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Abstract

Background: The eukaryotic cytosolic chaperonin CCT is a hetero-oligomeric complex formed by two rings connected back-
to-back, each composed of eight distinct subunits (CCTa to CCTf). CCT complex mediates the folding, of a wide range of
newly synthesised proteins including tubulin (a, b and c) and actin, as quantitatively major substrates.

Methodology/Principal Findings: We disrupted the genes encoding CCTa and CCTd subunits in the ciliate Tetrahymena.
Cells lacking the zygotic expression of either CCTa or CCTd showed a loss of cell body microtubules, failed to assemble new
cilia and died within 2 cell cycles. We also show that loss of CCT subunit activity leads to axoneme shortening and splaying
of tips of axonemal microtubules. An epitope-tagged CCTa rescued the gene knockout phenotype and localized primarily
to the tips of cilia. A mutation in CCTa, G346E, at a residue also present in the related protein implicated in the Bardet Biedel
Syndrome, BBS6, also caused defects in cilia and impaired CCTa localization in cilia.

Conclusions/Significance: Our results demonstrate that the CCT subunits are essential and required for ciliary assembly and
maintenance of axoneme structure, especially at the tips of cilia.
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Introduction

Cilia are conserved organelles with important sensory and motile

functions. Defects in cilia have been associated with a large number

of human diseases, collectively known as ciliopathies. Cilia have a

microtubule-based axoneme that is anchored to the basal body. The

axoneme is typically composed of 9 doublet-microtubules arranged

as a peripheral ring. Motile cilia usually have a pair of singlet

microtubules at the center of the axoneme. The assembly and

maintenance of cilia is dependent on bidirectional trafficking of

protein complexes between the cell basal body and the cilia tip, the

activity known as intraflagellar transport (IFT) [1]. Kinesin-2

motors move IFT cargo from the cell body to the tip of cilia, while

recycled components are returned to the basal body by cytoplasmic

dynein 1b motors [2,3,4,5].

The presence of different classes of molecular chaperones has

been reported in cilia of diverse organisms. In Chlamydomonas,

Hsp40 and Hsp70 were found in flagella [6,7], Hsp40 and the

CCTa/TCP-1 subunit of the cytosolic chaperonin CCT were

found in cilia of sea urchin embryos [8,9] and Hsp70 and Hsp90

were detected in cilia of Tetrahymena [10]. These chaperones could

have a role in ensuring that the ciliary proteins preserve their

native functional conformation during and after ciliogenesis,

possibly by participating in the assembly or maintenance of large

ciliary protein complexes. In fact, Hsp40 is a component of the

radial spoke complex in sperm flagella of the ascidian Ciona

intestinalis [11] and flagella of Chlamydomonas, where it may be

involved in interactions between the radial spoke and central

microtubules [12]. A mutation in BBS6, a protein related to

CCTa, causes the Bardel Biedl Syndrome, a disease associated

with defects in the function of cilia [13].

We have reported that in Tetrahymena, the expression of CCT

chaperonin subunit genes is up-regulated during cilia regeneration

following deciliation [14,15] and CCTa, d, e and g subunits localize

to growing and full-length cilia of Tetrahymena [16]. CCT is a hetero-

oligomeric complex formed by two rings connected back-to-back,

each composed of eight distinct subunits (CCTa to CCTf) [17].

Each CCT subunit consists of three domains: an equatorial domain

containing an ATP-binding site, an apical domain that interacts

with the target protein, and the intermediate domain that connects

the apical and equatorial domain. The apical domain contains a

helical protrusion [18], which is involved in opening and closing the

central cavity of the chaperonin. The full size CCT complex

mediates the folding, driven by ATP binding and hydrolysis, of a
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wide range of newly synthesised proteins including tubulin (a, b and

c) [19,20,21] and actin [22,23] as quantitatively major substrates.

In this study, we investigate the role of CCTa and CCTd
subunits in Tetrahymena. We show that both CCTa and CCTd
subunits are required for survival of Tetrahymena. Cells lacking

expression of CCT subunits, before their death, show dramatic

alterations in the microtubule cytoskeleton and cilia. An epitope-

tagged CCTa rescued the gene knockout phenotype and revealed

that CCTa is a ciliary protein that is important for the

maintenance of cilia tip integrity. We also show that a mutation

of a conserved amino acid in CCTa that is also present in BBS6, a

cilia-specific CCTa-related protein, affects the cytoskeleton and

cilia. Collectively, our data show that CCT components are

essential in a ciliated cell type, and that the referred CCT subunits

play specific roles in ciliary assembly and maintenance.

Results

CCTa and CCTd are essential in Tetrahymena
Tetrahymena thermophila cells, like most ciliates, have two nuclei, the

germline, transcriptionally silent micronucleus (MIC) and the

somatic, transcriptionally active macronucleus (MAC). Using

DNA homologous recombination, we constructed heterokaryon

strains with disruptions of either CCTa or CCTd genes only in the

micronucleus using a neo2 gene cassette that confers resistance to

paromomycin [24]. To study the consequences of gene disruptions,

we allowed pairs of knockout heterokaryons to mate and produce

progeny cells with new macronuclei developed from the zygotic

micronuclei and expressing the gene knockout phenotype. While

control wildtype strain matings produced viable conjugation

progeny at the frequency of 95% (n = 200), no viable paromomy-

cin-resistant progeny was recovered from matings of CCTa or

CCTd knockout heterokaryons (n = 180 and 107 respectively).

Inspection of drop cultures containing isolated pairs of mating CCT

(a or d) heterokaryons revealed exconjugant cells that separated but

failed to give rise to vigorous clones. These non-viable exconjugants

were assumed to be progeny of mating heterokaryons that were

expressing the CCT subunit knockout phenotypes. Typically these

non-viable exconjugants presumably lacking a zygotic expression of

either CCTa or CCTd died after ,50 hpm (hr post mixing of

heterokaryons). Within this time, most of the CCTa and CCTd
heterokaryon progeny failed to divide even once and about 20%

completed a single cell division. The progeny that had divided often

produced two daughter cells unequal in size (data not shown). While

at 26 hpm, progeny cells of a control cross had a nuclear

organization typical of a vegetative cell (1 MIC and 1 MAC) most

of the CCT heterokaryon progeny had the pattern of DNA typical

of an early exconjugant cell (two MACs and one or two MICs,

Figure 1E and L compare with wildtype in D), consistent with an

arrest in cell differentiation at an early post-conjugation stage and

failure to enter a vegetative cell cycle.

Similar observations were made for CCT knockout heterokary-

on progeny that were isolated into MEPP medium that supports

growth of cells lacking either a functional oral apparatus [25] or

cilia [26,27]. Thus the lethality of CCT heterokaryon progeny is

not caused by loss-of-function of cilia or oral apparatus, both

organelle types required for phagocytosis. All these observations

indicate that both CCTa and CCTd genes are essential.

Cells lacking zygotic CCTap or CCTdp loose cytoplasmic
and cortical microtubules and have structural defects in
axonemes

Next we analyzed the morphology of the non-viable progeny of

mating CCT heterokaryons before their death. These cells were

designated as CCTa-KO and CCTd-KO. By immunofluores-

cence of the CCTa-KO and CCTd-KO cells with antibodies that

recognize respectively CCTa and CCTd proteins, we observed a

reduction of signal in the KO cells (Figure 2A–D). Typically

CCTa-KO and CCTd-KO cells were smaller and more rounded

as compared to wildtype (Figure 1G, J, compare with A, C). Both

the CCTa-KO and CCTd-KO cells showed progressive loss of

microtubules in the cell body (Figure 1E and J). At 26 hpm, in the

CCTa-KO cells, the cortical longitudinal bundles (LM) and

transverse microtubule bundles (TM) were less apparent based on

immunofluorescence with an antibody against a-tubulin

(Figure 1E–H, compare with A to C). It appears that in CCTa-

KO cells, LMs are thinner, and TMs are shorter, suggesting

shortening or loss of individual microtubules within the cortical

bundles (Figure 1E–H, compare with A–C). At 36 hpm the LMs

and TMs were no longer detectable in CCT-KO cells (data not

shown). The intracytoplasmic microtubules were nearly complete-

ly absent at 26 hpm (Figure 1L, compare to 1D). The CCTa-KO

and CCTd-KO cells had fewer cilia, especially in the mid and

posterior region of the cell (Figure 1G and J). In a normal cell, new

cilia are inserted primarily within the mid and posterior segment of

the cell. Tetrahymena cells assemble new basal bodies in an

asymmetric pattern, primarily within the central and posterior

region of the cell. The fact that the density of cilia decreases in the

central and posterior portion of the cell indicates that CCT KO

cells are unable to assemble new cilia but are able, at least for

sometime, to maintain pre-existing cilia (that were assembled

before the KO induction). In the CCT KO cells, the basal body

rows revealed by anti-centrin antibodies were often distorted and

tended to be further apart (Figure 1P–R compare with O). Gaps in

the rows of basal bodies were apparent suggesting that the

assembly of new basal bodies is also affected by CCT depletion

(Figure 1R).

Cilia in the KO cells appeared shorter as compared to wildtype

(exconjugant) cells. In the CCTd-KO cells at 26 hpm, cilia had an

average length of 5.0060.56 mm, (n = 196) as compared to

6.7760.59 mm in the wildtype (n = 175). Shorther cilia were also

detected in CCTa-KO at 26 hpm, with an average length of

5.2460.42 mm (n = 35), with similar values at 32 hpm

(5.0160.43 mm (n = 109)). These differences are statistically

significant (t-test; p,0.001) (see graph Figure S1A). Strikingly,

many cilia in CCT-KO cells had splayed tips (31% (n = 519) and

58% (n = 775) of CCTa-KO and CCTd-KO cilia, respectively).

The splayed segments measured on average ,0.8 mm.

Since one of the major substrates of the cytosolic chaperonin

CCT is tubulin, we compared the phenotypes of CCTa- and

CCTd-KO cells with the phenotype of cells entirely lacking

zygotic expression of conventional a- and b-tubulin (products of

ATU1, BTU1 and BTU2 genes). To this end, we mated

heterokaryons that carry in their MICs disruptions of all

conventional a-tubulin and b-tubulin genes, namely ATU1,

BTU1 and BTU2 (J.G., unpublished results). As expected, no

viable paromomycin-resistant progeny was obtained from crosses

of tubulin knockout heterokaryons (n = 120). Typically exconju-

gants separated but failed to establish viable clones and died before

48 hpm. At ,26 hpm, the tubulin-KO cells had a spherical shape

and lacked most of LMs, TMs, and intracytoplasmic microtubules

(Figure 1S, T and V) and had a dramatically reduced number of

cilia. Despite the rapid loss of microtubular structures, some

tubulin-KO exconjugants had divided once, in most cases

asymmetrically. The tubulin-KO cells had fewer cilia (consistent

with a failure of assembly of new units) and among the remaining

(pre-exisiting) cilia 67% (n = 426) had splayed tips (Figure 1U and

inset in V). The length of pre-existing cilia was slightly reduced at
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26 hpm (5.8760.54 mm (n = 102 cilia), with similar values at

36 hpm (5.6560.47 mm (n = 112), (compare to wildtype cilia

length, 6.7760.59 mm (n = 175)). The differences are statistically

significant (t-test; p,0.001) (Figure S1A). Thus, the consequences

of loss of CCT subunits and loss of tubulin are similar except that

the length of cilia is slightly more affected in the CCTd-KO cells.

These data argue that to a large extent, the consequences of loss of

CCT activity could be mediated by lack of proper folding of cilia-

destined tubulin by CCT.

CCTa and CCTd depleted cells are unable to reciliate
The capacity of the CCTa and CCTd-KO cells to reciliate after

deciliation was investigated using a deciliation protocol adapted to

a small number of cells (see Materials and Methods S1 and

References S1). We have used cells at ,20 h of KO. The same

procedure was performed in WT cells as control. Contrarily to

WT cells, the CCTa and CCTd-KO cells after 20 h of KO

induction are unable to recover their cilia. Very few KO cells were

able to reciliate, and in such cases, there was only a partial

reciliation, with a random distribution of the new cilia (Figure S2)

(data not shown for CCTa). This observation confirms the CCTa
and CCTd are required for assembly of new cilia.

HA epitope-tagged CCTap rescues CCTa-KO cells and
localizes to cilia

To address the specificity of the observed CCT gene knockout

phenotypes, we tested whether the progeny of mating CCT

knockout heterokaryons cells could be rescued by reintroduction of

a wildtype CCT gene fragment encompassing the disrupted

region. To this end, we mated pairs of CCT heterokaryons,

subjected them to biolistic bombardment using a corresponding

CCT gene fragment that was designed to replace the disrupted

CCT gene sequence by DNA homologous recombination (as

described in Material and Methods), and selected progeny cells

with paromomycin, to which resistance was conferred by the neo2

cassette. In principle, we attempted to select surviving progeny

that had replaced some of the disrupted copies of a CCT gene with

wildtype copies in the new MAC. After biolistic transformation,

for both CCTa and CCTd mating heterokaryons, ,97% of the

wells (n = 480 corresponding to 107 mating cells) contained drug-

resistant growing cells while no such wells appeared in the same

number of selected mock-transformed CCT mating heterokary-

ons. The presence of the CCT transgenes in the rescued cells was

confirmed by PCR (Figure S3). Thus, we confirm that the lethality

of CCT gene knockout mating heterokaryons is caused by

disruption of CCT loci.

To test whether the lethality in progeny of CCT knockout

heterokaryons is caused by a loss of the CCT subunit protein, and

not solely by gene targeting, we attempted to rescue the mating

CCTa heterokaryons by biolistic bombardment with a fragment

that was designed to insert a gene encoding an HA-tagged CCTa
under the control of the cadmium-dependent MTT1 promoter

into the non-essential BTU1 locus [28]. Rescues were observed at

the frequency of ,92% of the wells (n = 480 corresponding to 107

mating cells). The genomic DNA extracted from CCTa-HA

rescued cells was found to contain the transgene fragment (Figure

S4A and B). Using antibodies against the HA and CCTa -subunit

we also confirmed by western blot that the rescued cells expressed

CCTa p-HA protein (Figure 2E). As expected for a MTT1-driven

transgene, the levels of CCTa-HA protein were increased with

either the higher dose or longer exposure to cadmium (Figure 2E).

Thus, we have successfully expressed a MTT1-driven copy of

CCTa gene in cells that lack the endogenous CCTa gene.

Interestingly, polyclonal antibodies that were generated against a

CCTa peptide, reacted weakly with the (more slowly migrating)

transgene protein in rescued cells as compared to wildtype protein

in control cells (Figure 2E). Since the antibodies were generated

against the last 12 amino acids of CCTa [29], addition of HA to

the C-terminus could have a steric effect on the epitopes of the

polyclonal antibodies. In absence of exogenous cadmium,

CCTap-HA was localized primarily to the cell body and was

not detected in cilia (Figure 2H compare with negative control in

2G). When cadmium chloride (2.5 mg/ml) was added to the

medium for 76 h, a stronger signal of CCTap-HA was detected

and the protein was prominently present in cilia and accumulated

at the ciliary tips (Figure 2I and J). Next, we investigated the

consequences of lowering the levels of CCTap-HA expression, by

growing rescued cells without exogenous cadmium (in an SPP

medium from which the residual cadmium ions were removed by

exposure to chelex-100 resin referred as SPPCT, see Material and

Methods). Wildtype cells had similar growth rates in SPPCT

supplement with exogenous cadmium to the growth shown in

SPPCT without addition of cadmium. On the other hand, the

rescued CCTa-HA cells had a growth rate slightly lower when

grown in SPPCT without cadmium than in SPPCT complement-

ed with cadmium (data not shown). It is worth to mention that

while lack of exogenous cadmium has resulted in a dramatic

decrease in the levels of CCTap-HA, small amount of the protein

was still present, likely because the MTT1 promoter has a non-

induced basal level of expression, mimicking a knockdown of

CCTa (Figure 2F). Strikingly, cilia were shorter in cells with

reduced levels of CCTap-HA (grown without cadmium), than in

wildtype cells grown under the same conditions (Figure S1B).

Furthermore, based on immunofluorescence with an antibody

against tubulin, these cells have an increased number of cilia with

splayed tips or abnormal spotted tubulin staining pattern at the

tips (Figure 2L and M, compare with O). Also, these phenotypes

were not observed in wildtype cells growing in SPPCT (data not

shown).

To conclude, we observed that CCTap-HA, when moderately

overexpressed localizes to cilia and is enriched at the tips. These

data are consistent with our previous observations [16] that CCTa
is a ciliary protein. This localization was also confirmed by

isolation and fractionation analysis of cilia obtained from wildtype

Figure 1. CCT subunits are required for assembly of axonemal, cortical and cell body microtubules. Confocal immunofluorescence of a-
tubulin (A to L and S to V) and centrin (O to R) in wildtype, CCTa-KO, CCTd-KO and tubulin-KO Tetrahymena. In some images, DNA is stained with
TO-PRO-3. (A–D) Wildtype cells. A higher magnification of the cortical region boxed in A is shown in B; In panel C, the inset shows a higher
magnification of a group of cilia of the boxed area. (E–I) CCTa-KO cells 26 hpm. F represents a higher magnification of a boxed region of the cell
cortex shown in E. H and I are higher magnifications of boxed regions shown in G. Arrowheads in F and H show either shortening or absent TMs. (J–
M) CCTd-KO cells 26 hpm. K shows a higher magnification of an area boxed in J. Arrowheads in K show shortening TM bundles. (M) A differential
interference image of a portion of CCTd-KO cell. The arrow points at a branched ciliary tip. (O–Q) Anti-centrin staining of respectively WT, CCTa-KO
and CCTd-KO showing disorganization of ciliary rows in CCT depleted cells; (Q) shows a higher magnification of a boxed region from cell shown in
(P), depleted from CCTa-KO, where it is observed a variation in the distance between two consecutive basal bodies and presence of gaps reflecting
absence of basal bodies in the row. (S–V) Tubulin-KO cells 26 hpm stained with antibody directed to a-tubulin. In (U), higher magnification of area
boxed in (T), and inset in V arrows point at branched ciliary tips. Scale bar represents 10 mm except if mentioned differently.
doi:10.1371/journal.pone.0010704.g001
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cells (see Materials and Methods S2 and References S2). The

serum antibody anti CCTa used in these experiments recognized

specifically one band in both axonemal and membranar fractions

(Figure S5A). To assess the effectiveness of fractionation, we re-

probed the same blot with anti a-tubulin antibody. As expected,

tubulin, the major protein of the axonemes was weakly detected in

the membrane fraction (Figure S5A). The specificity of the

antibody was tested by peptide pre-absorption to the antibody as

shown in Figure S5B. Moreover, our results show that the

depletion of CCTa affects the structure of axoneme tips.

The G346E mutation in Tetrahymena CCTap leads to a
temperature-sensitive growth and affects the function of
oral cilia

We took advantage of the availability of CCTa knockout

heterokaryons to introduce a mutation into CCTap that could

affect cilia. Kim and colleagues [13] showed that BBS6, a protein

whose mutation causes a ciliopathy, the Bardet-Biedl Syndrome,

has amino acid sequence homology with CCTa. The genome of

Tetrahymena and many other non-vertebrate eukaryotes lacks an

obvious BBS6 sequence. These observations suggest that BBS6 is a

vertebrate-specific variant of CCTa that has evolved cilia-specific

functions. Consequently, organisms like Tetrahymena that lack BBS6,

could be using CCTa for ciliary functions, as is supported by our

data so far. To identify amino acids of CCTa that could be

important in the context of cilia, we produced a multiple sequence

alignment of BBS6 and CCTa proteins from a few ciliated

organisms. Overall, the BBS6 and CCTa sequences are 19%

identical (30% of similar) (Figure S6A). We examined amino acids

that represent the apical domain of CCTa and could contribute to

the substrate-binding site [30]. Within this domain, one amino acid

is conserved between BBS6 and CCTa of diverse organisms: glycine

346 from T. thermophila CCTa. Importantly, in humans, a mutation

at the corresponding position, G345E, causes Bardet-Biedl

Syndrome [13]. Since the mutation occurs in the CCTa apical

domain (Figure S6B) we hypothesised that the mutation G346E

could interfere in the interaction between CCTa and folded

substrates relevant to cilia assembly/maintenance. To investigate

the impact of the mutation in the native functional structure of the

CCTa protein, we predicted with the ProModII program [31] and

compared the secondary structure of the wildtype and mutated

G346E CCTa apical domain (Figure S6C). The model of the partial

CCTa structure obtained was based on the crystal structure of the

subunit a of the chaperonin thermosome from Thermoplasma

acidophilum [32]. We observed that the replacement of the glycine

for a glutamate has led to disruption/disappearance of several a-

sheets (see arrow in Figure S6C) which might interfere with the

flexibility of this domain that is required for folding. Indeed, the

apical domain contains a helical protrusion [18], which is involved

in opening and closing the central cavity of the chaperonin. The

remnant of the secondary structure of this apical domain did not

suffer any change with the referred substitution.

We used a fragment encoding a CCTa with the ciliopathy-

based mutation, G346E, in an attempt to rescue mating CCTa
heterokaryons. Besides the single mutation, the fragment encoded

an otherwise wildtype sequence and was intended to replace the

disrupted sequence at the native locus. Rescued cells were isolated,

indicating that G346E is not a lethal mutation. The genomic DNA

of these transformants was analyzed by PCR and sequenced,

revealing the presence of two products corresponding to the neo-

disrupted and the introduced G346E encoding CCTa allele

(Figure S4C).

The G346E mutant cells grew extremely slowly on the regular

SPP medium. Furthermore, the CCTa-G346E cells were

temperature-sensitive, growing more slowly at 30uC as compared

to 16uC. At 16uC, the G346E population contained mostly

normal-looking cells in respect to size and shape, but some of these

cells displayed erratic movement patterns including prolonged

periods of spinning around the antero-posterior axis (results not

shown). At 30uC, 50% of G436E cells had a normal shape

(average dimensions 25647 mm, n = 488), 27% were extremely

elongated (average dimensions 69650 mm, n = 260), 11% had a

drop-like shape (n = 105) and 13% were very large so called

monster cells (90660 mm to 50645 mm, n = 127).

We noticed that these cells grew better in MEPP media that

stimulates the uptake of nutrients by pathways that do not require

phagocytosis in the oral apparatus [25]. We tested their capacity of

performing phagocytosis vacuoles adding Indian ink to the

medium and quantified the cells that presented food vacuoles

containing ink (Figure 3A–D). Ninety four percent of G436E cells

(n = 1448) were unable to uptake ink. Thus, oral cilia may not be

fully functional in the G436E strain. Noticeable, the 6% of the

mutant cells that were able to ingest ink, and that were designated

by ‘‘normal looking cells’’ started to prevail in the culture when

mutant cells grew at 30uC for long periods (several weeks). This led

us to investigate if the introduced mutation in the CCTa coding

region gene was still present in these cells. By sequencing analysis

we confirmed that the mutation G346E continued to be present in

the CCTa gene sequence of these cells, being the only allelic form

of CCTa found. Indeed, the mutation G346E was inserted in the

region of CCTa coding region that have been removed when

constructing the KO heterokaryons strains. Therefore, since these

were the cells that were rescued by the introduction of the G346E

mutated gene, the observed recovered phenotype could never be a

consequence of a recombination event between the wild type

CCTa gene and the mutated one. Most probably, these cells

constitute a suppressor strain where a second mutation occurred

Figure 2. CCTap-HA rescues CCTa-KO, localizes in cilia and its abundance affects cilia tips. A–D) Confocal immunofluorescence with
antibody directed to CCTa (A and B) and CCTd (C and D) in wildtype, CCTa-KO and CCTd-KO Tetrahymena cells showing that depletion of CCT genes
reduces CCT levels in cell body and cilia. All images were taken with exactly under the same exposure conditions. (E) Western blots of total proteins
obtained from wildtype (WT) and rescued CCTa-KO cells expressing CCTap-HA under cadmium-inducible promoter probed either with anti-HA, anti-
CCTa (affinity-purified) antibodies, or the anti-a-tubulin 12G10 antibody. Lane 1 and 3- cells grown in SPPA with 1.5 mg/ml of cadmium chloride for 24
and 48 h, respectively; lane 2 and 4- cells grown in SPPA with 2.5 mg/ml of cadmium chloride for 24 and 48 h, respectively. (F) Western blots of total
proteins of WT and rescued CCTap-HA cells, grown in SPPCT medium in absence (2) or presence (+) of cadmium (Cd) probed with anti-HA and anti-
ribosomal S6 antibodies. (G–O) Epitope-tagged CCTap localizes to cilia and its levels affect the integrity of ciliary tips. Tetrahymena CCTa-KO cells
were rescued by introduction of a transgene expressing CCTap-HA under MTT1 promoter, grown in the absence or presence of cadmium, and
processed for immunofluorescence using anti-HA (G to J) and anti-a-tubulin (12G10) (K to O) antibodies. (G) A wildtype cell stained with anti-HA
antibody. (H–J) A CCTap-HA-expressing rescued cells stained with anti-HA antibodies and grown in SPPCT medium for 76 h, without cadmium (H)
and with 2.5 mg/ml of cadmium (I and J); J shows an internal optical section of the cell shown in I. (K–O) CCTap-HA rescued cells stained by anti-a-
tubulin antibody that were grown in SPPCT medium for 76 hr either without cadmium (K–M), or with 2.5 mg/ml of cadmium (N–O). (L and M) Higher
magnification of ciliary regions of cells grown in SPPCT without cadmium to show the abnormal cilia tip. (O) A higher magnification of a boxed region
from cell shown in (N). Scale bar = 10 mm, except if mentioned differently.
doi:10.1371/journal.pone.0010704.g002
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restoring the original phenotype, by reverting the effect of

CCTaG346E mutation, and are under natural selection when

growth occur over long periods.

The microtubule cytoskeleton of CCTa-mutG346E-carrying

cells was analyzed by immunofluorescence using an antibody

against a-tubulin (Figure 4). Mutant cells frequently contained

multiple sets of nuclei and multiple cortical domains, e.g oral

apparatus, and constitute the typically designated monster cells

(Figure 4B and C compare with wildtype in A), consistent with

failures to undergo cytokinesis. However the normal-looking cells

were able to divide completely (data not shown). The evident

defects in completing cytokinesis and their multiple attempts to

divide led mutant cells to exhibit dramatic alterations in the

organization of ciliary rows as confirmed using an antibody against

centrin (Figure 4F and G, compare with D and E). In contrast to

wildtype cilia (Figure 4H) that have a spear-like staining of tubulin

at the tip, the mutant cells showed an abnormal staining at the

most distal part revealed as a strong spotted staining of tubulin

(Figure 4I to K). Since low levels of CCTa lead to abnormalities of

cilia tips (Figure 2L and M) and mutant cells also have abnormal

tips we decided to investigate if the mutated form of CCTa was

targeted to cilia. We observed that the antibody against CCTa did

not give any ciliary staining in the mutant cells, even when the

body of the cell is clearly labeled (Figure 3 F–H compare with E).

Taken together these data clearly show that the CCTa mutation

G346E affects CCTa cilia localization which in turns affects cilia

tips. The observed effect of the CCTa mutation G346E supports

the previous evidences shown in this paper that CCTa is required

for cilia structure maintenance, particularly at the tip level.

Discussion

We have investigated the function of CCTa and CCTd subunits

of the eukaryotic cytosolic chaperonin in T. thermophila. To our

knowledge, this is the first functional study of CCT subunits in a

ciliated model. We show that the CCTa and CCTd genes are

essential in T. thermophila, as shown earlier in yeast [33,34]. The

essential function of CCT is not unexpected since the CCT

complex participates in the folding of essential cytoskeletal proteins

(actin and tubulin). Also CCT may mediate the folding of 1000–

2000 other proteins that play diverse and critical functions in the

cell, as, for example, cell cycle progression, chromatin remodeling,

assembly of nuclear pore complex and protein degradation

[35,36].

The phenotypes of cells lacking either CCT subunits or tubulin

are quite similar: these cells fail to grow within 1–2 generations,

loose cytoplasmic and cortical microtubules, fail to assemble new

cilia and have defects at the tips of microtubules in pre-existing

axonemes. Thus, it is possible that to a large extent, the lethality

induced by CCT subunit loss-of-function is caused by failure to

fold tubulin. Consistently, in mammalian cultured cells, reduction

of CCT levels by 90% (due to siRNA-mediated knockdown)

strongly reduced the levels of total and newly synthesized a- and b-

tubulin [37]. The observed splayed tips of axonemal microtubules

could be explained by increased curvature of protofilaments that

depolymerize [38]. It is likely that tips of axonemes are unstable

due to lack of addition of new tubulin subunits. The simplest

explanation of our observations is that proteins destined to cilia,

including tubulin, requires folding by CCT.

Figure 3. Absence of CCTa in cilia of CCTaG346E mutant cells correlates with abnormal cilia tips and disfunction of oral cilia. (A to D)
Phagocytosis capacity of CCTa-mutG346E strain was evaluated by exposition of cells to Indian ink. (A) Wildtype cell used as control; (B to D) CCTa-
mutG346E cells exposed to Indian ink; (B) and (D) were unable to form food vacuoles and are void of black granules (n = 1448). (E to H) Tetrahymena
wildtype (E) and CCTaG346E mutant (F to H) cells were processed for immunofluorescence using CCTa (affinity-purified) antibodies. Wildtype cells
show CCTa localization in cilia while in cells carrying the CCTa-G346E mutation it is noticed the absence of CCTa signal in cilia. The images were taken
with exactly the same settings of gain and contrast. Scale bar = 10 mm.
doi:10.1371/journal.pone.0010704.g003
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Despite the fact that the phenotypes of CCT subunit loss-of-

function can be explained by the resulting failure in tubulin folding

in the cell body, published work and some data presented here

continue to support a role for CCT subunits inside cilia. Thus,

expression of CCT subunit genes is increased during cilia

regeneration in Tetrahymena [14] and Chlamydomonas [39]. While

this result alone could be explained by a cell body-restricted

activity whose levels increase during ciliation, localization and

proteomic studies have detected some CCT proteins in cilia and

centrioles/basal bodies in Tetrahymena, sea urchin embryos and

Chlamydomonas [9,16,40]. Here we present complementary data

showing that CCTa is present in both membrane/matrix and

axonemal fractions of cilia (see Figure S5), suggesting that the

protein is interacting with the axonemal microtubules while

circulating in the ciliary compartment. Also the CCT-depleted

cells show a reduced level of this protein in cilia (see Figure 2).

Moreover, we show that the epitope-tagged CCTa which rescues

the gene knockout lethal phenotype localizes to cilia. Thus, either

Figure 4. CCTa G346E mutation leads to severe cortical and ciliary defects. Indirect immunolocalization of tubulin and centrin in
Tetrahymena wildtype (WT) and CCTa-mutG346E cells. These cells were processed for confocal microscopy analysis using the antibodies directed to
a-tubulin (A to C and H to K) or centrin (D to G). DNA was stained with TO-PRO-3. (B) Merged image resulting from the superimposition of the image
obtained for TO-PRO-3 and the corresponding image for a-tubulin showing CCTa-mutG346E-containing cell with impaired cytokinesis; note that the
cell has already divided the MAC and has a double width comparing to wildtype cell (A). (C, F and G) CCTa-mutG346E cells with abnormal shape and
width; note the misalignment of ciliary rows in relation to the longitudinal axis; also note the intense and disorganized region of basal bodies above
the oral primordium (OP) (five-star); compare with OP found in WT cells (E). (H) Higher magnification of WT cilia tips (arrow). (I–K) Higher
magnification of cilia from CCTa-mutG346E cells to emphasize cilia defects. Scale bar = 10 mm except when indicated differently.
doi:10.1371/journal.pone.0010704.g004
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the folding activity of CCT chaperonin also occurs inside cilia, or

the CCT subunits found in the ciliary compartment have other

functions. Interestingly, other chaperones not required for tubulin

folding have been found inside cilia. For example, Hsp70 and

Hsp90 were found in Tetrahymena cilia [10] and Hsp70 was

detected in Chlamydomonas flagella and ciliated cells of sea urchin

embryos [7,41]. Hsp70 was identified as one of the components of

a 17S complex p28-containing inner dynein arms in Chlamydomonas

[42]. Noteworthy, both Hsp70 in Chlamydomonas [7], and the

epitope-tagged CCTa in Tetrahymena (this study) preferentially

localize to the tips of assembled cilia. Since ciliary proteins are

subjected to significant mechanical stress, their function may

require a relatively high level of turnover to replace damaged

proteins. Inside cilia, molecular chaperones could be involved in

quality control and turnover of ciliary proteins. In agreement with

this model, in Chlamydomonas, Hsp70 and Hsp40 affect flagellar

movement possibly by maintaining/transforming protein confor-

mations [12,43]. CCT could be required for the maintenance of

axonemal proteins subunits such as tubulin and ciliary actin

[44,45], or alternatively, for their assembly and/or turnover. This

hypothesis is supported by our observations that show both the

localization of overexpressed CCT at the tips of cilia, as well as

defects of ciliary tips in cells depleted in CCT activity.

Importantly, in Xenopus multi-ciliated cells, CCTa and CCTe
were localized in punctuate structures along the ciliary axonemes,

and their mislocalization induced by the depletion of an antagonist

of Wnt pathway (Fritz) has been correlated with fewer and shorter

cilia phenotype [46]. Moreover, the fact that CCTd-KO cells were

unable to reciliate indicates CCT activity is important for new

assembly of cilia, and this role may not be simply the cytosolic

supplier of tubulin. Interestingly, Tetrahymena cells grown in an

enriched medium and treated with cycloheximide can partially

regrow cilia after deciliation suggesting the presence of a pool of

stored tubulin [47] that cells could use for assembly of new cilia.

It is known the distal ends of axonemal microtubules are

covered by caps, structures that connect axonemal microtubules to

the cilia membrane [48,49]. These structures were suggested to be

involved in the assembly and maintenance of cilia, possibly

regulating the assembly and disassembly of axonemal microtubules

[50,51,52]. We can speculate that CCT subunits are associated

with either the distal ends of axonemal microtubules or with caps.

It is known that the CCT subunits c, a, f and d bind to in vitro

assembled microtubules, and thus behave like microtubule-

associated proteins (MAPs) [53]. Interestingly, CCT subunits bind

to F-actin and reduce the filament elongation rate at the plus end

in erythrocyte membrane cytoskeletons [54]. It is conceivable that

through the ability to behave as end-binding MAPs, CCT subunits

affect the assembly and turnover of tubulin on axonemal

microtubules known to occur preferentially at the distal end of

axonemes [55]. Additionally, CCTs may be involved in interac-

tions between microtubules and the cilia membrane at ciliary tips.

There is some evidence that CCT subunits interact with

membranes. The adrenal medullary form of CCT (chromobindin

A) efficiently binds to chromaffin granule membranes [56]. In

human erythrocytes, CCTa is translocated to the plasma

membrane following a heat-shock, interacting with the specialized

membrane skeleton [57].

We show that CCTa-G346E mutation impairs CCTap

localization at cilia tips and those cilia present an abnormal

pattern of staining with anti a-tubulin. These observations support

a model that this CCT subunit has a direct ciliary role. As the

evolutionary related BBS6 [13], CCTa may have a role in

assembly of some complexes at cilia tips. Nachury and

collaborators [58] have shown that the BBSome, an oligomeric

complex of BBS (BBS1-2, BBS4-5, BBS7-9) proteins, was directly

implicated in ciliogenesis by promoting vesicle trafficking to the

cilia membrane. Very recently, it was shown that BBS6 forms with

the other chaperonin-like BBS10 and BBS12 proteins (vertebrate-

specific BBS genes), a complex with CCT proteins (CCT1-5 and

CCT8) that is required for BBSome assembly [59]. Similarly to

Tetrahymena CCTa depleted cells and CCTa-G346E mutant where

oral and somatic cilia presented functional failures, the respiratory

tract cilia of BBS6-/- mice showed structural abnormalities

accompanied by functional defects affecting cilia tips and

reduction of ciliary beat frequency [60]. Therefore, is tempting

to suggest that in Tetrahymena CCT chaperonin does not require

BBS6 to interact with BBSome subunits since CCTa evolutionary

could be seen as its representative/substitute.

In conclusion, the construction of Tetrahymena CCTa- and

CCTd-KO strains has helped to define the role of CCT subunits

in a ciliated organism. We show in this study that CCT subunits

are needed for assembly of cilia and maintenance of axoneme

structure, especially at the tips of cilia.

Materials and Methods

Cells and culture conditions
Strains used in this study are listed in Table S1. Tetrahymena

cultures were grown in SPP [61] supplemented with an antibiotic/

antimycotic mixture at 100 U/ml penicillin, 100 mg/ml strepto-

mycin, and 0.25 mg/ml amphotericin B. In some experiments

we used the MEPP medium on which Tetrahymena cells grow in

the absence of phagocytosis [25]. The SPPCT (metal-depleted

medium; D. Dave and J.G, unpublished) was used in some

experiments. SPPCT was prepared by depleting the SPP

medium from ions with 5% of Chelex-100 beads (BioRad)

followed by complementation with trace metals (100-fold concen-

trated: 170 mM Co(NO3)2.6H2O; 0.71 M MnSO4.H2O; 6.8 M

CaCl2.2H2O; 9M EDTA ferric sodium salt (C10H12N2NaFeO8);

200 M MgSO4.7H2O).

To assay phagocytosis, India ink was added at a final

concentration of 1%, cells were incubated for 30 min and were

scored for the presence of food vacuoles (filled with black ink).

Germline disruption of CCTa or CCTd genes
To disrupt either CCTa or CCTd genes in the MIC, we

introduced neo2 cassette-interrupted targeting fragments into early

mating cells using a biolistic gun and produced heterozygous

transformants as described [62,63]. To prepare a targeting

plasmid for disruption of the CCTa gene, a ,1.6-kb genomic

fragment that included ,400-bp of the 59UTR plus the first 1.2-

kb of the coding region of CCTa (including the translation

initiation codon), was amplified with primers Alf-5F and Alf-5R

containing restriction sites for SacII and BamHI respectively

(primers Alf-5F:59-TCCCCGCGGATGAATGAAAGAGTGA-

GATG-39 and Alf-5R:59-CGCGGATCCTTCAACAGCATCA-

ACAACGA-39). This fragment was cloned into the plasmid p4T2-

1 [24], a neo2 cassette plasmid. The resulting plasmid was digested

with ClaI and XhoI and used to insert a ,1.2-kb of 39 UTR of

CCTa, with the last 813-bp of genomic fragment of CCTa,

including the codon stop. This fragment was amplified with the

primers Alf-3F and Alf-3R containing the restriction site of ClaI

and XhoI respectively in their flanking regions, (primers Alf-3F:59-

CCATCGATGAATGTGCTGAAGTTTACGA-39 and Alf-3R:

59-CGGCTCGAGCCCATTCTACATCTTATCC -39), to create

the plasmid pNeo2CCTa.

To prepare a plasmid for the disruption of the CCTd gene, a

262-bp of 59UTR, with the initial ,1.6-kb genomic fragment of
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CCTd including the first codon, was amplified with addition of

SacII and BamHI sites in the primers respectively (primers Delt-

5F:59-TCCCCGCGGTATGAATTGTTTTGAAGTGT-39 and

Delt-5R: 59- CGCGGATCCTCAAT- CAATTCAGTGTCTTC-

39). This fragment was cloned into p4T2-1 using SacII and BamHI

sites. The resulting plasmid was digested with ClaI and XhoI and

used to insert a ,1.5-kb of 39 UTR of CCTd, with the last 364-bp

of the genomic fragment of CCTd, including the stop codon. This

fragment was amplified with the primers containing the restriction

site of ClaI and XhoI respectively in their flanking regions, (primers

Delt-3F: 59-CCATCGATGACTAG- AGAAATGAAGGGTGTT-

39 and Delt-3R: 59-CGGCTCGAGTAAGAAGACTGTTGA-

TACCG-39), to create pNeo2CCTd.

For germline targeting, each disruption plasmid (pNeo2CCTa
and pNeo2CCTd) was digested with SacII and XhoI and used to

transform mating CU428.1 and B2086.1 strains by biolistic

bombardment. For each transformation, approximately 10 mg of

DNA was used to coat gold bombardment particles of 0.6 mm in

size (Bio-Rad). Gene replacements mediated by these targeting

fragments were designed to remove ,800-bp of regions encoding

highly conserved domains of the CCTa and CCTd proteins.

Heterokaryons were generated by bringing the micronucleus to

homozygosity using a star cross while allowing the disrupted alleles

to assort from the macronucleus [62].

Rescues of mating CCT knockout heterokaryons with
tagged and mutated CCT-encoding transgenes

To test whether the lethality associated with disruption of the

CCTa and CCTd is caused by loss-of-function of these genes, we

attempted to rescue mating knockout heterokaryon cells with

corresponding fragments of DNA containing the coding sequence

of CCTa and CCTd genes, respectively. The genomic fragment of

CCTa gene was obtained by PCR with the primers Alf-5F: 59-

TCCCCGCGGATGAATGAAAGAGTGAGATG-39 and Alf-

3R: 59-CGGCTCGAGCCCATTCTACATCTTATCC -39, and

cloned into T-Vector (Promega). In the case of the CCTd gene,

the fragment to clone was amplified with the primers Delt-5F (59-

TCCCCGCGGTATGAATTGTTTTGAAGTGT-39) and Delt-

3R (59- CGGCTCGAGTAAG- AAGACTGTTGATACCG -39)

and digested after with SacI and XhoI enzymes for biolistic

transformation.

To create the CCTa G346E mutant strain we performed a

somatic rescue transformation of CCTa-KO cells with mutated

CCTa gene fragment obtained by site-directed mutagenesis [64]

with an oligonucleotide: 59-GAAGCTTCCTATCTAGAA-

GAAT- GTGCTGAAGTT-39. In all the cases the biolistic

transformation and selection of cells were performed as already

described [65,66]. The presence of the desired mutation in the

CCTa gene of the transformed and rescued CCTa-KO cells was

confirmed by PCR, using standard conditions, and analysis of the

pattern obtained by restriction enzyme hydrolysis of the PCR

products. It was also confirmed by sequencing the entire CCTa
gene that no other modification was present.

To express CCTa-HA protein at levels comparable to

physiological conditions, we rescued mating CCTa heterokaryon

progeny, by introducing a fragment of DNA containing the coding

sequence of CCTa-HA, without applying any selective pressure to

increase the transgene copy number [66]. The transforming DNA

was inserted by homologous recombination in an ectopic locus, the

b-tubulin locus BTU1, and its expression was under the promoter

MTT1 (metallothionein 1 protein), dependent of cadmium

chloride. The CCTa KO heterokaryons strains (CCTA-A1 and

CCTA-B5) were allowed to complete conjugation that takes

approximately 14 h. Then, 24 h after mixing the heterokaryons

(hpm, hours post mixing), the cells were transformed biolistically

with the BTU1-MTT1-CCTa-HA-BTU1 cloned fragment.

Transformants that integrated the transgene into the BTU1 locus

were selected with paromomycin (90 mg/ml) and cadmium

chloride (1.5 mg/ml or 2.5 mg/ml).

Indirect immunofluorescence microscopy
For staining KO cells, ,50–100 cells were isolated into 10 ml

of 10 mM Tris, pH 7.5, on a coverslip previously coated with

poly-L-lysine (Sigma). These cells were generally isolated after

18 hpm that is ,4 h after end of conjugation and consequently

should be ,4 h of KO. Coverslips were processed for immu-

nofluorescence labeling as described in Thazhath and co-workers

[67]. TO-PRO-3 (Molecular Probes) was used (1:1000) to stain

DNA during 90 min, at room temperature. The following

primary antibodies were used: mouse 20H5 anti-centrin (1:100,

gift of Dr. Salisbury, Mayo Clinic, Rochester, MN), mouse

12G10 anti a-tubulin (1:10, from University of Iowa, Develop-

mental Studies Hybridoma Bank), rat purified (by affinity

column) anti-CCTa (1:10) (this work), crude rat serum anti-

CCTa (1:50) [29] and crude rat serum anti-CCTd (1:30) [16].

Secondary antibodies were goat anti-mouse Alexa 488 (Molecular

Probes) (1:500), goat anti-rat-FITC and goat anti-mouse-TRIC

(Sigma) conjugates, both used at dilution of 1:600. For

immunolocalization of CCTa-HA protein in KO rescued cells,

they were grown in falcon tube overnight without any drug

except cadmium chloride, when added, washed, fixed and

processed for immunofluorescence as the other slides. The

primary antibody used was the mouse monoclonal anti-HA

(Sigma) and the secondary antibody was goat anti-mouse Alexa

488 (Molecular Probes), in a dilution of 1:500.

Cells were viewed using a LeicaH TCS SP2 spectral confocal

microscope (using 63x oil immersion with 1.40 NA). Images were

assembled using Image NIH Image J. and Adobe Photoshop 6.0H
software. The length of axonemes either on cells or isolated was

determined on Z-project of confocal sections using NIH Image J.

Protein electrophoresis and western blotting
To analyze the expression of the tagged CCTa-HA protein in

the rescued cells, total protein extracts from 25000 cells were

prepared, as well for wildtype cells, and used per lane. Briefly, cells

were pelleted by centrifugation at 16006g for 3 min, suspended in

1 ml of 10 mM Tris-HCl, pH 7.5 and further concentrated into a

dense pellet by centrifugation at 16006g for 3 minutes. Cell pellets

were resuspended in 10 ml of 10 mM Tris-HCl, pH 7.5 and lysed

with same volume of lysing buffer (62.5 mM Tris, pH 6.8, 2%

SDS, 10% glycerol, 0.0005% Bromophenol Blue, 5% b-mercap-

toethanol, final concentrations). Protease inhibitors were added at

a final concentration of 0.5 mg/ml leupeptin, 10 mg/ml chymos-

tatin, 10 mg/ml trans-epoxysuccinyl-L-leucylamido-(4guanidino)

butane (E-64), and 15 mg/ml antipain. The mixture was boiled

for 3 min at 95uC.

Electrophoresis and western blot analysis SDS-PAGE (10% (w/

v)) gels were carried out as described elsewhere [29]. The following

primary antibodies were used: rat polyclonal anti-CCTa (affinity-

purified) (1:500 dilution); mouse monoclonal anti-HA (1:100

dilution) (Sigma) and rabbit anti-ribosomal S6 (1:300 dilution)

(Santa Cruz). Secondary antibodies used: peroxidase-conjugated

goat anti-rat IgG (H+L) (1:3000 dilution), goat anti-mouse IgG

(H+L) (1:4000 dilution) (Jackson ImmunoResearch Inc.) and goat

anti-rabbit IgG (H+L) (1:1000 of dilution) (Zymed). The protein

molecular mass markers (mixture of proteins from 97 to 14 kDa)

were purchased from Amersham Biosciences.
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Sequence analysis
For the multiple sequence alignment of CCTa and BBS6

protein sequences, the sequences obtained from NCBI and TIGR

database and listed on Table S2 were used. The multiple sequence

alignment was produced using the T-Coffee method [68] more

appropriate for alignment of proteins with low percentage of

identity as BBS6 and CCTa. The alignment was edited with

GeneDoc program.

Prediction of the secondary structure of CCTa apical domain in

wildtype and in the G346E mutant cells was done using the

program ProModII [31], since the inserted mutation was in this

protein domain. The model of the partial CCTa structure

obtained was based on the coordinates of the subunit a of the

chaperonin thermosome from T. acidphilum (Pubmed accession

numbers: 1a6e, 1a6d and 1q2v). The visualization of the predicted

structure is made by Rasmol program.

Statistical analyses
The experiments were performed at least three times and the

results were expressed as means 6 S.D. Differences between the

data were tested for statistical significance by t-test. P values less

than 0.05 or 0.001 were considered statistically significant.

Supporting Information

Figure S1 Cilia length in cells with low levels of CCTa and

CCTd. A) Cilia length in a population of wildtype, CCTa and d
KOs, or tubulin depleted cells were measured after 26 hpm. Cilia

are significantly shorter in the absence of the referred CCT

subunits, with p,0.0001. B) Cilia length in a population of wild

type cells or in a population of rescued CCTa-HA cells, grown in

medium with or without cadmium, was measured. Cilia are

significantly shorter in rescued CCTa-HA cells grown without

cadmium, with p,0,025, which correlates with the absence of

CCTa in cilia (see Fig. 2H). Number of measured cilia was 145 in

wildtype cells, n = 196 in CCTd-KO cells, n = 35 in CCTa-KO

(with similar values at 36 hpm with n = 112), n = 102 in tubulin

KO cells, n = 90 in CCTa-HA cells growing with cadmium and

n = 83 cilia in CCTa-HA cells growing without cadmium.

Found at: doi:10.1371/journal.pone.0010704.s001 (0.07 MB TIF)

Figure S2 CCTd depleted cells are unable to reciliate. A)

Confocal immunofluorescence of atubulin (using 12G10 mono-

clonal antibody) in Tetrahymena wildtype (WT) and CCTd KO cells

to analyze their reciliation capacity. (A and D) Non-deciliated cells

(WT) and CCTd KO cell. (B and E) Cells analyzed immediately

after deciliation (R0); (C and F) Cells analyzed after 2 h of

reciliation (R2h). WT cells are able to full reciliate and recover

their swimming capacity (not shown), while CCT depleted cells are

mostly unable to reciliate their cilia, or randomly recover a few

cilia. Note the apparent gaps in transversal microtubules present in

the CCT-KO cell. Scale bar = 10 mm.

Found at: doi:10.1371/journal.pone.0010704.s002 (1.87 MB TIF)

Figure S3 PCR analysis of strains obtained in rescue exper-

iments to confirm their genotype. A) Analysis by PCR of the

CCTa locus in wildtype cells and rescued CCTa-KO cells. For

WT strain it was observed only one band (white arrowhead)

corresponding to WT allele, whereas in rescued CCTa KO strain

(RA+) an additional band (asterisk) corresponding to the

disrupted-allele CCTa is visible. To facilitate the interpretation

of the bands pattern a heterozygous strain for CCTa disruption

was obtained by a cross of one of the CCTa-neo-disrupted

heterokaryon strains with a WT strain. In the heterozygous (HZ)

two bands were found, one corresponding to the WT allele

(2.8 kb) and the other corresponding to the disrupted-allele of

CCTa, with the expected size (3.5 kb). B) Analysis by PCR of the

CCTd locus in WT cells and in the rescued CCTd-KO cells. Also,

PCR analysis revealed two bands in rescued CCTd-KO strain

(RD+) confirming the presence of the WT and the disrupted allele.

Found at: doi:10.1371/journal.pone.0010704.s003 (0.09 MB TIF)

Figure S4 Genotypic analysis of the CCTa-KO cells rescued

with a HA tagged CCTa cDNA or genomic CCTamutG346E. A)

PCR analysis using genomic DNA from the rescued CCTa-HA

strain (RAHA) with the: 1. pair of primers that amplify full cDNA

CCTa; 2. Primer-F for initiation codon of CCTa gene and

primer-R for 39end of HA sequence; 3. Primer-F for initiation

codon of CCTa gene and primer-R for a sequence of BTU1 gene

where the fragment was intended to recombine. B) PCR analysis

of full coding sequence (using AlfF and AlfR primers that anneal

respectively at initiation and termination codons) of CCTa
showing the presence of cDNA CCTa (1.6-kb) and a CCTa
fragment with size ,3.5-kb corresponding to the neo-disrupted-

CCT allele present in the native locus of the rescued CCTa-HA

strain. A heterozygous strain (HZ), containing the genomic

wildtype (WT) CCTa allele (2.8-kb) and the disrupted allele

(3.5-kb), was used to compare PCR band pattern. WT strain and

plasmid DNA containing the cDNA of CCTa (C+) were also used

as controls. C) PCR analysis of the macronuclear genotype of

transformed CCTa-mutG346E strain. PCR products obtained

using AlfF and AlfR primers that anneal respectively at initiation

and termination codons in WT cells, HZ cells (that have in their

macronuclear genotype the wildtype and neo-disrupted CCTa
alleles) and the CCTa-mutG346E strain.

Found at: doi:10.1371/journal.pone.0010704.s004 (0.09 MB TIF)

Figure S5 CCTa is a ciliary protein found in both axonemal

and membrane/matrix fraction of cilia. A) Cilia from wildtype

cells were isolated and fractionated in axonemal (Ax) and

membranar (Mb) fraction which contains the soluble ciliary

matrix. Western blot analysis using a serum against CCTa was

performed showing the presence of the protein in both ciliary

fractions and in total cilia extract. Western blot using anti a-

tubulin supports the effectiveness of the cilia fractionation. B) The

specificity of the antibody used above was confirmed by

preabsorption of the antibody with the peptide used to elicit it.

Western blot analysis of total protein extracts of wildtype cells and

purified cilia extracts revealed only one specific band for CCTa
that is not detected when antibody is pre-absorb to the peptide.

Found at: doi:10.1371/journal.pone.0010704.s005 (0.19 MB TIF)

Figure S6 The apical domain of CCTa is related to a domain in

BBS6 protein and contains a highly conserved G346 residue. A)

Multiple sequence alignment of BBS6 and CCTa protein

sequences using T-Coffee method. The multiple sequence

alignment was produced with ClustalW2 program. The sequences

were obtained from NCBI databases (see table S2). The alignment

was edited with GeneDoc program and the aminoacid conserved

percentage is indicated using the following shade style identity: red

100%; green 80% blue 60%. The position of the mutated G346

amino acid in this study is indicated by a black arrow. B)

Schematic representation of CCTa protein showing its different

domains, along with the position of the mutation made in the

protein. C) Rasmol representation of the secondary structure of

CCTa apical domain in wildtype and mutant cells (mutation

G346E) using a ribbon model. The aminoacid residue that was

mutagenized is depicted as white space-filling form (indicated with

a red arrowhead). Note the mutation has led to the disappearance

of b-sheets present in the ribbon model of wildtype cells (white

arrow).
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