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Abstract

Several attempts have been made at systematically mapping protein-protein interaction, or 

“interactome” networks. However, it remains difficult to assess the quality and coverage of 

existing datasets. We describe a framework that uses an empirically-based approach to rigorously 

dissect quality parameters of currently available human interactome maps. Our results indicate that 

high-throughput yeast two-hybrid (HT-Y2H) interactions for human are superior in precision to 

literature-curated interactions supported by only a single publication, suggesting that HT-Y2H is 

suitable to map a significant portion of the human interactome. We estimate that the human 

interactome contains ~130,000 binary interactions, most of which remain to be mapped. Similar to 

estimates of DNA sequence data quality and genome size early in the human genome project, 

estimates of protein interaction data quality and interactome size are critical to establish the 

magnitude of the task of comprehensive human interactome mapping and to illuminate a path 

towards this goal.

The protein-protein interactome of an organism is the network formed by all protein-protein 

interactions that can occur in a range of physiologically relevant protein concentrations. 

Mapping protein-protein interactions is crucial, albeit not sufficient, for unraveling the 

dynamic aspects of cellular networks, including when, where, and for what purpose protein 

interactions do occur in vivo1. Currently available human protein-protein interactome maps 

have been derived using (i) high-throughput yeast two-hybrid (HT-Y2H)2,3, (ii) HT co-

affinity purification followed by mass spectrometry4, (iii) curation of published low-

throughput experiments5–10, or (iv) computational predictions11,12. Despite a few 

attempts2,3,13,14, it remains difficult to accurately estimate the quality of these interactome 

maps and how far away we are from a complete map of the human interactome.

Differentiation between sets of protein pairs that can interact (biophysical interactions) and 

do interact (biological interactions) is only possible with reliable biophysical interactome 

maps. What proportion of currently available interactome maps represents true biophysical 

interactions and what proportion represents artifacts? Are the interactions provided by 
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curated low-throughput experiments superior in quality to those obtained by HT strategies, 

as suggested previously15–17? Do the currently available interactome maps represent a 

significant or a negligible fraction of the human biophysical interactome? Here we provide 

insights that are crucial for developing a strategy for comprehensive interactome mapping, 

i.e., for estimating the size of the human interactome and thus an endpoint to the project, and 

for selecting suitable technologies, a realistic timeline and a funding model to achieve this 

goal.

Previous attempts to assess the quality of interactome maps for human13,14,18 or other 

species13,15,18–23 relied on measuring (i) the extent to which interacting proteins share other 

biological attributes, e.g., co-expression, or (ii) the extent to which different maps of the 

same interactome share common interactions. Both approaches suffer several inherent 

limitations. Methods that evaluate the quality of interactions with respect to mRNA co-

expression22,23 are systematically biased against true biological interactions between 

proteins whose mRNAs are not necessarily correlated or are even anti-correlated in 

expression. Since available annotations for protein function and localization are far from 

comprehensive, lack of evidence for co-localization of a given pair of proteins does not 

imply that the interaction observed between these proteins is an artifact. Methods based on 

measuring the extent of overlap between two interactome maps13,20,21 require that the 

corresponding datasets be derived from identical or similar assays. Existing analyses have 

not always fulfilled this requirement13. Most existing methods for quality assessment do not 

distinguish between the multiple sources of false negatives and false positives associated 

with any interactome mapping strategy. For instance, those interactions missed by a single 

screen of an assay but identifiable after multiple screens must be distinguished from the 

interactions that would never be identified by that assay even after a saturating number of 

screens.

Here we developed a framework to estimate various quality parameters associated with 

currently used protein-protein interaction assays, namely screening completeness, assay 

sensitivity, sampling sensitivity and precision. We generated empirical data to rigorously 

dissect these quality parameters, without relying on correlation with other biological 

attributes. Combining these parameters provides an estimate of the size of the human binary 

biophysical interactome and projects a path towards the completion of its mapping.

RESULTS

An interaction mapping framework

To accurately assess the quality of a given interactome map, we need to consider every 

possible source of false negatives (true interactions missing) and false positives (spurious 

pairs reported) associated with the assay used to generate the map. Our framework considers 

four parameters to estimate quality: “screening completeness”, “assay sensitivity”, 

“sampling sensitivity” and “precision” (Fig. 1).

“Screening completeness” is the fraction of the total possible space of open reading frame 

(ORF) pairs that is tested to generate a given interactome map (Fig. 1a). Since currently 

available ORF resources3,24 only allow proteome-wide investigations of one protein isoform 
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per gene, we ignore isoforms encoded by alternatively spliced transcripts here. For example, 

if we assume that the human genome consists of 22,500 protein-coding genes (N = 22,500 × 

22,500/2 protein pairs), then the screening completeness of CCSB-HI12, a proteome-scale 

HT-Y2H effort that tested n = 7,000 × 7,000/2 human protein pairs, is n/N, or ~10%.

“Assay sensitivity” is the fraction of all biophysical interactions that can possibly be 

identified by an assay performed under a specific set of experimental conditions (Fig. 1b). 

For example, a given HT-Y2H assay may be unable to detect interactions involving specific 

types of membrane proteins or requiring post-translational modifications that do not occur in 

yeast cells.

“Sampling sensitivity” is the fraction of all identifiable interactions that are found in a single 

trial of an assay performed under a specific set of experimental conditions (Fig. 1c). When 

testing tens if not hundreds of millions of protein pairs in any space of pair-wise 

combinations, it might be necessary to sample that space multiple times to report all 

identifiable interactions.

Lastly, “precision” is the fraction of observed pairs in an interactome dataset that are true 

positives (Fig. 1d). False positive pairs reflect technical artifacts that erroneously score 

positive in a given assay performed under a specific set of experimental conditions. We 

distinguish between two types of artifactual pairs, “stochastic false positives”, which are 

observed in only one or a few trials of an assay and “systematic false positives”, which are 

observed in many or all trials.

Estimation of assay sensitivity

Estimation of the assay parameters described above requires reference sets of positive and 

negative interacting pairs. To compile a positive reference set of high-confidence human 

binary protein-protein interactions we started with interactions curated from the literature 

(“literature curated” or LC interactions) and from these, we chose 188 pairs present in our 

human ORFeome v1.1 clone collection24 that are supported by the greatest number of 

publications and curated by the highest number of databases. Systematic recuration of all 

publications thought to support these 188 protein pairs25 verified 107 direct binary 

interactions that involve human proteins and that are supported by multiple publications. 

Ninety-two of these interactions involve full-length proteins and constituted our Homo 

sapiens Positive Reference Set version 1 or “hsPRS-v1” (Fig. 2a and Supplementary Table 1 

online). Proteins involved in the 92 hsPRS-v1 interactions exhibit broad cellular localization 

(Fig. 2b), suggesting that they are representative of the entire human proteome. It is 

impossible to generate a set of negative interacting pairs with absolute confidence. So we 

compiled a surrogate Random Reference Set (“hsRRS-v1”) of 188 protein pairs chosen 

randomly from the space of all ORFeome v1.1 pairs after excluding known interactions (Fig. 

2c).

PRS and RRS pairs can be used to experimentally calibrate conditions of an assay to achieve 

an optimal trade-off between the fraction of PRS and RRS pairs reporting positive26. We 

measured the fraction of hsPRS-v1/hsRRS-v1 pairs scoring positive across a range of 

experimental and scoring conditions of a stringent version of the Y2H system (Y2H-CCSB)2 
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and the mammalian protein-protein interaction trap assay (MAPPIT)27 (Supplementary 

Table 2 online and Fig. 2d,e).

The results observed with the hsPRS-v1 and hsRRS-v1 pairs for Y2H-CCSB confirm that 

the specific experimental conditions used in generating our first human interactome map, 

CCSB-HI12, reflected good assay design. We also derived suitable experimental conditions 

for the MAPPIT assay. Under these experimental conditions we estimated the assay 

sensitivity of Y2H-CCSB and MAPPIT to be 17% and 21% respectively (Fig. 2f and 

Supplementary Table 3 online). Using a larger, more recently updated set of ~1,500 LC 

interactions that are supported by multiple publications we estimated an assay sensitivity of 

20% for Y2H-CCSB, consistent with our hsPRS-v1-based estimate. Y2H-CCSB and 

MAPPIT recovered partially overlapping sets of hsPRS-v1 interactions. Of the hsPRS-v1 

pairs 29% (27/92) were reported by at least one assay, and of these, 26% (7/27) were 

detected by both assays (Figs. 2f,g). That 74% (20/27) of positive hits are specific to a single 

assay reflects the complementarities between the two assays.

We estimated the false positive rate (rate of scoring hsRRS-v1 pairs positive) of Y2H-CCSB 

and MAPPIT to be < 0.5% and 2% respectively (Fig. 2f and Supplementary Table 4 online). 

The results of testing hsRRS-v1 pairs by Y2H-CCSB do not permit a direct and reasonable 

estimate of the false discovery rate associated with the CCSB-HI1 dataset. The millions of 

pairs tested by Y2H-CCSB in the HT screen leading to the generation of CCSB-HI1 consist 

mostly of non-interacting pairs, so the number of non-interacting pairs tested in the HT-Y2H 

screen is orders of magnitude higher than the size of hsRRS-v1. Consequently, small 

changes in the hsRRS-v1-based estimate of the false positive rate of Y2H-CCSB can have a 

large effect on the resulting estimate of the false discovery rate of CCSB-HI1. Rather than 

using the Y2H-CCSB experiments on the hsRRS-v1 pairs, we instead used two alternate and 

independent approaches to estimate the false discovery rate of our Y2H-CCSB assay: (i) 

retesting Y2H-CCSB interactions in MAPPIT and (ii) modeling repeated screens of Y2H-

CCSB (see below).

Precision of existing human interactome datasets

We estimated the precision of the two existing HT-Y2H human interactome datasets, CCSB-

HI12 and MDC-HI13, and a low-throughput LC human interactome dataset2 by measuring 

the extent to which a subset of 188 positive pairs chosen randomly from each dataset 

(Supplementary Table 1) retested in MAPPIT. To do so, we first benchmarked the 

performance of a dataset in MAPPIT experiments against (i) the false positive rate of 

MAPPIT and (ii) the false negative rate of MAPPIT. We estimated these benchmarks by 

evaluating the fraction of hsRRS-v1 and hsPRS-v1 pairs reporting positive by MAPPIT, 

respectively. The results with the hsRRS-v1 pairs provided an estimate of MAPPIT’s false 

positive rate that is sufficiently resolved for estimating false discovery rates of the various 

interactome datasets, since the size of the hsRRS-v1 is similar to the size of each of the three 

different interactome datasets tested. Relative to the proportion of hsPRS-v1 and hsRRS-v1 

pairs scoring positive (21% and 2%, respectively), the fractions of pairs that scored positive 

in the three datasets were: LC, 8%; MDC-HI1, 10%; and CCSB-HI1, 27% (Fig. 3a and 

Supplementary Table 4).
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This analysis needs to be adjusted for potential dataset biases. First, we minimized the effect 

due to differences between the sequences of the clones originally used to report the 

interactions and sequences of the full-length clones used here. We considered only pairs for 

which the proteins originally used were described as full-length (FL) or, whenever 

identifiable, pairs for which the isoforms originally used were the same (“Same”) as the ones 

used here. Second, since the CCSB-HI1 and MDC-HI1 datasets were each described in a 

single publication, we compared them to the subset of LC interactions also supported by a 

single publication (“Single”), which represents most currently available literature-curated 

interaction information25. Including interactions supported by multiple publications in the 

LC dataset would be circular since our hsPRS-v1 benchmark was derived from LC 

interactions supported by multiple publications. Lastly, to account for the moderate bias of 

MAPPIT in detecting Y2H-supported (“Y2H”) interactions, we considered the subset of 

hsPRS-v1 and LC interaction pairs supported by at least one Y2H experiment in the 

corresponding curated publications (Supplementary Data 1 and Supplementary Table 5 

online). Based on these consolidated datasets, 34% of Y2H-supported hsPRS-v1 pairs (PRS-

Y2H) and 2% of hsRRS-v1 pairs scored positive. Relative to this, the fractions of pairs that 

scored positive in the three subsets of protein pairs were: LC (Single, FL, Y2H), 10%; 

MDC-HI1 (Same, FL), 31%; and CCSB-HI1 (Same, FL), 27% (Fig. 3b). Thus, the two HT-

Y2H datasets performed comparably to the PRS-Y2H pairs in MAPPIT, while the literature-

curated interactions supported by a single publication performed poorly. Given the fraction 

of PRS-Y2H pairs and hsRRS-v1 pairs scoring positive by MAPPIT, the precision of each 

of the three datasets can be computed as: LC (Single, FL, Y2H), 25%; MDC-HI1 (Same, 

FL), 83%; and CCSB-HI1 (Same, FL), 79% (Fig. 3c and Supplementary Table 3).

Sampling sensitivity and stochastic false discovery rate

To estimate sampling sensitivity and the number of screens required to achieve saturation, 

we repeated four Y2H-CCSB screens (“repeat screens”) in a defined search space of 1,822 

DB-Xs (or “baits”; representing 1,744 unique genes) against 1,796 AD-Ys (or “preys”; 

representing 1,752 unique genes), representing approximately three million pair-wise 

combinations (Supplementary Table 6 online). We developed a probabilistic model that 

considered the search space of three million protein pairs to be a mixture of true biophysical 

interactions and non-interacting pairs. Using a Bayesian approach, our model estimated (i) 

the fraction of all identifiable true biophysical interactions found in one, two, or a saturating 

number of screens and (ii) the fraction of non-interacting pairs erroneously detected in a 

screen. In short, our approach estimated distributions of values of the above parameters that 

fit the experimental results observed in the repeat screens.

Out of the three million pair-wise combinations tested, the four Y2H-CCSB repeat screens 

together reported 240 protein-protein interactions (Supplementary Tables 7 and 8 online). Of 

these interactions 49% appeared in multiple screens. The total number of new interactions 

identified after successive screens showed an increasing trend, indicating that more 

interactions would be found with additional screens (Fig. 3d). Based on our model, we 

estimated that the sampling sensitivity per screen is 45% and that after a saturating number 

of screens, Y2H-CCSB can identify 71 interactions per million pairs tested (Fig. 3e). 

Approximately six screens are needed to reach 90% saturation. Importantly, the number of 
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single hits (interactions found in only one out of several screens) decreases while the 

contribution of multiple hits dominates after multiple screens. Adjusting for these repeat 

screens being done in only one Y2H configuration (bait-prey vs. prey-bait), we estimated 

that upon testing both configurations, the sampling sensitivity per screen is 53% and that 

after a saturating number of screens, Y2H-CCSB can identify 118 interactions per million 

pairs tested (Supplementary Table 3).

Our model estimated that approximately eight out of every million non-interacting pairs 

tested falsely report positive in Y2H-CCSB. Consequently, our model estimated a stochastic 

false discovery rate of 12%, meaning that 12% of the interactions reported in a single Y2H-

CCSB screen correspond to stochastic false positives. Since the MAPPIT experiments (Fig. 

3c) evaluate the union of systematic and stochastic false positives in a given dataset and 

estimated an overall false discovery rate of 21% for CCSB-HI1, we deduce a systematic 

false discovery rate of 14% (Supplementary Methods online).

The MAPPIT experiments show that existing human HT-Y2H maps have high precision. 

However, the fraction of CCSB-HI1 and MDC-HI1 interactions common to both maps is 

small although statistically significant, only 6% and 2%, respectively (P = 10−18, 

Supplementary Data 2 and Supplementary Fig. 1 online). Our results indicate that low 

sampling sensitivity and differences in assay sensitivity likely account for the small overlap.

Estimation of the size of the human interactome

We estimated four important parameters associated with the quality of human binary 

interactome maps (Fig. 1). For the Y2H-CCSB assay evaluated here, we computed the 

screening completeness of the repeat screens as ~1%; the hsPRS-v1 experiment estimated an 

assay-sensitivity of ~17% (Fig. 2f); the model of the repeat screens estimated a sampling 

sensitivity of ~53% (Fig. 3e); and the MAPPIT experiment estimated a precision of ~79% 

(Fig. 3c). We also estimated the variation of these estimates associated with sampling 

(Supplementary Table 3). Integrating these parameters, we predict that the entire human 

interactome, excluding splice variant complexity, contains approximately 74,000–200,000 

binary biophysical interactions (Table 1).

Interacting protein pairs and shared functional annotation

A statistically significant fraction (P < 10−3) but not all of the interacting protein pairs in 

CCSB-HI1 and MDC-HI1 showed correlation for shared functional annotations compared to 

random expectation (Fig. 4). Given the high technical quality of these datasets demonstrated 

here, interacting pairs that do not correlate with known functional annotations could be: (i) 

promising candidates for biological discovery, particularly true biological interactions that 

involve proteins currently lacking adequate functional annotations; or (ii) true biophysical 

interactions that do not occur physiologically. We call this second class “pseudo-

interactions” by analogy to pseudo-genes. Pseudo-interactions could correspond to ancient 

biological interactions that have evolved to lose physiological relevance and provide 

interesting insights into the evolution of the interactome.
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DISCUSSION

Several previous studies have estimated the precision of existing maps or the size of 

interactomes13–15,18,20–23,28. Our empirical framework addresses limitations of these 

studies (detailed discussion in Supplementary Data 3 online). Methods that rely on 

correlation with other biological attributes to estimate precision of interactome maps (i) 

often use as benchmark, LC interaction datasets, which are sociologically biased, (ii) assume 

that knowledge of biological attributes such as Gene Ontology functional annotation is 

complete and unbiased, and (iii) are inherently constrained by pre-existing paradigms 

regarding the expectation for interacting protein pairs to share biological attributes. 

Approaches based on analyzing the extent of overlap between interactome maps13,20,21 

suffer specific limitations in their implementations such as comparing maps that were not 

derived using the same assay, or using LC datasets as a reference set, which may not be 

appropriate given a potentially higher false positive rate than previously anticipated (Fig. 

3c)25. Earlier studies also failed to consider one or more of the parameters that influence 

interactome map quality, i.e., completeness, systematic false discovery rate, stochastic false 

discovery rate, assay sensitivity and sampling sensitivity, which could in turn significantly 

affect estimates of interactome size. All these limitations together may have led to 

overestimated false discovery rates for HT-Y2H human interactome maps.

Our framework overcomes these limitations by (i) considering every possible source of false 

negatives and false positives, (ii) using a high-quality reference set requiring interactions to 

be supported by multiple publications and to pass additional recuration, (iii) assessing false 

discovery rates directly using information from independent protein-protein interaction 

assays and (iv) comparing overlaps between four homogeneously-derived repeat screens to 

assess the sampling sensitivity and stochastic false discovery rate of Y2H-CCSB. Close 

attention to these parameters will be vital to design the strategy, e.g., number of screens and 

types of assays to use, for future interactome mapping projects.

The hsPRS-v1 and hsRRS-v1 provide hundreds of experimentally testable clone pairs of 

positive and random reference sets for binary protein-protein interactions. Previous assays 

typically relied on testing one or a few positive control pairs and a few or no random control 

protein pairs. Though our reference sets are a first version and will be improved, they mark a 

substantial effort towards the standardized calibration of binary interaction mapping assays, 

an objective that has not been previously achieved systematically.

Although LC datasets are commonly perceived to be of better quality than datasets 

generated with HT technologies15–17, the results of our MAPPIT experiments indicate that 

stringent implementations of HT-Y2H assays produce interaction datasets with technical 

quality at least as good if not superior to low-throughput LC interactions (Fig. 3c). These 

results substantiate previous computational analyses of human29 and yeast30 interactome 

maps. Large-scale curation of the primary literature is challenging and may have higher 

error rates than previously anticipated25. HT interactome mapping strategies have several 

advantages over low-throughput strategies: (i) since defined search spaces are used, 

information about positives (pairs observed to interact) as well as negatives (pairs not 

observed to interact) is available; (ii) experiments are standardized therefore well-controlled, 
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comparable and scalable; (iii) cost-efficient strategies can be developed; and (iv) HT 

strategies are less sociologically biased than low-throughput experiments.

Implementation of our framework can be improved in various ways. The statistical power of 

the analyses can be increased by testing more PRS interactions, by repeatedly screening 

larger search spaces, or by using additional independent assays for measuring precision. Our 

current implementation does not consider multiple splice isoforms per gene, so we most 

likely underestimated the interactome size. Additional modifications to the framework will 

be required to thoroughly analyze non-binary co-complex membership maps such as those 

generated by HT co-affinity purification followed by mass spectrometry4. While more 

refined estimates can be made with future enhancements, the central concepts and overall 

approach are in place for design and comprehensive evaluation of any interactome mapping 

assay. Recently, our group has developed an interaction toolkit consisting of four 

independent assays to evaluate the quality of any protein interaction dataset26. Ongoing 

technological advancements related to assay automation and cost reduction will enable 

testing of expanded versions of the PRS and thousands (rather than hundreds) of Y2H, LC 

and other interactions using these assays.

Similar to estimates of the number of protein-encoding genes in the human genome, 

~14,000–300,000 in the early 1990s31, empirical sizing of the interactome is critical to 

establish the complexity of the network and to estimate how far we are from a complete 

human interactome map. Assuming one splice isoform per gene, we predict that the size of 

the human interactome is ~130,000 interactions. This confirms two previous estimates of 

human interactome size, which ranged from 150,000–370,000 interactions2,13. Out of 

~23,000 currently reported human interactions (a combination of ~17,000 LC interactions 

and ~6,000 HT-Y2H interactions), our measurements indicate that ~10,000 (~42%) are true 

binary physical interactions (Supplementary Data 4 online). Thus, the fraction of 

interactions identified so far represents ~8% of the full interactome.

With 22,500 protein-coding genes, nearly 250 million protein pairs need to be tested 

individually, clearly requiring unbiased, systematic and cost-effective HT approaches. 

Interactome mapping is gradual: six screens are necessary to reach 90% saturation with 

Y2H-CCSB. No single assay offers complete assay sensitivity. The fraction of protein-

protein interactions detectable by the specific version of HT-Y2H used here (“Y2H-CCSB”) 

is ~17%. Combining different versions of the Y2H system and using increased expression of 

both hybrid proteins can increase this proportion to ~40% (data not shown and Braun et al.
26). Still, comprehensive mapping of the interactome will require the development of 

additional HT versions of MAPPIT and other assays26.

The potential impact on biology of a complete and reliable biophysical protein interaction 

map cannot be overestimated. Our results offer a quantitative roadmap in this direction, 

uncovering both the magnitude of the task ahead as well as the potential roadblocks.
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METHODS

The Y2H-CCSB experiments were performed as described2 with minor changes. MAPPIT 

experiments were performed essentially as described32. Mathematical modeling of the 

repeat screens was performed using a Bayesian approach. All parameters observed from 

either the experimental data or from the mixture model were used as inputs into a Monte 

Carlo simulation to calculate the corresponding magnitudes of corresponding numbers 

reported in the text. Detailed descriptions of all datasets and methods can be found in 

Supplementary Methods online.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Conceptual framework for interactome mapping
The concepts of “screening completeness” (fraction of all pair-wise protein combinations 

tested), “assay sensitivity” (fraction of all biophysical interactions identifiable by a given 

assay), “sampling sensitivity” (fraction of all identifiable interactions that are detected in a 

single trial) and “precision” (fraction of pairs reported by a given assay that are true 

positives) can be estimated independently and combined to empirically estimate the size of 

binary interactomes. PRS: the set of positive reference set interactions; RRS: the random 

reference set. Solid black lines in a given network graph represent true biophysical 

interactions present in that network, dashed lines represent true biophysical interactions 

missing in that network, and solid colored lines represent biophysical artifactual pairs 

present in that network.
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Figure 2. Assay sensitivity and background positive rate of binary interactome mapping assays
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(a) How positive reference set interactions were chosen from among the interactions 

available in the curated literature of low-throughput experimentally derived interactions 

(LC). (b) How random reference set pairs were chosen from among the possible pairs in our 

human ORFeome v1.1 clone collection24. (c) Distribution of cellular location of proteins 

making up the positive and random reference sets. (d) Assay sensitivity (fraction of hsPRS-

v1 pairs scoring positive) and background positive rate (fraction of hsRRS-v1 pairs scoring 

positive) of the Y2H-CCSB assay based on varying experimental and scoring conditions, 

including the use of an alternate protocol (Supplementary Methods). We did not use the 

results of testing the hsRRS-v1 pairs here to estimate the false discovery rate of the Y2H-

CCSB assay due to limited sample size. (e) Assay sensitivity and background positive rate 

of the MAPPIT assay upon varying experiment-to-control-ratio (ECR) scores 

(Supplementary Methods). (f) Upper panel: assay sensitivity and background positive rate of 

Y2H-CCSB and MAPPIT under the specific experimental conditions used (Supplementary 

Methods). For Y2H-CCSB, the fraction of hsPRS-v1 pairs scoring positive in at least one 

configuration and in both pair-wise mating experiments is depicted. This condition reflects 

the assay sensitivity of the specific experimental and scoring conditions of Y2H-CCSB used 

to generate CCSB-HI12. Lower panel: Venn diagram of hsPRS-v1 pairs scoring positive in 

the two assays. (g) Results of testing each hsPRS-v1 pair and each hsRRS-v1 pair using 

Y2H-CCSB and MAPPIT. Blue or yellow shaded squares represent protein pairs scored 

positive by a given assay.
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Figure 3. Precision and sampling sensitivity in interactome datasets
(a) Comparison of interactome datasets by comparing the rate of observing a positive by 

MAPPIT given a positive in the dataset. (b) Interactome datasets were further compared 

after removing various biases by considering interactions originally derived using full-length 

(FL) proteins and using Y2H assays. (c) Precision of each tested dataset computed by 

accounting for the rate of detecting hsRRS-v1 pairs and Y2H-supported hsPRS-v1 pairs by 

MAPPIT in b. Error bars represent estimated standard deviation of the mean based on a 

Monte Carlo simulation of scores observed in a given assay. (d and e) Sampling sensitivity 

and Y2H-CCSB repeat screens. Bars filled with white represent protein pairs uncovered in 

only one screen and progressively dark shades of blue represent protein pairs reported in 

increasing number of multiple screens. (d) Data observed in Y2H-CCSB repeat screens 

indicating the total number of positive pairs reported after one, two, three or four screens. (e) 

Predicted saturation curve of the number of uncovered interactions against the number of 

screens for Y2H-CCSB after modeling the data in d and assuming a single isoform per gene 

in the respective tested spaces.
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Figure 4. Correlation of interacting pairs for shared functional annotation
Correlation of interacting pairs in CCSB-HI1 and MDC-HI1 interactome maps for specific 

shared Gene Ontology functional annotations. P-values indicate the probability of observing 

such a correlation by chance (compare black bars to white bars) computed using Fisher’s 

exact test. Analysis was performed on MDC-HI1 and CCSB-HI1 interactions reported using 

full-length ORFs.
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