu-

lators were not accounted for in the E-matrix. A more detailed description of

the network content can be found in Thiele et al. (16). For modeling purposes,

proteins and mRNA species are represented in the E-matrix in two forms:

Protein_active/Protein_inactive, and mRNA_1/mRNA_2. These two forms

have no correspondence in nature, but do allow the modeling of a synthesized

protein or transcript that can be used more than once before mRNA degrada-

tion, as found in cells. (16).

Constraint-based modeling

The E-matrix reconstruction can be converted into a mathematical format as

stoichiometric matrix, S ˛ Rm, n, where each row corresponds to a network

component and each column corresponds to a network reaction. By defini-

tion, the stoichiometric coefficients for substrates are negative numbers,

whereas products are positive coefficients. For the analysis of the network

properties, we assume that the system is at steady state, therefore

S , n ¼ dx

dt
¼ 0; (1)

where v is a flux vector (n � 1) and dx/dt is the rate of change in concentra-

tion of a component x over time, which is zero in steady state.

The E-matrix is underdetermined, as there are more variables (reactions)

than equations (mass-balances). Therefore, a unique solution to this set of

linear equations does not exist (Fig. 1). The addition of further inequalities

(e.g., reaction rates) reduces the set of feasible solutions.

Network constraints

Other constraints may include the directionality of a reaction, vi, based on

thermodynamic information (e.g., the ATP-dependent phosphorylation of

glucose to glucose-6-phosphate is effectively irreversible) or environmental

constraints for the availability of a nutrient in the medium (e.g., restricting

glucose to be the sole carbon source by constraining all uptake fluxes for

other carbon sources to be zero). By changing the set of inequality con-

straints applied to the model, different subsets of the steady-state feasible

set are obtained and their properties can be studied using mathematical tools.

Network boundaries

The inputs to the E-matrix are biosynthetic precursors, such as amino acids

and NTPs, which are provided to the network via exchange reactions. In the

E-matrix, by-products of protein synthesis, such as NMP and Pi, are also

removed from the system (16). For every protein and tRNA species,

a demand reaction was included to mimic the requirement of that component

for growth. The steady-state assumption does not allow for accumulation of

intracellular components, but cell doubling does include a doubling of the

proteome; therefore, these demand reactions represent the newly produced

proteome of the in silico cell.

Objective function

The demand reaction of ribosomal 50S subunit production (DM_rib_50)

was chosen as an objective function for the model, as the ribosome content

of the cell is correlated to the growth rate (22). Using the synthesis reaction

of the 50S as an objective function is equal to using the reaction of the 30S

ribosomal subunit, since both subunits are present in cells in equal amounts.

In contrast, the whole 70S ribosome leaves the mRNA after termination of

translation and is dissociated through binding of IF1 and IF3 to the 30S

subunit (16). By choosing 50S subunit (or 30S subunit), we can investigate

the active ribosome subunit synthesis in the model, but do not require that all

synthesized ribosomes are used for translation. This is in agreement with the

duplication of the ribosome number in the dividing cell.
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FIGURE 2 Schematic representation of the participation of tr/tr enzymes
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participation is implied but not explicitly modeled. The tr/tr network
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The optimization problem is formulated as

max cT , n; (2)

subject to S , n ¼ 0; (3)

vi; min%vi%vi; max for all i˛n reactions; (4)

where cT is a vector (1� n), indicating the objective reaction with a nonzero

entry.

Simulation constraints

To model the E-matrix corresponding to different doubling times, we calcu-

lated the maximal possible stable RNA transcription initiation rates based on

data given in Neidhardt (24) (Table S2).

The total transcription initiation rate for stable RNA gene i is given by

vtranscription initiationi
¼ irrn � gi; (5)

where irrn is the initiation rate per ribosomal RNA copy (initiation�min�1�
gene�1) (Table S2). To account for the gene-dosage effect, we multiplied

irrn by gi (gene � cell�1), which is the gene copy number. The number of

gene copies depends on the number of replication forks, which creates

multiple copies of the chromosome within one cell. Therefore, the copy

number of a gene depends on its genome position (m0i) and doubling time (t).

The value gi is given by

gi ¼ 2
ðD� ð1�m

0
i
ÞþCÞ

t ; (6)

where D is the time necessary to replicate the chromosome (D ¼ 0.3314 �
t þ 32.564, t in minutes), C is lag time between chromosome replications

(C ¼ 0.0898 � t þ 21.238, t in minutes), and t is the doubling time (in

minutes) (24).

The total transcription initiation rate of stable RNA can be converted into

an nmol � g�1
DW � h�1 rate by multiplying Eq. 5 by the scaling factor

F ¼ 1

z
� t

NA

� 109; (7)

where NA is the Avogadro number (6.022 � 1023 molecules � mol�1), z is

the mass per cell (mgDW/109 cells), and t is the timescale factor (60, in this

case).

Formulation of general coupling constraints

Typically, network reconstructions do not stoichiometrically represent

reactants that are both substrates and products in the same reactions. Their

involvement is implicit and not explicitly represented in the reaction. An

example is an enzyme in a metabolic reaction (Fig. 2). However, in the

E-matrix, proteins are explicitly included in the reactions they catalyze

(Fig. 2). The four explicit reactions (v1–v4) are equivalent to the reaction

(v0) in the implicit formulation. It follows that the synthesis of the recycled

reactant E is not essential to permit steady-state flux through v1–v4, as it

is recycled by the last reaction (v4). Subsequently, the conversion of

A þ B / C will occur regardless of whether the model is synthesizing E.

Consequently, additional constraints are needed to enforce the synthesis

of E if its set of explicit reactions is active in a particular steady state. We

require the condition

if v4 > 0 then vsynthesis; E > 0; (8)

where vsynthesis, E is the synthesis reaction rate of reactant E. Furthermore, it

would be desirable to relate the flux through reaction v4 and the synthesis of

E with some proportionality,

v4fvsynthesis; E; (9)
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even though the exact proportion factor can only be approximated within

bounds (see below). Note that V4,Vsynthesis, E R 0.

The relationships expressed in Eqs. 8 and 9 can be represented in

a linear fashion with

v4 � cmin � vsynthesis; ER� s; sR0; (10)

v4 � cmax � vsynthesis; E%0; (11)

where cmin and cmax (0 < cmin % cmax) are the bounds on the proportion

factor (termed ‘‘coupling coefficients’’). Note that Eq. 10 ensures that

a higher flux through v4 raises the lower bound on the synthesis reaction

vsynthesis, E. Furthermore, s can be used to allow the synthesis of reactant E

without being used in the model up to its value. In this study, however,

we set s to be zero, because we intended to determine AOS in which all

synthesized reactants are used. Linear inequality coupling constraints retain

the numerically scalable character of flux balance analysis.

Because reactant E may be required in multiple reactions, the flux through

the recycling reaction (v4) will be their sum. Subsequently, choosing v4 for

Eqs. 8 and 9 ensures that the synthesis rate of E will be greater than zero if

any network reaction that utilizes E is active.

In steady-state condition, the synthesis flux of E is equal to the degrada-

tion flux rate of E. Therefore, consider the toy network shown in Fig. 3 A.

Node A has an influx (vin) and two outfluxes (vout1 and vout2). The concen-

tration of A (i.e., [A]) depends on the relative outfluxes, i.e., their ratio to

each other given that the flux rates are distinct. This is an inherent property

of the Jacobian matrix that contains the dynamic metabolite concentration

(25) (dynamic metabolite concentration arises from the fact that the outflows

from a node are dependent on the concentration of the compound that the

node represents). It follows that the coupling constraints are not artificial

constraints added to the network, but rather, that they allow the accurate

representation of inherent properties of biochemical networks. Because the

exact ratio between the outfluxes is unknown in many cases, we bound it

by using cmin and cmax (see Eqs. 10 and 11). A geometric representation

of the coupling constraints can be found in Fig. 4.

Formulation of E-matrix coupling constraints

In the E-matrix, there are three sets of reactions that require coupling:

1. Transcription and translation;
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2. Translation and protein utilization; and

3. tRNA synthesis and tRNA utilization (Fig. 3 B).

In each case, the inequalities are the same as Eqs. 10 and 11 but the

definition of the coupling coefficients depends on the nature of the coupled

reactions.

The following sets of reactions require coupling constraints (see also

Fig. 3):

1. Transcription and translation: mRNA degradation reactions (e.g.,

b0001_mRNA_degr1) were coupled to the corresponding mRNA

conversion reactions (e.g., b0001_mRNA_CONV2).

2. Translation and protein utilization: protein demand reactions (e.g.,

DM_AlaS_mono), which allow the accumulation of proteins in the

network, were coupled with the corresponding protein recycling/utiliza-

tion reactions (e.g., AlaS_mono_RECYCL).

3. tRNA synthesis and tRNA utilization: tRNA charging reactions

(e.g., ala1_tRNA_CHARG), representing the tRNA utilization, were

coupled with the corresponding tRNA formation reactions (e.g., alaT_

to _ala1).
Coupling transcription and translation

At steady state, the rate of mRNA synthesis vsynthesis, i (transcription) is equal

to the rate of mRNA degradation, vdegradation, i, which is given by

vsynthesis;i ¼ vdegradation;i ¼ kdegradation;i � ½mRNA�i

¼ ln2

T1
2;i

� ½mRNA�i; (12)

where [mRNA]i is the cellular concentration of mRNA i (molecules �
cell�1), and T1/2, i is the half-life time of mRNA i (seconds).

Because the E-matrix genes are transcribed in terms of transcription units

(16), we will couple the mRNA degradation reaction (vdegradation, i) with the

corresponding recycling reaction (vCONV2, i) (Fig. 3). This reaction recycles

an mRNA_2 compound released from a translation reaction into an

mRNA_1 compound, which is used in translation reactions. This recycling

enables the reutilization of a single transcript for multiple translation rounds

before degradation. The mRNA recycling reaction forms a cycle together

with the translation reactions (Fig. 3). This cycle allows the representation

of an internal mRNA pool corresponding to the steady-state concentration

of the mRNA, which can be used for quantitative integration of gene expres-

sion data on transcript abundance in future studies.

Definition of tr/tr coupling factor

In this section, we derive a meaningful coupling factor (cmin, i, cmax, i)

between mRNA degradation reaction (vdegradation, i) with the utilization

reaction (vCONV2, i) (Fig. 3),

vCONV2; i � cmax; i � vdegradation; i R�s; sR0; (13)

where vCONV2, i h vtranslation, i.

The translation flux is the product of translation rate and mRNA concen-

tration:

vtranslation; i ¼ ktranslation; i � ½mRNA�i: (14)

Using the derivation described in the Supporting Material, we obtain

vtranslation;i ¼ F � rtl

rspace

� ½mRNA�i; (15)

where rtl is translation rate of a ribosome (in aa � s�1 � ribosome�1), rspace

is the minimum spacing of two ribosomes on a transcript, and vtranslation, i is

in nmol � g�1
DW � h�1.

To obtain the vdegradation, i in the same unit, Eq. 12 needs to be converted,

vdegradation;i ¼ F � ln2

T1
2;i

� ½mRNA�i; (16)

where vdegradation, i is in nmol � gDW
�1 � h�1.

Under the steady-state assumption, we can equate Eqs. 15 and 16.

Furthermore, because the recycling reaction rate (vCONV2, i) is equal to the

translation reaction rate for mRNA i in the network, it follows that

vCONV2;i ¼
rtl

rspace

�
T1

2;i

ln2
� vdegradation;i: (17)

Subsequently, the coupling factor cmax, i between the degradation and trans-

lation rate is

cmax;i ¼
rtl

rspace

�
T1

2;i

ln2
: (18)

The minimum coupling factor cmin, i was determined assuming one ribosome

bound per transcript,
Biophysical Journal 98(10) 2072–2081
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cmin;i ¼
rtl

LP;i

�
T1

2;i

ln2
; (19)

where LP, i is the length of the protein i (in amino acids).

Why are the coupling constraints valid?

As mentioned above, the flux through mRNA synthesis/degradation is inde-

pendent of mRNA translation/recycling flux in steady-state condition. I.e.,

no constraint on synthesis/degradation reactions would affect the transla-

tion/recycling reactions. Subsequently, a set of constraints had to be

included that would define possible ratios the reaction fluxes of synthesis/

degradation and translation/recycling can take—i.e., the coupling con-

straints. These constraints do not enforce the identity of degradation and

translation fluxes but rather their correlation (Fig. 4 C). Such correlation

can be readily justified by the fact that high ribosome occupancy on a tran-

script (i.e., high translation rate) protects the transcript from degradation. In

addition, if the maximal possible ribosome occupancy is achieved, the trans-

lation rate can only be increased by augmenting the mRNA synthesis flux—

which is equal to increasing the mRNA degradation flux in steady state.

Coupling protein synthesis and utilization
and tRNA synthesis and utilization

The protein and tRNA synthesis reactions were coupled to their utilizing

reactions in a similar fashion. However, an arbitrary number of 105 was

chosen for the coupling factor (cmax, i), because the interpretation of this

factor is quite different from the mRNA recycling. As most proteins and

tRNAs are assumed to be stable in the timescale of an average cell’s

doubling time, protein and tRNA degradation were ignored. The turnover

rate of a protein or tRNA is limited and depends on the individual species.

The coupling factor represents such turnover limitation as it enforces the

synthesis of more protein/tRNA if they are highly used in the network.

The value for cmax, i represents the largest possible value in terms of numer-

ical stability, meaning that all other feasible solutions resulting from smaller

coupling factors lay within the analyzed set. cmin, i was set to be one.

In total, 1056 additional inequality constraints (628 on mRNA, 120 on

tRNA, and 308 on protein synthesis) were added to the E-matrix, resulting

in a problem size of 13,047 equality and inequality constraints and 13,726

variables (reactions). This additionally constrained E-matrix (Ecoupled-

matrix) was used throughout this work unless stated differently.
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Flux variability analysis and flux span

Given a set of constraints, flux variability analysis (FVA) (18) can be used to

assess the network flexibility and network redundancy. In this study, we

fixed the ribosome production rate to its maximal value (nDM_rib 50, max ¼
nDM_rib50, max ¼ max, based on Table S2). Then, every network reaction i

was minimized and maximized. The flux span of a network reaction i is

given by jvi, max – vi, minj ¼ spani.

Alternate optimal solutions

Alternate optimal solutions (AOS) were determined using FVA, which was

carried out as described above. All solution vectors were stored and used for

subsequent analysis.

Principal component analysis of alternate optimal
solutions

To identify reactions that account for the greatest variance in flux between

different simulation conditions, we used principal component analysis

(PCA) (see Supporting Material for detailed description). We used the set

of flux vectors corresponding to AOS, P ˛ Rn, N, in the nullspace of the

stoichiometric matrix, S , P h 0, which lay in an n-dimensional flux vector

space, but used PCA to reveal the intrinsically significant axes, which

account for the variation within this set. First, we calculate the flux covari-

ance matrix, C ˛ Rn, n, where the covariance between two fluxes is given by

Ci;j ¼

PN

k¼ 1

�
Pi;k � Pi

��
Pj;k � Pj

�

N
;

with Pi denoting the average flux of reaction i over all N flux vectors.

Singular value decomposition of the covariance matrix gives

C ¼ U ,
X

, VT

where U ¼ V as C is a square diagonally symmetric matrix. Each row of V

contains components, or singular vectors, of the covariance matrix. Each

singular vector gives the direction of an intrinsic axis, which is linearly inde-

pendent from all other intrinsic axes. The standard deviation for each prin-

cipal component may be calculated by taking the square root of the singular

values, the diagonal entries in S (26). PCA of the covariance matrix is
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mathematically equivalent to PCA of the AOS themselves, but the former is

computationally more efficient (27).

PCA was carried out on the AOS for simulations corresponding to t ¼
90 min doubling time. A control point in our model is a reaction, or compo-

nent, that, when alternated, leads to significant changes of the functional

states of the model. For example, a control point in gene expression is there-

fore a gene that, when repressed, alters the transcription of many other genes

and thus the function of the cell. The key control points of gene expression

were determined by collecting flux values from the AOS for all mRNA

degradation reactions (which are equivalent to the flux values of mRNA

synthesis reactions in steady state). PCA was carried out on the resulting

matrix (with dimensions of 314� 27, 452) as described above. Additionally,

we tilted the eigen-vectors to obtain a clearer picture of the eigen-reactions.

The procedure used was described in Barrett et al. (28).
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FIGURE 5 Distance between AOS in the Ecoupled-matrix. To assess the

overall distance between the set of AOS, we computed the distance between

106 randomly chosen AOS pairs (doubling time t ¼ 90).
RESULTS

Comparison of flux span with and without flux
coupling

We expected a significant reduction in the size of the steady-

state solution space in the Ecoupled-matrix. To assess the

change in solution space size, we determined the flux

span of the E-matrix reactions and of the Ecoupled-matrix

(Fig. 4). For this comparison, we used the same simulation

condition, corresponding to a doubling time of 90 min,

with the exception that the Ecoupled-matrix contained the

additional coupling constraints as described above. We

found that the coupling constraints reduced the mean flux

span by two orders of magnitude (from 1.1 � 107
5 9.2 �

107 nmol � gDW
�1 � h�1 in the E-matrix to 6.76 � 104

5

1.38 � 106 nmol � gDW
�1 � h�1 in the Ecoupled-matrix)

(Fig. 4). The small change in standard deviation of the flux

span indicates that the coupling constraint’s effect was not

limited to reactions with very large fluxes (Fig. 4). The same

trend was observed when the median flux span was compared

(from 3.04� 105 nmol� gDW
�1� h�1 to 1.99� 102 nmol�

gDW
�1 � h�1). In other words, if the feasible, steady-state

solution space of the E-matrix had a certain volume, then

the addition of coupling constraints led to a reduction in solu-

tion space volume by a factor of (1/160)n, where n is the

number of dimensions. This shrinkage in size of a steady-

state feasible set is substantial, and shows the benefit of the

coupling constraints in the assessment of physiological

relevant flux states.

AOS for maximal ribosome production

First, we tested whether the additional constraints altered the

Ecoupled-matrix ribosome production capabilities. We found

that the computed ribosome values were in good agreement

with the published experimental data (24) and the in silico

production capabilities of the E-matrix (16) (data not

shown). Subsequently, we used FVA to enumerate all

AOS that produced ribosomes at maximal rate and have an

optimal (minimal or maximal) value for at least one other

network reaction. This FVA-derived subset of AOS thus cor-

responded to extreme (or boundary) AOS. The characteris-
tics of the AOS of four different models, corresponding to

doubling times of t ¼ 24, t ¼ 60, t ¼ 90, and t ¼ 100 min,

were determined.

Average distance of alternate optima solutions

Because the FVA-derived AOS represent only a subset of all

possible AOS, we computed the average Euclidean distance

between the AOS. The distance between two AOS also repre-

sents a measure of how evenly they are distributed in the

solution space. We compared the distance of 106 pairs of

AOS (Fig. 5). As expected, the AOS were not evenly distrib-

uted; however, the average distance between the AOS was

9.2 � 106 nmol � gDW
�1 � h�1

5 1.3 � 107 nmol �
gDW

�1 � h�1.

Principal component analysis of alternate optimal
solutions

Principal component analysis (PCA) is an objective,

nonparametric, analytical method in wide use for a variety

of applications, including signal processing (29) and

mRNA expression analysis (30–32). Furthermore, singular

value decomposition has been used to study the topology

and structure of metabolic networks (33) and to analyze

the key reactions that are regulated within the human red

blood cell (26). In the latter, singular value decomposition

was applied on uniformly sampled points in the steady-state

solution space to identify the eigen-reactions, which them-

selves correspond to the modes that represent the key branch

points and thus, the key control points (reactions) in the

network (26,34). We used PCA to 1), investigate the effec-

tive dimensionality of the Ecoupled-matrix; and 2), to deter-

mine the number of branch points, or control points, in the

gene expression system of E. coli’s tr/tr machinery.

Effective dimensionality of Ecoupled-matrix

First, when considering the entire network, we found that

the first 10 modes (Z scores) could reconstruct 90% of the

variance between AOS that corresponds to maximal
Biophysical Journal 98(10) 2072–2081
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ribosome production (Fig. 6, left panel, blue line). The first

four corresponding eigen-reactions consist of

1. Diphosphate, proton, and water exchange;

2. Diphosphate, proton, Pi, and water exchange;

3. GTP, GDP, and water exchange; and

4. ATP, Pi, and water exchange.

Consequently, changing the flux rate for any of these reac-

tions will have a significant effect on which functional states

can be achieved by the network. These results indicate thus

that at maximal ribosome production rate, the energy state of

the cell mainly controls the achievable cellular states (e.g.,

mRNA production, protein synthesis). An integrative model

of tr/tr and metabolism will be of great value for further

investigation of the role of energy metabolism in macromo-

lecular synthesis. Corresponding efforts have been recently

initiated by the authors.

Synthesis of key genes for maximal ribosome production

To investigate the set of tr/tr genes that are likely to corre-

spond to key control points (26), we performed the PCA

on the subset of mRNA synthesis reactions. We found that

75 modes were necessary to recover 90% of the information

content in the AOS for the 314 protein coding genes (Fig. 6,

left panel, red line). This result was quite different from the

PCA analysis of the entire network where 10 modes were

sufficient to recover the majority of information content in

the AOS. The first eigen-reaction was dominated by the

expression of s70 (b3067, RpoD), the primary sfactor

during exponential growth targeting a wide range of

promoters, and thus genes, essential for normal growth

(35). The second eigen-reaction consisted of the gene

synthesis reaction for b1084 (Rne), a component of the mul-

tiprotein complex degradosome, which is responsible for

mRNA degradation in E. coli. The third eigen-reaction is

dominated by the synthesis of the valyl-tRNA synthetase

(b4258, ValS), which is responsible for charging valyl-

tRNA molecules. Valine is the third most frequent amino

acid in E. coli’s genome. The fourth eigen-reaction consists

of the synthesis of b2794 (QueF) and b1084 (Rne). QueF is
Biophysical Journal 98(10) 2072–2081
a protein involved in the synthesis of pre_Q0, a precursor to

queuosine that is an important modified nucleotide in E.
coli’s tRNA. The next two eigen-reactions are dominated

by genes involved in protein folding, namely, b4142

(GroS), b0014 (DnaK), and b0015 (DnaJ). GroS is part of

the protein-folding complex GroEL/S, which helps to fold

larger proteins (36). DnaK and DnaJ are components of

the second protein folding system in E. coli, DnaKJ/GrpE.

Taken together, the first six modes of the genes expression

reactions recovered ~35% of the information content and the

corresponding eigen-reactions consisted of the main players

involved in transcription, translation, mRNA degradation,

and protein folding. Based on the proposed interpretation

of the eigen-reactions as key control points (26), it is to be

expected that the gene expression of these seven genes is

highly regulated in E. coli. In fact, preliminary analysis of

the regulatory rules for E. coli genes indicate that there are

at least 30 transcriptional regulators involved in controlling

the synthesis of tr/tr genes under different environmental

conditions (I. Thiele, unpublished results).

Length and reaction participation of alternate
optima solutions

Metabolic networks are known for their redundancy, which

increases the flexibility and fitness of the cell to sudden envi-

ronmental changes (37,38). For the E-matrix, a certain

rigidity is expected, because the majority of the associated

functions have only one coding gene in the genome. When

optimizing for the ribosome synthesis rate in the Ecoupled-

matrix, the number of active reactions in the AOS can be

used as a measure of network flexibility. We found that,

on average, ~6500 reactions (z50%) were active per

AOS, i.e., they had a nonzero flux value. Three-thousand-

eight-hundred of these 6500 reactions were active in all

AOS in a simulation condition. Overall, a set of 3616 reac-

tions was active in all AOS under all simulated conditions.

An additional 1048 reactions were active in 95% of the

AOS under all simulation conditions.

This high number of active reactions is a consequence of

the linear structure of the transcriptional and translational
FIGURE 6 Principal component analyses

(PCA). Z scores of the entire Ecoupled-matrix net-

work (A) and of the gene expression reactions

(B). The PCA analysis was performed on the set

of alternate optimal solutions (AOS) (doubling

time t ¼ 90 min). Note that there are m reactions

in the network and the number of AOS (points) is

n ¼ 2m.
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network (16): A gene is transcribed into mRNA; its mRNA is

then either degraded or used as a template for translation into

a protein, which catalyzes one or more biochemical transfor-

mation along this path. In contrast, metabolic networks have

more interconnections with numerous alternative (redun-

dant) pathways. Subsequently, an average of ~30% of the

reactions present in E. coli’s metabolic network were found

to be active per AOS (19). This observation was quite

different from our observation of active reactions in the

Ecoupled-matrix. These results illustrate the fundamental

differences in topology and redundancy found between the

networks of these two important cellular functions.
Essential genes are expressed in all AOS

The Ecoupled-matrix accounts for a total of 314 protein-

coding genes, many of which are directly involved in pro-

cesses of the macromolecular machinery (16). First, we

analyzed how many genes were expressed in all AOS. We

found that at a doubling time t ¼ 90 min, 227 genes (73%)

were expressed in all AOS (termed, required genes), and

only two genes were not expressed in any AOS. These two

genes, b4292 (fecR) and b4293 (fecI, s19), are part of the

same operon and hence coexpressed in the network. The

transcription factor s19 was not expressed in any AOS, as

none of the included genes has s19-dependent transcription

(16,39). In fact, s19 seems to have few genomic binding

sites in E. coli (B. K. Cho, University of California, San

Diego, personal communications, 2009). Eighty-five of

314 (27%) genes were transcribed in many but not all

AOS. We compared the required genes with in vitro essenti-

ality data (23). E. coli has 303 essential genes (in rich

medium) (23), 99 of these genes were present in the E-matrix

network, and 91 of these essential genes were required genes

in all simulated conditions (doubling times of 24, 60, 90, and

100 min).

Only eight in vitro essential genes were not active in all

AOS (Table S3). Four of these essential genes were meta-

bolic genes that were coexpressed with genes involved in

the synthesis machinery. As the E-matrix does not account

for metabolism, no gene essentiality was expected and this

disagreement can be neglected. The remaining four genes

were involved in different processes of the synthesis

machinery (Table S3). RpoE (b2573) is the minor sfactor

(sE) in E. coli, which responds to heat shock and other stress

situations. In the E-matrix, only four transcription units are

dependent on sE transcription. However, as sE has only

~70 binding sites on the E. coli’s genome, it is very likely

that the E-matrix did not account for essential functions

dependent on sE transcription. In contrast, GroS (4142) is

the smaller subunit of the GroEL/ES chaperone that is

responsible for correct folding of larger proteins. Many of

the E-matrix proteins can be folded spontaneously, in a

DnaK/J-GrpE chaperone-dependent, and/or in a GroEL/

ES-dependent manner. The information was included in
the E-matrix based on two large-scale experimental studies

identifying targets specific for these chaperones (40,41).

The overlapping action of DnaK/J-GrpE chaperone and

GroEL/S chaperone explains the missing essentiality of

GroS and of GrpE (b2614) in the Ecoupled-matrix. The last

false-negative predictions included proteins for a tRNA

modification, TilS (b0188), which modifies the nucleotide

at position 34 in ileX and ileY-tRNA (conversion of cytidine

into lysidine) (42). These two tRNA recognize the same

codon (ATA), which was less frequently used in the

E-matrix associated genes compared to the genome

(I. Thiele, unpublished data), which may explain why TilS

is not essential to our calculations.
CONCLUSIONS

In this study, we investigated the properties of E. coli’s
transcriptional and translational machinery when optimized

for maximal ribosome production. This objective seems in

agreement with experimental observations reporting direct

correlation between achieved growth rate and cellular ribo-

some content (24). We introduced what we believe to be

a new type of constraints to the network, which coupled out-

fluxes of a node to certain ratios (see Fig. 3). These coupling

constraints represent inherent properties of biochemical reac-

tion networks (43). The use of these constraints, in addition

to mass-balance and flux rate constraints, led to further

refinement of the physiological feasible set of flux states.

In fact, we found that the coupling constraints led to a reduc-

tion to (1/160)n of the original, constrained, steady-state

solution space. These additional constraints represent

thus a significant advance in constraint-based modeling

techniques.

We determined AOS consistent with optimal ribosome

production using flux variability analysis. These AOS corre-

spond to the extreme points of the bounded, convex polytope

meaning that all feasible, steady-state solutions, consistent

with the applied constraints, lay within the set of AOS.

Principal component analysis of these AOS revealed that

metabolic coupling is dominant in furnishing capability for

determining the expression of model genes. In particular,

the energy currency exchange was found to be crucial. These

results are consistent with experimental data indicating that

the overarching goal of growing cells is energy (ATP) syn-

thesis. Analysis of key control points of in silico gene

expression suggested that the expression state is determined

by genes involved in transcription, mRNA degradation,

protein folding and active tRNA availability. This is

a systems biology result describing the systemic properties

of E. coli’s protein synthesis machinery. Lastly, analysis of

in silico gene expression revealed that the majority of

in vitro essential genes were expressed in all AOS, i.e.,

they need to be expressed in any functional network state

leading to optimal ribosome production. This is the first

time to our knowledge that a gene essentiality study has
Biophysical Journal 98(10) 2072–2081
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been carried out in silico for a nonmetabolic network.

Furthermore, overlapping essentiality with in vitro data

suggest that optimal ribosome production is indeed a driving

force of growing cells. In comparison to previous, experi-

mental studies, we derived supporting evidence from

a systems biology approach, in which all known information

was collected into a consistent format. The systematic anal-

ysis of the collective information revealed inherent proper-

ties consistent with experimental data. None of the available

models of macromolecular synthesis is currently able to

accurately represent and determine these inherent properties,

which renders this study a milestone in molecular systems

biology. As a next step, one could imagine integration of

the protein synthesis machinery with a metabolic network

of E. coli, to enable further in silico studies into the relation-

ships among ribosome production, the energy state of the

cell, and environmental growth conditions.
SUPPORTING MATERIAL
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