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Post-transcriptional regulation by microRNAs and siRNAs depends not only on characteristics of
individual binding sites in target mRNA molecules, but also on system-level properties such as
overall molecular concentrations. We hypothesize that an intracellular pool of microRNAs/siRNAs
faced with a larger number of available predicted target transcripts will downregulate each individual
target gene to a lesser extent. To test this hypothesis, we analyzed mRNA expression change from
178 microRNA and siRNA transfection experiments in two cell lines. We find that downregulation of
particular genes mediated by microRNAs and siRNAs indeed varies with the total concentration of
available target transcripts. We conclude that to interpret and design experiments involving gene
regulation by small RNAs, global properties, such as target mRNA abundance, need to be considered
in addition to local determinants. We propose that analysis of microRNA/siRNA targeting would
benefit from a more quantitative definition, rather than simple categorization of genes as ‘target’ or
‘not a target.’ Our results are important for understanding microRNA regulation and may also have
implications for siRNA design and small RNA therapeutics.
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Introduction

Small RNAs, such as microRNAs and siRNAs, can down-
regulate hundreds of target genes. Targeting determinants
include many site-specific factors, such as base-pair comple-
mentarity (Enright et al, 2003; Lewis et al, 2003, 2005; Stark
et al, 2003; John et al, 2004), local context factors (Grimson
et al, 2007; Hammell et al, 2008), and other destabilization
signals (Sun et al, 2010). However, system-level factors also
influence small RNA-mediated mRNA degradation. For instance,
transfected microRNAs and siRNAs cause global de-repression
of genes regulated by endogenous microRNAs, most likely
through competition for RNA-induced silencing complex
(RISC) (Khan et al, 2009). Other system-level factors include
the cellular concentrations of the target transcripts and small
RNAs loaded in RISC, determining the kinetics of the regulation.

We hypothesize that microRNAs and siRNAs that have a higher
number of available target transcripts will downregulate each
individual target gene to a lesser extent than those with a lower
number of targets (Figure 1A and B): we call this the dilution
effect as those small RNAs with many targets have their effect
diluted across many molecules. It follows that the competition
between target genes for a limited number of active small
RNAs may determine how much a small RNA can down-
regulate each of its target mRNAs.

Earlier work supports the hypothesis that target abundance can
alter small RNA regulation dynamics. Serial dilution experiments
in Drosophila embryo lysates show that the siRNA-loaded RISC
enzyme can be sequestered by competing target molecules (Haley
and Zamore, 2004). Similarly, sequestration can be artificially
induced in living cells by expressing transfected microRNA
‘sponges’ to soak-up endogenous microRNA molecules (Ebert
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et al, 2007). Furthermore, siRNAs with a larger number of
off-targets show decreased toxicity, perhaps due to a lower
effect on each individual gene (Anderson et al, 2008). Finally,
there is evidence that target abundance has a significant
functional role in an environmental response in plants;
namely, phosphate starvation induces a non-coding RNA that
sequesters a specific microRNA and de-represses its targets
(Franco-Zorrilla et al, 2007).

Given this evidence, we reasoned that the effect of
microRNAs and siRNAs on each individual gene may be
modulated by target transcript abundance. Therefore, this

effect should be seen in the large number of available small
RNA perturbation experiments where genome-wide expres-
sion changes are measured.

Results and discussion

Target abundance affects average downregulation
by small RNAs

The mean downregulation of target mRNAs for different
transfected small RNAs is highly variable. For instance, when
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Figure 1 Mean downregulation is correlated with target abundance. (A) Schematic of the hypothesis that target abundance determines mean downregulation of
individual targets. Micro/siRNAs with many targets downregulate their targets to a lesser extent than micro/siRNAs with few targets. (B) Expected correlation between
target abundance and log expression ratio. This can also be considered an anti-correlation between downregulation and target abundance. (C, D) Differential
downregulation by miR-155 and miR-128, where miR-155 targets are more downregulated than the targets for miR-128. (E) Predicted target concentration and mean log
expression ratio across 146 micro/siRNA transfection experiments in HeLa cells. (F) Predicted target concentration and mean downregulation across 21 independently
measured, single time point microRNA transfection experiments. Curves were fit to log(1�a/(x�b)), where a and b were determined by least squares error.
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miR-155 and miR-128 are separately transfected into HeLa
cells, the targets of miR-155 are more downregulated than the
targets of miR-128 (Figure 1C and D). We hypothesized that
this variability is due, in part, to variable abundance of target
mRNAs. To examine this phenomenon more systematically,
we analyzed the mRNA expression changes after transfection
for a panel of 146 small RNA transfection experiments in HeLa
cells and 32 small RNA transfection experiments in HCT116
cells (Lim et al, 2005; Jackson et al, 2006; Schwarz et al, 2006;
Grimson et al, 2007; He et al, 2007; Kittler et al, 2007; Linsley
et al, 2007; Anderson et al, 2008; Selbach et al, 2008)
(Supplementary Table 1).

To analyze the proposed dilution effect, we quantified the
abundance and mean downregulation of target transcripts for
each small RNA transfection. Target mRNA abundance in
HeLa cells is quantified using RNA-seq data in units of reads
per nucleotide (RPN) (Morin et al, 2008; Mortazavi et al,
2008). Downregulation is computed from the ratio of expres-
sion levels after transfection to the levels before transfection,
where the expression levels are measured by hybridization on
microarrays. To determine the match between small RNAs and
their targets, we used 7mer seed matches in the 30 UTR of
mRNAs. We explored several different ways of quantifying
abundance and downregulation and of predicting targets,
with similar results (Materials and methods; Supplementary
Figures 1 and 2; Supplementary Tables 2 and 3).

We examined all 146 HeLa experiments and found a
significant correlation (Po0.0004, Pearson’s r¼0.31, Spear-
man’s r¼0.30) between the concentration of predicted targets
of the transfected small RNA and the average log expression
ratio of the target mRNAs (Figure 1E). This can also be
considered an anti-correlation between abundance of pre-
dicted targets and mean downregulation. This anti-correlation
reflects the increased dilution of a limited pool of transfected
small RNAs over an increased number of available target sites
on targeted transcripts. For example, the predicted targets of
miR-155, which are relatively few in number, are more
downregulated than the targets of miR-128, which are more
numerous.

An alternative statistical measure of the relationship between
low target abundance and high downregulation can be obtained
by dividing the experiments into quadrants by mean log expres-
sion ratio and target concentration (Figure 1E; cutoff for mean
log expression ratio is �0.11 and cutoff for predicted target
concentration is 250 RPN). Strikingly, when target abundance
is low, the fraction of experiments with high downregula-
tion is 10 times larger than when target abundance is high
(40/115¼34.8%, 1/31¼3.2%; Po0.0003, Fisher’s exact test).

We analyzed 32 transfection experiments in a second
cell type, HCT116 (Dicer�/� or Dicerþ /þ ) and found
that high mean downregulation is associated with low
predicted target abundance (Po0.054, Fisher’s exact test;
Supplementary Figure 3). Furthermore, the fraction of
transfections that induce large downregulation is very
similar in HCT-116 as it was in HeLa. Namely, 33% (n¼4) of
the transfection experiments whose small RNA had low
target abundance (n¼12) resulted in predicted targets being
highly downregulated, whereas there was only one exception
experiment whose small RNA had high downregulation when
there was high abundance of predicted targets (n¼20).

Downregulation by transfected microRNAs
is a function of target abundance

Up to this point, the analysis has examined both siRNA and
microRNA transfection experiments pooled together. We then
wanted to examine whether the effect was in any way different
for the subset of transfection experiments using microRNAs
alone. We found that a representative set of microRNA
experiments (Materials and methods) show a significant rank
correlation between target abundance and mean log expres-
sion ratio (Figure 1F; Po0.003, r¼0.62, n¼21). Beyond
correlation measures, we also quantify the dynamic range of
the dilution effect. For instance, miR-142-3p, the microRNA
with the lowest target abundance can downregulate its targets
83% more (on average in log2 mRNA expression ratio) than
miR-16, the microRNA with the highest target abundance.

As microRNAs can inhibit translation while showing little or
no change in mRNAexpression (Filipowicz et al, 2008), we tested
whether target mRNA abundance had an effect on the amount of
protein downregulation. Using mass spectrometry measure-
ments after microRNA transfection into HeLa cells (Selbach
et al, 2008), we found mean downregulation of protein products
is consistent with our hypothesis (r¼0.60, n¼5; Supplementary
Figure 4). Although the correlation does not reach statistical
significance due to low sample size, the trend is similar to the
significant dilution effect in mRNA microarray experiments. This
trend is relevant as there is no guarantee that changes in mRNA
are reflected in the changes in functional protein.

Our results establish a significant anti-correlation between
mean downregulation and target abundance; however, this could
be the result of other variables that correlate with down-
regulation as well as target abundance. We explored three
possible predictors of downregulation: AþU content, 30-UTR
length, and expression level of individual transcripts. Neither the
AþU content of the seed nor of the entire microRNA are
significantly correlated with downregulation (at a threshold of
0.05; Supplementary Figure 5). The 30-UTR length is weakly
correlated with target abundance and mean log expression ratio
(Supplementary Figures 6 and 7) and individual genes with
higher expression levels tend to be more downregulated on
average when microRNAs are transfected (Supplementary Figure
8). We have shown that the AþU content is not correlated with
mean downregulation, but the other two predictors might
contribute to the dilution effect. However, further analysis can
control for these predictors, as we describe next.

To test our hypothesis while controlling for the potential
biases, increase statistical power, and examine differential
regulation for individual genes, we performed a second type of
analysis. We determined the expression changes of all genes
that are targeted by any pair of microRNAs and compared
the difference in average downregulation with respect to
the difference in the total number of targets transcripts
(Figure 2A). This shared target comparison controls for
various sources of bias, including AþU content and 30-UTR
length distributions. Figure 2B shows a table of selected genes
where each gene is targeted by both miR-A, which has fewer
total targets in the cell, and miR-B, which has more. For
example, Smad5 and Tgfbr2 are far less downregulated when
miR-106 is transfected compared with miR-155; similarly Nfat5
is downregulated much less with miR-16 when compared with
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miR-122 transfections (Figure 2B). We also found a highly
significant correlation between the difference in target
abundance and difference in downregulation (Figure 2C;
Po10�15, r¼0.59). We determine an empirical P-value of
Po10�5, which uses an empirical background distribution
using a set of randomly selected non-targets the same size as
the set of shared targets for each point (Figure 2D). Finally, to
control for possible laboratory-specific artifacts, we specifi-
cally examined microRNA pairs from a single laboratory and
found similar results (nominal Po10�6, r¼0.74; Supplemen-
tary information). The full set of microRNA pairs considered
in our calculations together with differential downregulation
of shared targets are provided in Supplementary Table 4. In
summary, this more refined analysis controlled for potentially
confounding variables and supported the dilution effect for
microRNAs.

Target abundance affects primary target and
off-target average downregulation by siRNAs

We also show that siRNA off-target downregulation is
correlated with on- and off-target abundance. First, we found
highly significant correlation between mean log expression
ratio of off-targets and off-target abundance (Figure 3A;
Po0.0001, r¼0.37). However, siRNAs are designed to degrade

a single primary target gene. Therefore, we analyzed correla-
tion between each siRNA’s downregulation of its primary
target and abundance of off-targets. We normalized the
downregulation by each siRNA with the same primary target
by subtracting the mean and dividing by standard deviation, as
different primary targets can be knocked down with highly
different efficiencies (Supplementary Figure 9). We found a
significant rank correlation between log expression ratio of
primary target and abundance of off-targets (Figure 3B;
Po0.007, r¼0.34). This indicates that off-target abundance
should be considered in the design of siRNA to maintain high
knockdown efficiency.

Recent work has noted that siRNAs with many off-targets
may reduce RNAi-induced toxicity (Anderson et al, 2008).
However, if this strategy were used, our results suggest one
would face a trade-off between reduced siRNA toxicity (more
off-targets may lead to decreased toxicity) and increased
knockdown of direct siRNA target (fewer off-targets lead to
increased knockdown).

Michaelis–Menten kinetics describes total
transcripts degraded

As we found a significant anti-correlation between down-
regulation and total target abundance, we wanted to explore
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the kinetics that determines the total number of mRNA
transcripts degraded. Note that the total transcripts degraded
is related to downregulation, but it is an absolute number of
molecules and not a ratio. Given the pre-transfection target tran-
script concentration x(0), we computed the post-transfection
concentration x(T), at T¼1 day, as follows. We used RNA-seq
target transcript abundance for x(0) and determined post-
transfection abundance using log expression ratio after
transfection from microarray experiments: if we denote xi (0)
as the pre-transfection abundance of target gene i and
yiðT ¼ 1Þ=yið0Þ as the change in expression, then we
obtained an estimate for the post-transfection abundance for
each target i as

xiðT ¼ 1Þ � yið1Þ
yið0Þ

xið0Þ ð1Þ

We then estimated the initial velocity, that is the time rate of
decrease of transcript concentration, as v¼x(0)�x(T¼1), to
express the velocity as a function of the initial target
concentration using Michaelis–Menten kinetics. Our assump-
tion is that T¼1 day is sufficiently early to approximate the
initial velocity.

We computed v for each of the 146 transfection experiments
in HeLa. Empirically, v is significantly dependent on target
concentration and fits the Michaelis–Menten model better
than linear or constant models (Supplementary Figure 10;
Supplementary information). That is, we can fit values of Vmax

and Km such that v¼Vmax x(0)/(Kmþ x(0)) and express:

log
xðT ¼ 1Þ

xð0Þ

� �
¼ log

xð0Þ � Vmaxxð0Þ=ðxð0Þ þ KmÞ
xð0Þ

� �

¼ logð1� Vmax=ðxð0Þ þ KmÞÞ
ð2Þ

Therefore, this kinetic relationship can be used to predict the
expected log expression change of target genes as a function
of target abundance.

This relationship provides an explanation of the observed
anti-correlation between mean downregulation and concen-
tration of predicted targets. These results motivate a more
quantitative framework for studying small RNA regulation and
kinetics.

Conclusions

We find evidence that the activity of a small RNA can depend
on the abundance of its targets. This in turn allows for potential
crosstalk between targets through dilution of microRNAs/siRNAs.
This may have implications for research and clinical applications of
siRNA technology. Furthermore, it may help explain endogenous
microRNA dynamics.

In the clinic, our observed dilution effect may have
important implications for the design and efficacy of ther-
apeutic siRNAs, suggesting a key design criterion for ther-
apeutic siRNAs is minimizing the number of off-target sites on
highly expressed genes. This may improve efficient direct
target downregulation at moderate RNAi concentrations and
thereby avoid unwanted saturation effects (Khan et al, 2009).
In research applications, siRNAs, such as those used in
functional genomic screens, will be more likely to function
optimally in cells where off-transcript numbers are low. This
may be particularly relevant when designing constructs for cell
types that express very few genes at very high levels, such as
hepatocytes (Ramsköld et al, 2009).

Endogenous microRNAs may have their effects diluted by
highly abundant target transcripts in particular cell types or
states. The activity of endogenous microRNAs on specific
targets may be significantly altered in contexts where target
concentrations change dramatically, such as shifts in environ-
ment during differentiation, development, and evolution.
Specifically, particular pairs of microRNAs and target genes
may be functionally constrained to co-evolve to maintain a
constant strength of downregulation. This is different from
(though not inconsistent with) the anti-target hypothesis (Farh
et al, 2005; Stark et al, 2005) in which mRNAs that dominate a
cell type are thought to specifically avoid microRNA targeting.

Finally, quantifying downregulation suggests a departure
from considering microRNA targets based on RNA sequence
alone. Imbalances in the relative concentrations of microRNAs
and gene targets might exaggerate or compensate for sequence
mismatches between the two species. For example, highly
expressed microRNAs with very few target transcripts may well
effectively downregulate mRNAs with ‘weak sites,’ such as
those containing G:U wobbles. Conversely, weakly expressed
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microRNAs with many potential mRNA target transcripts, may
fail to downregulate species with excellent sequence matches.
This will be important to consider in a new generation of
microRNA target prediction methods.

Our work demonstrates that small RNA activity can be
influenced by the concentrations of the target mRNA
molecules, a phenomenon that may alter the effectiveness of
therapeutic, investigational, and endogenous small RNAs.

Materials and methods

Quantification of transcript abundance

To quantify transcript abundance, we used RNA-seq measurements
from HeLa S3 cells (Morin et al, 2008). We aligned 31 bp reads,
allowing two mismatches, to the reference genome (UCSC genome
browser hg18), requiring matches to be unique. This resulted in a total
of 17.8 million aligned reads. We examined genes by their AceView
30-UTR annotations (Thierry-Mieg and Thierry-Mieg, 2006) and
determined the number of RPN, which we use as a proxy for transcript
abundance (Mortazavi et al, 2008). When reads mapped to multiple 30

UTRs, we split the reads evenly between the UTRs. We used
alignments to 30 UTRs as most validated microRNA targeting (and
siRNA ‘off-targeting’) has been identified in this region.

Alternative measures of transcript abundance included array
fluorescence and number of genes targeted (Supplementary
Figure 1). Array fluorescence lacks the dynamic range of RNA-seq.
That is, probes called as ‘present’ with low fluorescence frequently
seem to be absent from the transcriptome, leaving the problem of
determining a proper threshold for minimizing false positives and false
negatives (Mortazavi et al, 2008). The raw number of genes targeted
ignores the transcript abundance and thus may sometimes be a poor
proxy for target concentration, especially for those small RNAs with
few targets. In general, however, these measures are all highly
correlated (Supplementary Figure 1). We also used the sum of all
individual target sites on all target transcripts, as opposed to just the
total number of target transcripts, and came to equivalent conclusions.
To determine the total ‘predicted target concentration,’ we sum the
abundance for all the predicted targets.

Quantification of target downregulation

We used microRNA and siRNA transfection experiments followed by
microarray assay of gene expression to determine small RNA-mediated
downregulation. We first performed target predictions using heptamer
seed matches in the longest 30 UTR of Refseq annotated genes to
determine a set of predicted targets. We also performed target
prediction using several other methods: (1) TargetScan-conserved
targets (Lewis et al, 2005; Grimson et al, 2007; Linsley et al, 2007); (2)
heptamer seed matches that are conserved in three of four distantly
related organisms (mouse, rat, chicken, and dog) (Khan et al, 2009);
(3) heptamer seed match to Aceview 30 UTRs (Thierry-Mieg and
Thierry-Mieg, 2006); and (4) the miRanda algorithm (John et al, 2004).
All target prediction methods yielded similar results (Supplementary
Figure 2).

We examined three measures of downregulation:

(1) Average downregulation (log expression change) of predicted
targets.

(2) Area between the predicted target cumulative distribution and the
background cumulative distribution. Example cumulative dis-
tribution functions for targets and background are shown in
Figure 1C and D. The signed area between these curves yields an
estimate for how much downregulation an mi/siRNA is able to
exert.

(3) Estimate of the total number of molecules degraded as a
percentage of initial number of predicted target molecules. The
values for x(T¼1) and x(0) are estimated as in the kinetic model
and the measure we examine is ðxðT ¼ 1Þ � xð0ÞÞ=xð0Þ.

These three methods are highly correlated and yield similar results in
our analysis (Supplementary Figure 1).

Representative set of independent microRNA
experiments

There are several data sets that have multiple small RNAs with
identical seed sequences. In some cases, the seeds are the same
because the entire small RNA is the same. In other cases, the seed is
identical but other nucleotides in the small RNA are different. When
the entire small RNA is identical, we only include replicate experi-
ments if they were performed by separate laboratories. When only the
seed is identical, we take two members of the seed class. When
multiple time points are available and we only use one, we take the
time point at which the targets are most downregulated on average
(Supplementary Figure 11).

Downregulation of primary siRNA targets

We provide evidence suggesting that siRNAs with fewer off-target
molecules are more effective at downregulating their direct/primary
targets (Figure 3B). There are several large sets of microarrays where
many siRNAs (each separately transfected) are targeted to a single
gene. Each of these experiments shows correlation between target
abundance and downregulation; however, only one shows significant
correlation (siMAPK14; Po0.02), whereas the others show nearly
significant correlation. To elucidate the significance of correlation, we
combined all the experiments into a single data set. However, different
primary targets are knocked down to different extents on average. To
normalize for this effect, we subtracted the mean and divided by s.d.
for each set of siRNAs targeting a single gene. That is, for each panel of
‘raw data’ in Supplementary Figure 9, we subtract the mean of the y
axis and divide by the s.d. of the y axis. We do not change the x axis.
The resulting transformed data are shown in Figure 3B and
Supplementary Figure 9. The transformed data show highly significant
correlation.

Note that the siRNAs targeted to MAPK14 and SOD1 have a single
nucleotide mismatch to the target in HeLa cells. Although MAPK14 has
a perfect match siRNA, we do not use it as all other siRNAs have a
single nucleotide mismatch. Inclusion of the perfect match siRNA does
not alter conclusions.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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