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Hemodynamic measures of brain activity can be used to interpret a
student’s mental state when they are interacting with an intelli-
gent tutoring system. Functional magnetic resonance imaging
(fMRI) data were collected while students worked with a tutoring
system that taught an algebra isomorph. A cognitive model pre-
dicted the distribution of solution times from measures of problem
complexity. Separately, a linear discriminant analysis used fMRI
data to predict whether or not students were engaged in problem
solving. A hidden Markov algorithm merged these two sources
of information to predict the mental states of students during
problem-solving episodes. The algorithmwas trained on data from
1 day of interaction and tested with data from a later day. In terms
of predicting what state a student was in during a 2-s period, the
algorithm achieved 87% accuracy on the training data and 83%
accuracy on the test data. The results illustrate the importance of
integrating the bottom-up information from imaging data with
the top-down information from a cognitive model.

cognitive modeling | functional MRI | hidden Markov model

This article reports a study of the potential of using neural
imaging to facilitate student modeling in intelligent tutoring

systems, which have proven to be effective in improving mathe-
matical problem solving (1, 2). The basic mode of operation of
these systems is to track students as they solve problems and
offer instruction based on this tracking. These tutors individu-
alize instruction by two processes, called “model tracing” and
“knowledge tracing.” Model tracing uses a model of students’
problem solving to interpret their actions. It tries to diagnose the
student’s intentions by finding a path of cognitive actions that
match the observed behavior of the student. Given such a match,
the tutoring system is able to provide real-time instruction
individualized to where that student is in the problem. The
second process, knowledge tracing, attempts to infer a student’s
level of mastery of targeted skills and selects new problems and
instruction suited to that student’s knowledge state. Although
the principle of individualizing instruction to a particular student
holds great promise, the practice is limited by the ability to
diagnose what the student is thinking. The only information
available to a typical tutoring system comes from the actions that
students take in the computer interface. Inferences based on
such impoverished data are tenuous at best, and brain imaging
data might provide a useful augmentation. Recent research has
reported a variety of successes in using brain imaging to identify
what a person is thinking about (e.g., refs. 3–6) and identifying
when mental states happen (e.g., refs. 7–9).
Although the methods described here could extend to

knowledge tracing, this article will focus on model tracing where
the goal is to identify the student’s current mental state. Two
features of the intelligent tutoring situation shaped our approach
to the problem: (i) Given that instruction must be made available
in real time, inferences about mental state can only use data up
to the current point in time. Although inferences of mental state
may become clearer after observing subsequent student behav-
ior, these later data are unavailable for real-time prediction.
(ii) Model tracing algorithms are parameterized with pilot data
and then used to predict the mental state of students in learning

situations. Therefore, we trained our algorithm on one set of
data and tested it on a later set.
Although many distinctions can be made about mental states

during the tutor interactions, we focused on two basic dis-
tinctions as a first assessment of the feasibility of the approach.
The first distinction involved identifying periods of time when
students were engaged in mathematical problem solving and
periods of time when they were not. The second, more refined,
distinction involved identifying what problem they were solving
when they were engaged and where they were in the solution of
that problem. One might think only the latter goal would be of
instructional interest; however, detecting when students are
engaged or disengaged during algebraic problem solving is by no
means unimportant. A number of immediate applications exist
for accurate diagnosis of student engagement. For example,
there are often long periods when students do not perform any
action with the computer. It would be useful to know whether the
student was engaged in the mathematical problem solving during
such periods or was off task. If the student was engaged in
algebraic problem solving, despite lack of explicit progress, the
tutor might volunteer help. On the other hand, if the student was
not engaged, the tutoring system might nudge the student to go
back on task.
The research reported here used an experimental tutoring

system described in Anderson (10) and Brunstein et al. (11) that
teaches a complete curriculum for solving linear equations based
on the classic algebra text of Foerster (12). The tutoring system
has a minimalist design to facilitate experimental control and
detailed data collection: it presents instruction, provides help
when requested, and flags errors during problem solving. In
addition to teaching linear equations to children, this system can
be used to teach rules for transforming data-flow graphs that are
isomorphic to linear equations. The data-flow system has been
used to study learning with either children or adults and has the
virtue of not interfering with instruction or knowledge of algebra.
The experiment reported here uses this data-flow isomorph with
an adult population. Fig. 1 illustrates sequences of tutor inter-
actions during a problem isomorphic to the simple linear equa-
tion x – 10 = 17. The interactions with the system are done with a
mouse that selects parts of the problem on which to operate,
actions from a menu, and enters values from a displayed keypad.

Results
Twelve students went through a full curriculum based on the
sections in the Foerster text (12) for transforming and solving
linear equations. The experiment spanned 6 days. On Day 0,
students practiced evaluation and familiarized themselves with
the interface. On Day 1, three critical sections were completed
with functional magnetic resonance imaging (fMRI). On Days 2
to 4 more complex material was practiced outside of the fMRI
scanner. On Day 5 the three critical sections (with new problems)
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were repeated, again in the fMRI scanner. Each section on Days 1
and 5 involved three blocks during which they would solve four to
eight problems from the section. Some of the problems involved a
single transformation-evaluation pair, as shown in Fig. 1, and
others involved two pairs (problems studied on Days 2–4 could
involve many more operations). Periods of enforced off-task time
were created by inserting a one-back task (13) after both trans-
formation and evaluation steps. A total of 104 imaging blocks
were collected on Day 1 and 106 were collected on Day 5 from the
same 12 students. Average time for completion of a block was 207
2-s scans with a range from 110 to 349 scans. The duration was
determined both by the number and difficulty of the problems in a
block and by the student’s speed.
Student’s solved 654 problems on Day 1 and 664 on Day 5. Of

the problems, 76% on both days were solved with a perfect
sequence of clicks. Most of the errors appeared to reflect
interface slips and calculation errors rather than misconceptions.
Each problem involved one or more of the following types
of intervals:

Transformation (steps A–C in Fig. 1): On Day 1 students
averaged 8.2 scans, with a standard deviation of 5.9 scans.
On Day 5 the mean duration was 5.9 scans, with a standard
deviation of 4.1.

One-back within a problem: This was controlled by the soft-
ware and was always six scans.

Evaluation (steps D–F in Fig. 1): Students took a mean of 4.9
scans on Day 1, with a standard deviation of 3.6; they took 3.8
scans on Day 5, with a standard deviation of 2.7.

Between-problem transition: This involved six scans of one-
back, a variable interval determined by how long it took stu-
dents to click a button saying they were done, and two scans of
a fixation cross before the next problem. This averaged 9.1
scans, with a standard deviation of 1.5 scans on both days.

In addition, there were two scans of a fixation cross before the
first problem in a block and a number of scans at the end, which
included a final one-back but also a highly variable period of 6 to

62 scans before the scanner stopped. The mean of this end
period was 11 scans and the standard deviation was 6.5 scans.
The student-controlled transformation and evaluation inter-

vals show a considerable range, varying from a minimum of 1
scan to a maximum of 54 scans. Anderson (10) and Anderson
et al. (14) describe a cognitive model that explains much of this
variance. For the current purpose of showing how to integrate a
cognitive model and fMRI data, the complexity of that model
would distract from the basic points. Therefore, we will adapt
instead the keystroke model (15), based on the fact that cognitive
complexity is often correlated with complexity in terms of
physical actions. Such models can miss variability that is a result
of more complex factors, but counting physical actions is often a
good predictor.
We will use number of mouse clicks as our measure of com-

plexity. As an example of the range in mouse clicks, it takes 15
clicks in the tutor interface to accomplish the following trans-
formation:

1000� X
− 10

⇒
1000
− 10

∗
X
− 10

[1]

but only 5 clicks to accomplish the evaluation:

X ¼ 7− 5⇒X ¼ 2; [2]

For brevity we give the standard algebraic equivalent of data-flow
graphs. The first example requires more clicks first to select parts
of the problems to operate on and then to enter the more complex
expressions (“1000/–10*” in one case versus “2” in the other case).
Transformation steps take longer than evaluation steps because
they require more clicks (average 10.4 clicks versus 6.8). Fig. 2
illustrates the systematic relationship that exists between mouse
clicks required to accomplish an operation and the time that the
operation took. The average scans per mouse click decreases
from 0.77 scans on Day 1 to 0.57 on Day 5. On the other hand, the
average ratio shows little difference between transformations
(0.69 scans) and evaluations (0.65 scans), and so Fig. 2 is averaged
over transformations and evaluations. As the figure illustrates, the
number of scans for a given number of mouse clicks is approx-

A B C

D E F

Fig. 1. Sequences of tutor interaction during a problem isomorph. (A) The student starts out in a state with a data-flow equivalent of the equation x – 10 = 17.
The student uses the mouse to select this equation and chooses the operation “Invert” from the menu. (B) A keypad comes up into which the student enters
the result 17 + 10. (C) The transformation is complete. (D) The previous state (data-flow equivalent of x = 17 + 10) is repeated and the student selects 17 + 10
and chooses the operation “Evaluate”. (E) A keypad comes up into which the student will type “27.” (F) The evaluation is complete.
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imately distributed as a log-normal distribution. Log-normal
distributions estimated from Day 1 were part of the algorithm for
identifying mental state. The only adjustment for Day 5 was to
speed up the mean of the distribution by a constant 0.7 factor
(based on ref. 10, figure 5.7) to reflect learning. Thus, the pre-
diction for Day 5 is 0.77 × 0.7 = 0.54 scans per click.

Imaging Data. Anderson et al. (14) describe an effort to relate
fMRI activity in predefined brain regions to a cognitive model
for this task. However, as with the latency data, the approach
here makes minimal theoretical assumptions. As described in the
Materials and Methods, we defined 408 regions of interest, each
approximately a cube with sides of 1.3 cm that cover the entire
brain. For each scan for each region, we calculated the percent
change in the fMRI signal for that scan from a baseline defined
as the average magnitude of all of the preceding scans in that
block. We used this signal to identify “On” periods when a stu-
dent was engaged in problem solving (evaluation and trans-
formation in Fig. 1) versus “Off” periods when the student was
engaged in n-back or other beginning and ending activities. A
linear discriminant analysis was trained on the group data from
Day 1 to classify the pattern of activity in the 408 regions as
reflecting an On scan or an Off scan.
Fig. 3A shows how accuracy of classifying a target scan varied

with the distance between the target scan and the scan whose
activity was used to predict it. It plots a d-prime measure (16),
which is calculated from the z-transforms of hit and false-alarm
rates. Therefore, for example, using the activity two scans after the
target scan, 91% of the 7,761 Day 5 On scans were correctly
categorized and 16% of 11,835 Off scans were false alarmed,
yielding a d-prime of 2.34. Fig. 3 shows that best prediction is
obtained using activity two scans or 4 s after the target scan. Such a
lag is to be expected given the 4- to 5-s delay in the hemodynamic
response. The d-prime measure never goes down to 0, reflecting
the residual statistical structure in the data. Although we will
report on the results using a lag of 0, the main application will use
the optimal lag-2 results, meaning it was 4 s behind the student.
Little loss occurs in d-prime going from training data to pre-

dicted data. The relatively large number of scans (21,826 on Day
1 and 19,596 on Day 5) avoids overfitting with even 408 regions.
Although our goal is to go from Day 1 to Day 5, the results are
almost identical if we use Day 5 for training and Day 1 for
testing. The weights estimated for the 408 regions can be nor-
malized (to have a sum of squares of 1) and used to extract an
aggregate signal from the brain. This is shown in Fig. 3B for the
On and Off scans on the 2 days.

Fig. 3 illustrates the results with all 408 regions. We can
eliminate half with no loss in accuracy and reduce them to fewer
than 50 with only modest loss. Fig. 4 illustrates 48 regions that
result in only a 0.2 loss in d-prime (16) for the Day 1 training
data and a 0.1 loss for the Day 5 test data. It is unwise to
attribute too much to these specific regions. Although they
predict Day 5 with a d-prime of 2.2, the 360 remaining regions
predict Day 5 with equal accuracy. Nonetheless, the positively
weighted regions are generally sensible: they include motor
regions controlling the right hand, prefrontal and parietal
regions that reflect retrieval and problem representation in
algebra problem solving (e.g., refs. 17, 18), and visual regions
that are active in studies of mathematical problem solving that
involve visual scanning (e.g., ref. 19). The negatively weighted
regions seem less interpretable; some are in white matter, for
example. These and some of the other negatively weighted areas
are probably correcting for brain-wise noise in the tasks.

Predicting Student State. Predicting whether a student is engaged
in problem solving is a long way from predicting what the student
is actually thinking. As a first step to this, we took up the challenge
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of determining which problem a student was working on in a block
and where a student was in the problem. This method amounts to
predicting what equation the student is looking at. Fig. 5 illus-
trates an example from a student working on a set of five equa-
tions. As the figure illustrates, each equation goes through four
forms on the way to the solution: the first and third forms require
transformation operations, and the second and fourth forms
require evaluation operations (see Fig. 1). Adding in the 21 Off
states between forms, there are a total of 41 states. Consider the
task of predicting the student state on scan 200. The algorithm
knows the five problems the student will solve, knows the dis-
tribution of possible lengths for the various states, and knows that
by the end of the block the student will have gone through all
41 states (but doesn’t know when the block will end). In addition,
the classifier provides the probability that each of scans 1 to 200
came from an On state or an Off state. The algorithm must
integrate this knowledge into a prediction about what state, from
1 to 41, the student is in at scan 200.
A key concept is an interpretation. An interpretation assigns

the m scans to some sequence of the states 1, 2, . . ., r with the
constraint that this is a monotonic nondecreasing sequence
beginning with 1. For example, assigning 10 scans each to the
states 1 to 20 would be one interpretation of the first 200 scans in
Fig. 5. Using the naïve Bayes rule, the probability of any such
interpretation, I, can be calculated as the product of prior
probability determined by the interval lengths and the condi-
tional probabilities of the fMRI signals given the assignment of
scans to On and Off states:

p
�
IjfMRI

�
∝

"
SrðarÞ ∏

r− 1

k¼1
pkðakÞ

#
∗

"
∏
mþ2

j¼3
p
�
fMRIjjIÞ

#
[3]

The first term in the product is the prior probability and the
product in the second term is the conditional probability. The
terms pk(ak) in the prior probability are the probabilities that the
kth interval is of length ak and Sr(ar) is the probability of the rth
interval surviving at least as long as ar. These probabilities can
be determined from Fig. 2 for On intervals and from the
experimental software for Off intervals. The second term con-
tains p(fMRIj|I), which are the probabilities for the combined
fMRI signal on scan j+2 given I’s assignment of scan j to an On
or a Off state. The linear classifier determines these from normal
distributions fitted to the curves in Fig. 3B.
To calculate the probability that a student is in state r on any

scan m one needs to sum the probabilities of all interpretations
of length m that end in state r. This can be efficiently calculated
by a variation of the forward algorithm associated with hidden

Markov models (HMMs) (20). [Because the state durations are
variable, the model is technically a hidden semi-Markov process
(20). The data and MATLAB code are available at http://act-r.
psy.cmu.edu/models under the title of this article.] The predicted
state is the highest probability state. The most common HMM
algorithm is the Viterbi algorithm, a dynamic programming
algorithm that requires knowing the end of the event sequence to
constrain interpretations of the events. The algorithm we use is
an extension of the forward algorithm associated with HMMs
and does not require knowledge of the end of the event
sequence. As such, it can be used in real time and is simpler.
Fig. 5 illustrates the performance of this algorithm on a block

of problems solved by the first student. Fig. 5A shows the 20
forms of the five equations. Starting in an Off state, going
through 20 On states, and ending in an Off state, the student
goes through 41 states. Fig. 5B illustrates in maroon the scans on
which the algorithm predicts that the student is engaged on a
particular equation form. Predictions are incorrect on 19 of the
241 scans, but never off by more than one state. In 18 of these
cases, it is one scan late in predicting the state change and in
1 case it is one scan too early.
Although Fig. 5 just illustrates performance for one student

and one block, Fig. 6 shows the average performance over the
104 blocks on Day 1 and the 106 blocks on Day 5. The per-
formance is measured in terms of the distance between the
actual state and the predicted state in the linear sequence of
states in a block. A difference of 0 indicates that the algorithm
correctly predicted the state of the scan, negative values are
predicting the state too early, and positive values are predicting
the state too late. The performance of the algorithm is given in
the curve labeled “Both.” On Day 1 it correctly identifies 86.6%
of the 22,138 scans and is within one state (usually meaning the
same problem) on 94.4% of the scans. Because all parameters
are estimated on Day 1, the performance on Day 5 represents

Fig. 4. The 48 most predictive regions. These regions result in a d-prime of
2.48 on the training data and 2.23 on the test data when their activity is used
to predict the state of two scans earlier. The regions are color-coded based
on their weights.
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Fig. 5. An example of an experimental block and its interpretations. The
sequence of equations is shown in column A. Columns B, C, and D compare
attempts at predicting the states with both fMRI and model, just fMRI, or
just model. On scans (when an equation is on the screen) are to the Left and
Off times (when no equation is on the screen) are to the Right.

Anderson et al. PNAS | April 13, 2010 | vol. 107 | no. 15 | 7021

N
EU

RO
SC

IE
N
CE

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S

http://act-r.psy.cmu.edu/models
http://act-r.psy.cmu.edu/models


true prediction: It correctly identifies 83.4% of the 19,914 scans
on Day 5 and is within one state on 92.5% of the scans. To
provide some comparisons, Fig. 6 shows how well the algorithm
could do given only the simple behavioral model or only the
fMRI signal.

The fMRI-only algorithm ignores the information relating
mouse clicks to duration and sets the probability of all lengths
of intervals to be equal. In this case, the algorithm tends to
keep assigning scans to the current state until a signal comes in
that is more probable from the other state. This algorithm gets
43.9% of the Day 1 scans and 30.6% of the Day 5 scans. It is
within one scan on 51.8% of the Day 1 scans and 37.3% of the
Day 5 scans. Fig. 5C illustrates typical behavior: it tends to
miss pairs of states. This leads to the jagged functions in Fig. 6,
with rises for each even offset above 0.

The model-only algorithm ignored the fMRI data and set the
probability of all signals in all states to be equal. Fig. 5D
illustrates typical behavior. It starts out relatively in sync but
becomes more and more off and erratic over time. It is correct
on 21.9% of the Day 1 scans and 50.4% of the Day 2 scans. It
is within one scan on 32.9% of the Day 1 scans and 56.9% of
the Day 5 scans.

The performances of the fMRI-only and model-only methods
are quite dismal. Successful performance requires knowledge of
the probabilities of both different interval lengths and different
fMRI signals. The relatively high performance on Day 5 is
striking, given that it only uses regions and parameters estimated
from Day 1.

Discussion
The results illustrate the importance of integrating the bottom-
up information from the imaging data with the top-down infor-
mation from a cognitive model. The current research attempted
to hold true to two realities of tutor-based approaches to
instruction. First, the model-tracing algorithm must be para-
meterized on the basis of pilot data and then be applied in a later
situation. In the current work, the algorithm were parameterized
with an early dataset and tested on a later dataset. Second, the
model-tracing algorithm must provide actionable diagnosis in

real time; it cannot wait until all of the data are in before
delivering its diagnosis. In our case, the algorithm provided
diagnosis about the student’s mental state in almost real time
with a 4-s lag. Knowledge tracing, which uses diagnosis of current
student problem solving to choose later problems, does not have
to act in real time and can wait until the end of the problem
sequence to diagnose student states during the sequence. In this
case one could also use the Viterbi algorithm for HMMs (21)
that takes advantage of the knowledge of the end of the
sequence to achieve higher accuracy. On this dataset, the Viterbi
algorithm is able to achieve 94.1% accuracy on Day 1 and 88.5%
accuracy on Day 2.
This experiment has shown that it is possible to merge brain

imaging with a cognitive model to provide a fairly accurate
diagnosis of where a student is in episodes that last as long as
10 min. Moreover, prediction accuracy using both information
sources was substantially greater than using either source alone.
The performance in Fig. 6 is by no means the highest level of
performance that could be achieved. Performance depends on
how narrow the distributions of state durations are (Figs. 2 B and
D) and the degree of separation between the signals from dif-
ferent states (Fig. 3B). The model leading to the distributions of
state durations was deliberately simple, being informed only by
number of clicks and a general learning decrease of 0.7 from Day
1 to Day 5. More sophisticated student models, like those in the
cognitive tutors, would allow us to track specific students and
their difficulties, leading to much tighter distributions of state
durations. On the data side, improvement in brain imaging
interpretation would lead to greater separation of signals. In
addition, other data, like eye movements, could provide addi-
tional features for a multivariate pattern analysis.

Materials and Methods
Twelve right-handed members of the Pittsburgh community (seven females,
fivemales), aged18 to24yearsold, completed the study. Participants provided
informed consent according to the Institutional Review Board protocols of
Carnegie Mellon University. To create a structure that involved periods of
engagement and nonengagement during the scanning sessions, we inserted
a 12-s period of one-back between the transformation and evaluation phases
and after the evaluation phase. The screen went blank and students saw a
sequence of letters presented at the rate of one per 1.25 s. They were to press
the mouse if the same letter occurred twice in succession (which happened
one-third of the time). This is a minimally engaging task that was intended to
keep the student interacting with the interface but prevent them from
engaging in algebraic or arithmetic operations. Although each of the sections
begins with some instruction, the majority of the students’ time was spent
practicing later problems in the section and the imaging data were limited to
these practice problems. During these problems, students receive feedback
on errors and can receive help if they request it.

Images were acquired using gradient echo-planar image acquisition on a
Siemens 3T Allegra Scanner using a standard RF head coil (quadrature
birdcage), with 2-s repetition time, 30-ms echo time, 70° flip angle, and 20-cm
field of view. We acquired 34 axial slices on each scan using a 3.2-mm thick,
64 × 64 matrix. The anterior commissure-posterior commissure line was on
the eleventh slice from the bottom. Acquired images were analyzed using
the National Institute of Science system. Functional images were motion-
corrected using six-parameter 3D registration (22). All images were then
coregistered to a common reference structural MRI by means of a 12-
parameter 3D registration (22) and smoothed with a 6-mm full-width half-
max 3D Gaussian filter to accommodate individual differences in anatomy.

The 408 regions of interest were created by evenly distributing 4 × 4 × 4-
voxel cubes over the 34 slices of the 64 × 64 acquisition matrix. Between-
region spacing was 1 voxel in the x- and y-directions in the axial plane, and
one slice in the z-direction. The final set of regions was attained by applying
a mask of the structural reference brain and excluding regions where less
than 70% of the region’s original 64 voxels survived.
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7022 | www.pnas.org/cgi/doi/10.1073/pnas.1000942107 Anderson et al.

www.pnas.org/cgi/doi/10.1073/pnas.1000942107


1. Koedinger KR, Anderson JR, Hadley WH, Mark M (1997) Intelligent tutoring goes to
school in the big city. Int J Artif Intell Educ 8:30–43.

2. Ritter S, Anderson JR, Koedinger KR, Corbett A (2007) Cognitive tutor: applied
research in mathematics education. Psychon Bull Rev 14:249–255.

3. Davatzikos C, et al. (2005) Classifying spatial patterns of brain activity with machine
learning methods: application to lie detection. Neuroimage 28:663–668.

4. Haxby JV, et al. (2001) Distributed and overlapping representations of faces and
objects in ventral temporal cortex. Science 293:2425–2430.

5. Haynes JD, et al. (2007) Reading hidden intentions in the human brain. Curr Biol 17:
323–328.

6. Mitchell TM, et al. (2008) Predicting human brain activity associated with the
meanings of nouns. Science 320:1191–1195.

7. Abdelnour AF, Huppert T (2009) Real-time imaging of human brain function by near-
infrared spectroscopy using an adaptive general linear model. Neuroimage 46:
133–143.

8. Haynes JD, Rees G (2005) Predicting the stream of consciousness from activity in
human visual cortex. Curr Biol 15:1301–1307.

9. Hutchinson RA, Niculescu RS, Keller TA, Rustandi I, Mitchell TM (2009) Modeling fMRI
data generated by overlapping cognitive processes with unknown onsets using
Hidden Process Models. Neuroimage 46:87–104.

10. Anderson JR (2007) How Can the HumanMind Occur in the Physical Universe? (Oxford
University Press, New York).

11. Brunstein A, Betts S, Anderson JR (2009) Practice enables successful learning under
minimal guidance. J Educ Psychol 101:790–802.

12. Foerster PA (1990) Algebra I 2nd Ed. (Addison-Wesley Publishing, Menlo Park, CA).

13. Owen AM, McMillan KM, Laird AR, Bullmore E (2005) N-back working memory

paradigm: a meta-analysis of normative functional neuroimaging studies. Hum Brain
Mapp 25:46–59.

14. Anderson JR, Betts S, Ferris JL, Fincham JM (2010) Can neural imaging be used to
investigate learning in an educational task? Expertise and Skill Acquisition: The Impact

of William G. Chase, ed Staszewski J (Taylor Francis, New York), in press.
15. Card SK, Moran TP, Newell A (1983) The Psychology of Human-Computer Interaction

(Erlbaum, Hillsdale, NJ).
16. Green DM, Swets JA (1966) Signal Detection Theory and Psychophysics (Wiley, New

York, NY).
17. Anderson JR, Qin Y, Sohn M-H, Stenger VA, Carter CS (2003) An information-

processing model of the BOLD response in symbol manipulation tasks. Psychon Bull

Rev 10:241–261.
18. Qin Y, et al. (2004) The change of the brain activation patterns as children learn

algebra equation solving. Proc Natl Acad Sci USA 101:5686–5691.
19. Rosenberg-Lee M, Lovett MC, Anderson JR (2009) Neural correlates of arithmetic

calculation strategies. Cogn Affect Behav Neurosci 9:270–285.
20. Murphy K (2002) Hidden Semi-Markov Models (Technical Report MIT AI Lab, Boston,

MA).
21. Rabiner RE (1989) A tutorial on Hidden Markov Models and selected applications in

speech recognition. Proc Inst Electri Electro Eng 77:257–286.
22. Woods RP, Grafton ST, Holmes CJ, Cherry SR, Mazziotta JC (1998) Automated image

registration: I. General methods and intrasubject, intramodality validation. J Comput

Assist Tomogr 22:139–152.

Anderson et al. PNAS | April 13, 2010 | vol. 107 | no. 15 | 7023

N
EU

RO
SC

IE
N
CE

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S


