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Abstract

Determining the molecular events induced in the spleen during schistosome infection is an essential step in better
understanding the immunopathogenesis of schistosomiasis and the mechanisms by which schistosomes modulate the host
immune response. The present study defines the transcriptional and cellular events occurring in the murine spleen during
the progression of Schistosoma japonicum infection. Additionally, we compared and contrasted these results with those we
have previously reported for the liver. Microarray analysis combined with flow cytometry and histochemistry demonstrated
that transcriptional changes occurring in the spleen were closely related to changes in cellular composition. Additionally,
the presence of alternatively activated macrophages, as indicated by up-regulation of Chi3l3 and Chi3l4 and expansion of
F4/80+ macrophages, together with enhanced expression of the immunoregulatory genes ANXA1 and CAMP suggests the
spleen may be an important site for the control of S. japonicum-induced immune responses. The most striking difference
between the transcriptional profiles of the infected liver and spleen was the contrasting expression of chemokines and cell
adhesion molecules. Lymphocyte chemokines, including the homeostatic chemokines CXCL13, CCL19 and CCL21, were
significantly down-regulated in the spleen but up-regulated in the liver. Eosinophil (CCL11, CCL24), neutrophil (CXCL1) and
monocyte (CXCL14, CCL12) chemokines and the cell adhesion molecules VCAM1, NCAM1, PECAM1 were up-regulated in the
liver but unchanged in the spleen. Chemokines up-regulated in both organs were expressed at significantly higher levels in
the liver. Co-ordinated expression of these genes probably contributes to the development of a chemotactic signalling
gradient that promotes recruitment of effector cells to the liver, thereby facilitating the development of hepatic granulomas
and fibrosis. Together these data provide, for the first time, a comprehensive overview of the molecular events occurring in
the spleen during schistosomiasis and will substantially further our understanding of the local and systemic mechanisms
driving the immunopathogenesis of this disease.
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Introduction

Schistosomiasis, characterised by extensive hepatic fibrosis and

splenomegaly, is a significant cause of parasitic morbidity and

mortality [1]. Although extensive studies have been carried out to

identify the processes driving hepatic granulofibrotic response, the

immunopathogenesis of schistosome-induced splenomegaly has

been largely neglected.

Splenomegaly is a common feature of many infectious diseases

and can lead to alterations in the splenic architecture as well as the

inherent immunological function of the organ. Changes in the

splenic architecture following Leishmania and some viral infections

have been shown to influence the nature of the immune response

to subsequent infections [2,3]. Schistosome infections induce

significant splenomegaly characterised by loss of definition

between the red and white pulp [4,5,6,7]. Additionally, schisto-

some infections are known to modify the nature of the immune

response to a number of other pathologies, including allergic

responses and other parasitic infections, by as yet undetermined

mechanisms [8]. Furthermore, undefined processes occurring in

the spleen during active schistosome infections enhance the

granulofibrotic response occurring in the liver [5]. The precise

molecular mechanisms and transcriptional modulations corre-

sponding to these cellular and immunological changes, however,

have not been fully evaluated. Characterising the molecular

processes occurring in the spleen during schistosomiasis is an
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important research priority if we are to fully comprehend the

immunopathogenesis of this disease and the mechanisms by which

schistosome infections modulate the immune response to other

pathogens.

The study presented here describes the use of whole genome

microarray analysis combined with flow cytometry and histology,

to provide a comprehensive profile of the transcriptional and

cellular response occurring in the murine spleen during Schistosoma

japonicum infection. As well, we compare and contrast these results

with those we have previously reported for the liver during the

progression of S. japonicum egg-induced granuloma formation and

hepatic fibrosis [9]. Our results reveal that there is co-ordinated

expression of chemokines and cell adhesion molecules in the liver

and spleen that may regulate the recruitment of effector cells to the

liver during schistosome infection. Additionally, we demonstrate

the up-regulation of several immunomodulatory elements in the

spleen that may be involved in the control of the immune response

to S. japonicum infection. The results of microarray analysis, flow

cytometry and histology of the livers of the S. japonicum infected

mice used in the present study are available [9] and the liver gene

expression data are in the public domain (NCBI’s Gene

Expression Omnibus; Series Accession Number: GSE14367).

Taken together these results provide insight into the integrated

molecular mechanisms driving the development of schistosome

induced pathology.

Materials and Methods

Ethics Statement
All work was conducted with the approval of the Queensland

Institute of Medical Research Animal Ethics Committee.

Mice and Parasites
Full details of the time-course experiments undertaken on S.

japonicum-infected mice are described elsewhere [9]. Methods

related to the analysis of the spleen are outlined below. Livers and

spleens from the same animals were used for the purposes of

parasitological, histological, microarray and flow cytometry

analyses.

Four to six week old female C57BL/6 mice (Animal Resource

Centre, Canningvale, Australia) were percutaneously infected with

20 S. japonicum cercariae (Chinese mainland strain, Anhui

population). Mice were euthanized at 4 (n = 7), 6 (n = 7) and 7

(n = 8) weeks post-infection (p.i.) and spleen tissue collected. Three

additional mice were used as uninfected controls. An identical

experiment was performed for flow cytometry (n = 5 per group).

Total adult worm pairs per mouse were recorded as a measure of

parasite burden and eggs per gram of liver was calculated as a

measure of hepatic egg burden as reported [9,10].

Histological Assessment
Formalin fixed, paraffin embedded spleen sections were stained

by haematoxylin and eosin to assess splenic structure. Within

spleen tissue, eosinophils were identified by Giemsa staining;

neutrophils by Leder stain (naphthol AS-D chloroacetate) [11];

and macrophages by immunoperoxidase staining for the macro-

phage specific cell surface marker F4/80 (Primary antibody: rat

anti-mouse F4/80, Abcam, Cambridge, USA; Secondary anti-

body: biotin-conjugated anti-rat immunoglobulin, Jackson Im-

munoResearch Laboratories, Inc, West Grove, USA. Detection:

Streptavidin-HRP, Jackson ImmunoResearch Laboratories, Inc,

West Grove, USA). Slides were scanned using an Aperio slide

scanner (Aperio Technologies, Vista, USA). The number of

eosinophils and neutrophils in the spleen of each mouse was

quantified by calculating the average number of positively stained

cells in 20 high power fields (6400). Positive staining for F4/80

was measured using Aperio’s Spectrum Plus Software positive

pixel count algorithm (Version 8.2; Aperio Technologies, Vista,

USA).

Flow Cytometry
Leukocytes were isolated from whole spleens as described [12].

Briefly, spleens were digested in collagenase D (1mg/ml; Roche

Diagnostics, Mannheim, Germany) and DNAse I (0.5mg/mL;

Roche Diagnostics, Mannheim, Germany) for 30 mins at 37uC.

The tissue was then passed through a 70mm cell strainer (BD

Falcon, Bedford, USA) and washed with FACS buffer (1% bovine

serum albumin (w/v), 0.1% sodium azide (v/v) in phosphate

buffered saline). Red blood cells were lysed with Gey’s lysis

solution. The solution was then underlayed with FACS buffer and

centrifuged at 1300rpm for 5 mins. The resulting cell pellet was

resuspended in FACS buffer and the cells counted.

Cells were stained for specific cell markers by first incubating

with anti-Fc-receptorIII antibodies (Monoclonal antibody produc-

ing hybridoma; Clone: 24.G2) to block non-specific binding and

then with commercially available fluorochrome-conjugated anti-

bodies for 30 mins on ice (APC-anti-CD4, FITC-anti-CD8b and

PE-anti-CD19: BD Pharminogen; FITC-anti-CD3, Miltenyi

Biotec, Germany). Cells were defined as CD4+ T-cells (CD3+/

CD4+), CD8+ T-cells (CD3+/CD8+) and B-cells (CD19+). Data

were acquired on a FACS Calibur Flow Cytometer (BD

Bioscience) and analysed using FlowJo Software (Treestar Inc)

and GraphPad Prism, version 5.0 (GraphPad Software, San

Diego, USA).

RNA Isolation and Purification
Total RNA was extracted from spleen tissue as described [13].

Briefly, spleen tissue was homogenised in Trizol (Invitrogen,

Carlsbad, USA) using a Qiagen Tissuelyser (Qiagen Inc.,

Valencia, USA). A portion of the homogenate was then processed

by phase extraction with Trizol and by column chromatography

Author Summary

Schistosomiasis is a significant cause of illness and death in
the developing world. Inflammation and scarring in the
liver and enlargement of the spleen (splenomegaly) are
common features of the disease. Changes occurring in the
spleen have the potential to influence the way in which
the body deals with infection but the mechanisms driving
these changes are not well characterised. In the present
study we determined, for the first time, the gene
expression profile of the mouse spleen during infection
with Schistosoma japonicum and compared these results to
those previously reported for the liver to determine if
processes occurring in these organs co-operate to
promote hepatic inflammation and granuloma formation.
Our data indicated that gene expression in the spleen is
related to the types of cells present and suggest that the
spleen might be important in controlling schistosome-
induced inflammation. Comparison of the liver and spleen
showed that expression of cell signalling molecules
(chemokines) was much higher in the liver, potentially
promoting the recruitment of specific cell types to this
organ, causing inflammation and scarring. The results from
this study enhance our knowledge of the mechanisms
that drive schistosome-induced splenomegaly and liver
inflammation.

Chemotaxis and the Spleen during Schistosomiasis
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using an RNeasy Mini Kit (Qiagen Inc, Valencia USA). RNA

quantity was measured using the Nanodrop-1000 (Nanodrop

Technologies, Wilmington, USA) and quality was assessed using

an Agilent Bioanalyzer (Agilent Technologies, Foster City, USA).

Pooling of Spleen RNA for Microarray Analysis and Real-
Time PCR

Each mouse group was normalised by log transformation for

egg burden and outliers were excluded on the basis of 95%

confidence intervals as described [9]. An equal amount of total

RNA from the spleens of four mice with the highest quality total

RNA were pooled for cRNA and cDNA synthesis.

Microarray Analysis
cRNA synthesis and whole genome microarray analysis.

cRNA was synthesised using the Illumina Total Prep RNA

Amplification kit (Ambion Inc., Austin, USA). Microarray analysis

was performed using Illumina Mouse 6 version 1.1 Whole Genome

Expression Chips and scanned using an Illumina BeadStation

according to the manufacturer’s instructions (Illumina, San Diego,

USA). Two technical replicates were performed for each cRNA

sample. Splenic gene expression data are publicly available (NCBI’s

Gene Expression Omnibus; Series Accession Number: GSE19525).

Data analysis. Quality control of microarray data was

performed by examining intensity histograms of hybridisation

efficiency and noise in BeadStudio (version 3; Illumina, San

Diego, USA). Expression values were entered into GeneSpring

GX version 7.3 (Agilent Technologies/Silicon Genetics, Foster

City, USA) and normalised to the 50th percentile. Values less

than 0.01 were set to 0.01. Data were then normalised to

uninfected controls and filtered for significant signal on the basis

of detection score, a BeadStudio generated measure of the signal

intensity of the gene relative to negative controls (d.0.949,

which equates to a confidence value of p#0.05). For a gene to

be accepted, at least 4 of 8 hybridisations had to pass these

filtering criteria. Differentially expressed genes were identified

by analysis of variance (ANOVA, p#0.05 using Benjamini and

Hochberg correction for multiple testing). Hierarchical

clustering with the Pearson correlation measure of similarity

was performed on ANOVA filtered data to identify common

patterns of temporal gene expression. Keyword based searches

for specific gene names were used to identify chemokines and

other genes of interest.

Comparison of liver and spleen microarray profiles.

Venn diagrams comparing genes that passed all filtering criteria

and were $2 fold up- or down-regulated in the spleen and liver [9]

were constructed to identify genes that were:

i) commonly up- or down-regulated in the spleen and liver

ii) enhanced in the spleen (i.e. up-regulated in the spleen while

down-regulated or unchanged in the liver)

iii) enhanced in the liver (up-regulated in the liver and down-

regulated or unchanged in the spleen)

iv) specifically down-regulated in the spleen

v) specifically down-regulated in the liver

Identification of over-represented biological functions

and signalling pathways. DAVID functional annotation

analysis (DAVID Bioinformatics Resources 2008, National

Institute of Allergy and Infectious Diseases (NIAID), NIH

[14,15]) was used to identify biological processes, molecular

functions and signalling pathways in the DAVID knowledge data

base over-represented by genes in each of the identified

hierarchical clusters and gene lists generated from comparison of

the liver and spleen data. Ranking of functional annotations in

DAVID is based Modified Fischer’s exact test (EASE score,

p#0.05) [14]. To identify groups of common terms, functional

annotation clustering was applied. The overall importance of

functional annotation clusters is ranked on the basis of enrichment

score, the geometric mean of the p-values of each annotation term

in the group [14]. An arbitrary cut off of 62 fold change in

expression was applied allowing identification of changes in gene

expression with likely biological significance.

Real-Time PCR
cDNA was synthesised from pooled splenic total RNA using a

Quantitect Reverse Transcription kit (Qiagen Inc., USA). cDNA

concentration was measured using a Nanodrop-1000 (Nanodrop

Technologies, Wilmington, USA.). Real-time PCR was used to

validate a subset of the microarray data. Forward and reverse

primers were sourced from the literature [16,17,18] or designed

using Primer-Blast software (http://www.ncbi.nlm.nih.gov/tools/

primer-blast) (Table S1). Hypoxanthine phosphoribosyltranferase

(HPRT) was used as a housekeeping gene [18]. Real time PCR

was performed using SYBR Green master mix (Applied

Biosystems, Warrington, UK) on a Corbett Rotor Gene 6000

(Corbett Life Sciences, Concorde, Australia). Rotor-Gene 6000

Series software (version 1.7), Microsoft Office Excel 2003 and

GraphPad Prism Version 5.00 for Windows (San Diego,

California USA) were used in the analysis of results. Correlations

between microarray and real-time PCR results were assessed using

Spearman’s Rho measure of correlation in GraphPad Prism

Version 5.00 for Windows.

Statistical Analysis
Changes in parasitological, histological, real time PCR and flow

cytometry data were assessed by One Way ANOVA with post hoc

Tukey testing (p#0.05) using the GraphPad Prism Version 5.00

for Windows (San Diego, California USA). Statistical analysis of

microarray data was performed using GeneSpring GX (version

7.3.1). Correlations between microarray and real-time PCR data

were measured using Spearman’s Rho correlation in GraphPad

Prism Version 5.00 for windows as described [19].

Results

Parasitological and Histological Analyses
Details of the parasitological burden and kinetics of granuloma

formation and fibrosis in the livers of the S. japonicum infected mice

used in these experiments are reported elsewhere [9]. Briefly, mice

were moderately infected with an average of 5 worm pairs.

Schistosome eggs were first observed in the liver at 4 weeks post

infection (p.i.) and hepatic egg burden increased significantly

thereafter (1-Way ANOVA, p#0.05) [9]. The kinetics of

granuloma formation and fibrosis were consistent with previous

reports for S. japonicum [20,21].

Total spleen weight increased significantly from 4 weeks p.i.

onwards (Figure 1, upper panel). Changes to the splenic

architecture were observed as early as 4 weeks p.i. and were

characterised by increasing congestion of the red-pulp associated

with loss of definition between the white and red pulp (Figure 1A–

D, lower panel).

The number of neutrophils in the splenic red pulp increased

significantly from 6 weeks p.i. and eosinophil numbers were

significantly elevated compared with uninfected mice at 7 weeks

p.i. F4/80 staining for macrophages was significantly increased

Chemotaxis and the Spleen during Schistosomiasis
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from 6 weeks p.i., reaching a peak of 19% total section area at 7

weeks p.i. (Figure 2A–I).

Flow Cytometry
Flow cytometry for CD8+ T-cells, CD4+ T-cells and B-cells

revealed an early increase in the total number of these cells at 4

weeks p.i. followed by a return to baseline levels by 6 weeks p.i.

(Figure 3A). In contrast, the ratio of T-cells and B-cells to total

splenocytes decreased significantly after 4 weeks p.i. (Figure 3B).

Microarray Analysis
Transcriptional profile of the spleen during S. japonicum

infection - Filtering of microarray data. Normalised data for

each of the 46,643 genes on the microarray were filtered for

significant signal, thereby reducing the data set to 18,438 genes of

which 4,553 were shown to be differentially expressed (1-Way

ANOVA, p#0.05). Hierarchical clustering identified four distinct

patterns of gene expression (Figure 4) comprised of genes (Dataset

S1) that were:

i. Down-regulated during infection (3045 genes)

ii. Up-regulated early in infection (180 genes)

iii. Consistently up-regulated during infection (806 genes)

iv. Up-regulated late in infection (478 genes)

Functional annotation clustering of genes 2-fold or greater up-

or down-regulated revealed that each of these gene clusters was

associated with distinct gene ontologies (Figure 4; Table S2).

Accession numbers and Illumina Probe IDs of genes of interest are

provided (Table S3).

There was significant and sustained down-regulation of genes

associated with B-cell and T-cell activation and proliferation,

including components of the B- and T-cell receptor complexes

including immunoglobulin genes (Igh-VJ558, Igh-VS107), B-cell

receptor accessory molecules (e.g. CD79a,b), T-cell receptor chains

(Tcrd-V1, Tcrb-V8.3, Tcrb-V8.2, Tcrb-V13) and T-cell receptor

accessory molecules (CD3e,d,g,z). Additionally, there was sustained

down-regulation of several cytokines and cytokine receptors

associated with lymphocyte activation (e.g. IL21r, IL2rg, IL27ra,

IL18r1, IL7r, IL7, and IL18). Down-regulation of genes associated

with chemotaxis, including numerous chemokines (CCL4,-5,-19,-

21a–c, CXCL9,-12,-13, XCL1), was also a prominent feature of the

splenic transcriptional response to schistosome infection. Genes

involved in morphogenesis and angiogenesis (e.g. Fgf1, Pdgfa, Vegfc,

Ctgf, Tgfbr2) were also down-regulated from 4 weeks p.i.

Genes consistently up-regulated were predominantly associated

with progression through the cell cycle and included key cell

proliferation markers (e.g. Mki67) and genes associated with the

M-phase of the cell cycle (e.g. Cell division cycle homologues,

E2F1 and 2, Cyclin D3, Cyclin F). Significant up-regulation of key

enzymes of the porphyrin and heme biosynthesis pathways (e.g.

Fech, Uros, Ppox) was also observed.

Genes up-regulated early in infection were functionally

associated with immune responses including several interferon-

inducible genes such as Irf7, Oas2, Ifit3 and Ifit2. Genes up-

regulated in the spleen later in infection were associated with

wound healing and defence responses as well as chemotaxis (e.g.

CXCL4, CCL8, S100A8), glycolysis and peroxidase activity. Other

genes whose expression increased significantly over time included

chitinase-like genes (e.g. Chi3l1, Chi3l3, Chi3l4), neutrophils

markers (e.g. Ngp, NE), eosinophil markers (e.g. Epx and Ear1–

3,6,10), Annexin a1 (ANXA1) and Cathelicidin Antimicrobial

Peptide (CAMP).

Comparison of transcriptional profiles of the spleen and

liver. Comparison of spleen and liver microarray datasets

identified 297 genes that were commonly up-regulated and 78

genes that were commonly down-regulated. There was spleen

specific up-regulation of 367 genes and specific down-regulation of

863 genes. Forty-one genes up-regulated in the spleen were down-

regulated in the liver and 242 genes down-regulated in the spleen

were concurrently up-regulated in the liver. There was liver

specific up-regulation of 1,025 genes and down-regulation of 1,255

genes (Dataset S2; Table S4).

Up-regulation of the proliferation marker Mki67 and genes

associated with progression through the cell cycle was common to

both liver and spleen (e.g. Cyclin B, Cdc20, Cdca3). Other

commonly up-regulated genes included the chemokines CCL8,

S100A8, S100A9, whose expression was higher in the liver [9].

Commonly down-regulated genes included some members of the

Figure 1. Splenic pathology induced by schistosome infection.
Upper panel: Spleen weight increased over time following S. japonicum
infection reaching approximately 4.5 times that of controls at 7 weeks
p.i. The graph represents mean spleen weight of mice pooled for
microarray analysis 61SD (n = 4 per group). Lower panel: Schistosome
induced splenomegaly was associated with increasing congestion of
the red pulp and loss of definition between the red (lighter staining)
and white pulp (darker staining) over time A: Control; B: 4 weeks p.i.; C:
6 weeks p.i.; D:7 weeks p.i. (Haematoxylin and eosin 640; Bar equals
100mm.).
doi:10.1371/journal.pntd.0000686.g001
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Cytochrome P450 family (Cyp27a1, Cyp2d22, Cyp4f13, Cyp4v3) that

have been associated with heme or iron binding, or mono-

oxygenase activity.

Spleen specific responses. Elevated expression of genes

encoding key enzymes of the heme and porphyrin biosynthesis

pathways (e.g. Fech, Uros, Ppox) was specific to the spleen. Sustained

down-regulation of cytokine (IL7, IL18) and cytokine receptor

genes (e.g. IL7r, IL18r, IL21r, IL27ra) associated with lymphocyte

activation was observed in the spleen while their expression was

unchanged in the liver.

Liver specific responses. Elevated expression of several

procollagen genes, including COL1A1, as well as several profibrotic

cytokines (TGF-b, PDGF-b, EDN1) was observed exclusively in the

liver [9]. Similarly, there was significant down-regulation of

numerous components of several metabolic pathways including

lipid, fatty acid and amino acid metabolism [9].

Contrasting expression of genes associated with cell

recruitment. Distinct differences were observed in the

expression of genes associated with chemotaxis in the liver and

spleen (Figure 5). The chemokines CCL4,-19,-21a-c, CXCL7,-9,-13

and the cell adhesion molecules ICAM1, ICAM 2, down-regulated

in the spleen, were concurrently up-regulated in the liver [9].

Further, the chemokines CCL3, -6, -7, -11, -12, -24, CXCL-1, -14,

-16 and CX3CL1 and the cell adhesion molecules VCAM1,

NCAM1, PECAM1 were up-regulated in the liver [9] while

unchanged or undetectable in the spleen. Expression of

chemokines (CCL8, S100A8, S100A9) up-regulated in both

organs but was higher in the liver [9].

Real-Time PCR
Real-time PCR was performed on a subset of genes represen-

tative of transcripts that were highly up- or down-regulated in the

spleen (NE, EPX, Chi3l3, CXCL13); exhibited contrasting expres-

sion in the liver and spleen (CXCL13, CXCL1, CXCL9) and are key

genes from important biological categories identified by DAVID

analysis (Cell cycle: Mki67; Chemotaxis: CXCL1, CXCL4, CXCL9,

CXCL13); as well as genes encoding Th1/Th2 cytokines (IFN-c,

IL-4). The results of the real-time PCR analyses correlated closely

with those observed by microarray analysis (Spearman’s correla-

tion r = 0.93, p#0.0001, n = 36) (Figure S1).

Discussion

To date, there have been no studies conducted to specifically

define the molecular or transcriptional processes occurring in the

spleen during infection with any schistosome species. We have

Figure 2. Splenomegaly is associated with accumulation of neutrophils, eosinophils and F4/80+ macrophages in the red pulp. There
was a significant increases in the number of neutrophils (A–C: Leder stain for neutrophils (pink stain, arrowed) 6200 in uninfected control mice (B)
and at 7 weeks p.i. (C)), eosinophils (D–F, Giemsa stain 6400 in uninfected control mice (E) and at 7 weeks p.i. (F)) and F4/80+ macrophages (G–I: F4/
80 staining in uninfected control mice (H) and at 7 weeks p.i (I). (red-brown)640) in the splenic red pulp from as early as 6 weeks p.i. Values represent
mean cells/high power field (eosinophils and neutrophils) or percent positive staining (F4/80) 61SD of mice pooled for microarray analysis (n = 4 per
group). Bar = 100mm.
doi:10.1371/journal.pntd.0000686.g002
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reported here the first such study employing microarray analysis in

combination with flow cytometry and histochemistry to character-

ise the transcriptional and cellular profile of the spleen following

schistosome infection, comparing these changes with those

occurring in the liver [9].

Overall, the transcriptional response of the spleen reflected

cellular changes in this organ during progression of S. japonicum

infection. Significant up-regulation of proliferation markers and

genes associated with the cell cycle and lymphocyte proliferation

paralleled the expansion of T- and B-cells within the spleen.

Similarly, the significant down-regulation of genes associated with

T- and B-cell receptor signalling reflected the decrease in the

relative proportion of these cells in the splenic compartments over

time. The down-regulation of the cytokines that promote Th1

development from 6 weeks p.i. could favour the development of a

Th2 response and reflects the shift from a Th1 to a Th2 dominant

response observed in the liver at this time point [1,8,9]. Further,

down-regulation of a large cohort of genes predominantly

associated with immune responses is likely to reflect attempts by

the host to regulate the immune response to schistosome infection.

Loss of B-cells/T-cells following initial expansion could be due

to cell death or migration from the spleen. We did not detect

elevated expression of apoptosis-associated genes in the spleen but

there was decreased expression of several chemokines, especially

lymphocyte chemokines such as CXCL13, CCL21 and CCL19.

Combined with the accumulation of these cells in the liver [9],

these results suggest that cellular loss from the spleen is more likely

due to migration than apoptosis. Further, it has been shown that S.

mansoni infections are able to influence hematopoietic processes

occurring in the bone marrow as well as the activity of bone

marrow-derived cells (e.g [22,23]). This raises the alternative

possibility that infection-induced modifications in haematopoiesis

occurring up-stream of the spleen, contribute to the loss of B- and

T-cells from the spleen during S. japonicum infection. Further

studies to define the contribution of specific chemokines, apoptosis

and alterations to the haematopoietic process within the bone

marrow are required if we are to fully comprehend the

mechanisms involved.

Accumulation of eosinophils, neutrophils and macrophages in

the spleen was paralleled by enhanced expression of neutrophil

and eosinophil markers as well as genes known to be expressed at

high levels in these cells such as annexin A1 (ANXA1) and

Cathelicidin antimicrobial peptide (CAMP). ANXA1 regulates

polymorphonuclear leukocyte trafficking and function during

innate immune responses and T-cell dependent inflammation

during adaptive immune responses [24]. CAMP is known to have

direct antimicrobial activity, is chemotactic for a variety of cells,

and regulates production of pro-inflammatory cytokines [25]. The

role of these genes in schistosomiasis has not been investigated but

their increased expression in the spleen suggests that they may be

involved in shaping the immune response to schistosome

infections.

Significant up-regulation of Chi3l3 and increased staining for the

macrophage marker F4/80 suggests that there may be an increase

in the population of alternatively activated macrophages in the

spleen during schistosome infection. Similarly, there was signifi-

cant induction of the alternatively activated macrophage markers

Retnla and Mrc1 and increases in the number of F4/80+

Figure 3. Flow cytometry revealed dynamic changes in lymphocyte populations of the spleen over time. A: Flow cytometry
demonstrated a significant increase in the total number of CD4+ and CD8+ T-cells and CD19+ B-cells in the spleen at 4 weeks p.i. followed by return of
these cells to baseline levels by 6 weeks p.i. B: The ratio of T- and B-cells to total live cells decreased significantly over time. Values represent means 6
1SD. N = 5 per group except for 6 weeks p.i. where one mouse harboured no adult worms and was excluded from all further analyses.
doi:10.1371/journal.pntd.0000686.g003
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macrophages in the liver. In light of recent studies demonstrating

immunoregulatory roles for alternatively activated macrophages

during Th2 responses [26,27,28], it is possible that their presence

in the liver and spleen during schistosome infection represents a

mechanism whereby the host regulates the immune response to

infection at both the local and systemic level.

Comparison of the transcriptional profiles of the liver and

spleen revealed common up-regulation of genes associated with

progression through the cell cycle indicating that cellular

proliferation is occurring in both organs during infection. Up-

regulation of components of the heme and porphyrin metabolism

pathways was specific to the spleen and likely reflects increased

blood volume passing through this organ associated with portal

hypertension.

Up-regulation of extracellular matrix components, as well as

the profibrotic cytokines TGF-b, EDN1 and PDGF-b, was

enhanced in the liver but remained unchanged in the spleen

reflecting the development of fibrosis [9]. Similarly, there was

liver specific down-regulation of many components of several

metabolic pathways including, but not restricted to, metabolism

of xenobiotics, bile acid biosynthesis, fatty acid metabolism and

glutathione metabolism [9]. As discussed previously [9], these

results are consistent with studies of the metabolic function of the

liver following schistosome infection and are indicative of

decreased liver function associated with hepatic injury

[29,30,31].

The most striking difference between the liver and spleen was

the contrasting expression of genes involved in cellular recruitment

Figure 4. Hierarchical clustering and prominent gene ontologies of genes differentially expressed in the spleen. Four distinct clusters
representing genes that were significantly down-regulated (cluster 1); up-regulated earlier (cluster 2), consistently up-regulated (cluster 3) and up-
regulated later (cluster 4) were identified by hierarchical clustering analysis. Prominent biological processes and molecular functions (gene
ontologies) associated with genes 2-fold or greater up- or down-regulated in each of these clusters and genes associated with these ontologies are
listed in the boxed text. Data are represented in heat map form where green represents down-regulated gene expression, red represents up-
regulated expression, with relatively unchanged expression coloured black.
doi:10.1371/journal.pntd.0000686.g004
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Figure 5. Contrasting expression of chemokines in the liver and spleen by microarray analysis. Comparison of spleen and liver
transcriptional profiles identified a number of chemokines with contrasting expression. A: Chemokines up-regulated in the liver and down-regulated
in the spleen during schistosome infection. B: Chemokines up-regulated in the liver and unchanged or below levels of detection in the spleen. C:
Chemokines up-regulated in both organs showed greater expression in the liver. Graphs represent average fold change relative to uninfected tissue
by microarray analysis. Dotted lines represent a 62 fold cut-off for biological significance. Expression values for the liver are derived from our
previous study of the transcriptional profile of the S. japonicum infected liver [9].
doi:10.1371/journal.pntd.0000686.g005
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(Figure 5). Several chemokines, including lymphoid homing and

T-cell chemokines (e.g. CXCL13, CCL19, CCL21a–c), were

significantly up-regulated in the liver [9] but down-regulated in

the spleen. Further, expression of eosinophil (CCL24), neutrophil

(CXCL1) and macrophage/monocyte (CCL6, CCL7, CXCL14)

chemokines and the cell adhesion molecules VCAM1, NCAM1,

PECAM1 was enhanced in the liver [9] but was unchanged or

undetectable in the spleen. The differential expression of these

genes likely contributes to the generation of a chemotactic

signalling gradient promoting the recruitment of effector cells,

including eosinophils, neutrophils and lymphocytes, to the liver

during infection leading to the development of granulomas and

fibrosis [9]. The observed loss of T- and B-cells from the spleen

after initial expansion at 4 weeks p.i. is, therefore, more likely due

to migration of these cells from this organ to the peripheral tissues

than cell death. Similar induction of CCL21, CXCL16, CXCL9

and CXCL13 in the liver in other models of hepatic disease

suggests that common mechanisms regulate the recruitment of

lymphocytes to the liver following inflammation [32,33,34].

Down-regulation of lymphoid homing chemokines in the spleen

has been implicated in alterations in lymphoid structure during

Leishmania infection [2], altered motility of dendritic cells and

lymphocytes following several viral infections [3], and with

decreased responsiveness to secondary infection following primary

infection with lymphocytic choriomeningitis virus (LCMV) or

Listeria monocytogenes [3]. The down-regulation of these chemokines

during S. japonicum infection may contribute to the significant

changes observed in the spleen during schistosome infection and

may go some way to explaining how schistosomes skew the

immune response to other infections.

Comparison of the expression profiles of the liver and spleen

clearly indicate that there is co-ordinated expression of

chemokines in these organs during S. japonicum infection. Up-

regulation of lymphocyte, eosinophil and monocyte chemokines

in the liver [9], and down-regulation of the same chemokines in

the spleen may contribute to the development of a chemotactic

signalling gradient that promotes recruitment of these cells to the

liver, thereby facilitating the development of granulomas and

fibrosis. Furthermore, the down-regulation of homeostatic

lymphoid chemokines, such as CXCL13 and CCL21, in the

spleen could lead to disruption of the splenic architecture and the

altered immune responses associated with schistosome infections.

Additionally, we observed up-regulation of the alternatively

activated macrophage marker Chi3l3 and the immunoregulatory

molecules ANXA1 and CAMP in the spleen. These results

suggest that the spleen may be an important site for the

regulation of S. japonicum-induced immune responses. Together

these data highlight the importance of the spleen to the

immunopathogenesis of schistosomiasis and significantly enhance

our understanding of the chemokine signalling pathways

regulating the development of schistosome-induced granulomas

and fibrosis.

Supporting Information

Dataset S1 Gene lists generated by filtering and hierarchical

clustering of microarray data from the spleen. Accession numbers,

gene symbols and descriptions were not available for some genes.

Found at: doi:10.1371/journal.pntd.0000686.s001 (4.72 MB

XLS)

Dataset S2 Gene lists generated by comparison of microarray

data from the liver and spleen. - designates not detected. Accession

numbers, gene symbols and descriptions were not available for

some genes.

Found at: doi:10.1371/journal.pntd.0000686.s002 (1.03 MB

XLS)

Figure S1 Real-time PCR correlated well with microarray

results. Real-time PCR on a subset of genes expressed in the spleen

correlated well with the results of microarray analyses (Spearman’s

correlation r = 0.93, p,0.0001, n = 36). Expression of genes

analysed by real-time PCR is depicted in the line graphs and is

displayed as mean fold change 61SD relative to uninfected

controls. Colour bars are representative of corresponding micro-

array data where down-regulation is coloured green, up-regulated

expression is coloured red and relatively unchanged expression is

coloured black. *p#0.05, **p#0.01, ***p#0.001 in comparison to

uninfected spleen unless otherwise indicated.

Found at: doi:10.1371/journal.pntd.0000686.s003 (0.27 MB

TIF)

Table S1 Primers used for real-time PCR confirmation of

microarray results. Primer source: 1. Chiu B-C, et al.(2003) Am J

Respir Cell Mol Biol 29: 106–116. 2. Hesse M, et al. (2004) J

Immunol 172: 3157–3166. 3. Amante FH, et al. (2007) Am J

Pathol 171: 548–559.

Found at: doi:10.1371/journal.pntd.0000686.s004 (0.04 MB

DOC)

Table S2 Top five functional annotation groups of spleen

hierarchical clusters. The top five functional annotation groups

and unique biological processes/molecular functions with statisti-

cal significance for each spleen hierarchical cluster are listed

(p#0.05). Functional annotation groups are ranked on the basis of

enrichment score biological processes/molecular functions within

these groups are ranked on the basis of their p-value (Modified

Fischer’s exact test, EASE score).

Found at: doi:10.1371/journal.pntd.0000686.s005 (0.14 MB

DOC)

Table S3 Accession numbers and Illumina Probe IDs of genes of

interest. Accession numbers and descriptions were not available

for some genes.

Found at: doi:10.1371/journal.pntd.0000686.s006 (0.12 MB

DOC)

Table S4 Key genes and functional categories showing differ-

ential expression in the liver and spleen. +Expression values were

generated from microarray data and are displayed as a ratio

relative to un-infected mice; *Expression values represent the

mean of two or more probes. #Expression values for the liver are

derived from our previous study of the transcriptional profile of the

S. japonicum infected liver (Burke et al. 2009 PLoS NTD, In Press).

- not detected.

Found at: doi:10.1371/journal.pntd.0000686.s007 (0.38 MB

DOC)
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