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Abstract
Following the identification of several disease-associated polymorphisms by whole genome
association analysis, interest is now focussing on the detection of effects that, due to their
interaction with other genetic (or environmental) factors, may not be identified by using standard
single-locus tests. In addition to increasing power to detect association, there is also a hope
detecting interactions between loci will allow us to elucidate the biological and biochemical
pathways underpinning disease. Here I provide a critical survey of the current methodological
approaches (and related software packages) used to detect interactions between genetic loci that
contribute to human genetic disease. I also discuss the difficulties in determining the biologcal
relevance of statistical interactions.

The search for genetic factors that influence common, complex traits, and the
characterisation of the effects of those factors is both a goal and a challenge for modern
geneticists. In the last couple of years, the field has been revolutionised by the success of
genome-wide association (GWA) studies 1 2 3 4 5. Most such studies have used a single-
locus analysis strategy, whereby each variant is tested individually for association with some
phenotype. However, an oft-cited reason for the lack of success in genetic studies of
complex disease 6 7 is the existence of interactions between loci. If a genetic factor operates
primarily through a complex mechanism involving multiple other genes, and possibly
environmental factors, the fear is that the effect will be missed if one examines it in
isolation, without allowing for its potential interactions with these other (unknown) factors.
For this reason, several methods and software packages 8 9 10 11 12 13 14 15 have been
developed to consider statistical interactions between loci, when analysing data from genetic
association studies. Although, in some cases, the motivation for such analyses is to increase
the power to detect effects 16, in other cases the motivation has been to detect statistical
interactions between loci that are informtive about the biological and biochemical pathways
underpinning the disease 7. We return to this complex issue of biological interpretation of
statistical interaction later in the article.

The purpose of this Review article is to provide a survey of the current methodological
approaches and related software packages that are currently used to detect interactions
between genetic loci that contribute to human genetic disease. Although the focus is on
human genetics, many of the concepts and approaches are strongly related to methods used
in animal and plant genetics. I begin by describing what is meant by (statistical) interaction,
and setting up definitions and notation for following sections. I then explain how one may
test for interaction between two (or more) known genetic factors, and how one may address
the slightly different question of testing for association with a single factor, while at the
same time allowing for interaction with other factors. In practice, one rarely wishes to test
for interaction purely between known factors, unless perhaps to replicate a previous finding
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or to test a specific biological hypothesis. More common is the desire to search for
interactions, or for loci that may interact, given genotype data at a potentially very large
number of sites (e.g. from a GWA analysis or from a more focussed candidate gene study). I
therefore continue the article by outlining different methods (and software packages) that
search for such interactions, ranging from simple exhaustive search to various DATA-
MINING/MACHINE LEARNING approaches to BAYESIAN MODEL SELECTION
approaches. Throughout these sections I take as a recurring example the analysis of a
publically available genome-wide data set on Crohn's disease from the Wellcome Trust Case
Control Consortium (WTCCC) 1. I conclude the article with a section discussing the
biological interpretation of results found from such statistical interaction analysis.

The investigation of interactions has had a long history in genetics, ranging from classical
quantitative genetic studies of inbred plant and animal populations 17 18 19 to evolutionary
genetic studies 20 and, finally, to linkage and association studies in outbred human
populations. In this article I focus primarily on human genetic association studies: readers
are referred to references 20 21 22 23 24 25 for a discussion of interactions in the context of
evolutionary genetics or in human genetic linkage analysis.

Definition of statistical interaction
Interaction as departure from a linear model

The most common statistical definition of interaction relies on the concept of a linear model
describing the relationship between some outcome variable and some predictor variable(s).
We propose a particular model for how we believe the predictors might relate to the
outcome, and we use data (i.e. measurements of the relevant variables on a number of
individuals) to determine how well the model fits our observed data, and to compare the fit
of different models. Arguably the most well-known form of this type of analysis is simple
linear or least squares regression 26, where we relate an observed quantitative outcome y
(e.g. weight) to a predictor variable x (e.g. height) via a ‘best fit’ line or regression equation
y = mx+c. More generally, we may use multiple regression 26 to include several different
predictor variables (e.g. x1, x2, x3, representing height, age and gender).

From a statistical point of view, interaction signifies departure from a linear model
describing how two (or more) predictors, B and C say, predict a phenotype outcome A (Box
1). For a disease outcome and case-control data, rather than modelling a quantitative trait y,
the usual approach is to model the (expected) log-odds of disease as a linear function of the
relevant predictor variables 26 27. Given genotype data, we may evaluate the likelihood of
the data under this model and use MAXIMUM LIKELIHOOD (or other) methods to
estimate the regression coefficients and test hypotheses, such as the hypothesis that the
interaction term (i in the mathematical formulation of Box 1) equals 0.

Supplementary Text S1 describes some specific models that follow this general formulation,
including the SATURATED ‘genotype’ model. Although this model provides the best
possible fit to the data, it includes many parameters. We may make parameter restrictions to
generate fewer degrees of freedom (df) and thus increase power. Although written in terms
of nine or fewer regression parameters, the models of Supplementary Text S1 actually
represent an infinity of different models, depending on the values taken by those parameters.
There has been some interest in categorizing these models 28 29 30 in such a way as to aid
either mathematical or biological interpretation. As discussed later, biological interpretation
is usually easiest when the PENETRANCE values all equal either 0 or 1, leading to a clear
relationship between genotype and phenotype. This situation, however, is unlikely for
complex genetic diseases.
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Marginal effects
An important issue in genetic studies is whether there are factors that display interaction
effects, without displaying so-called MARGINAL EFFECTS 6 31. The problem with factors
that display interaction effects, without displaying marginal effects, is that these factors will
be missed in a single-locus analysis, as they do not lead to any marginal correlation between
genotype and phenotype when each locus is considered individually. It is not clear in
practice how often this might occur, as many models that include an interaction term even in
the absence of main effects (α and β in the mathematical formulation of Box 1) do, in fact,
lead to significant marginal effects i.e. they show correlations between genotype and
phenotype that are detectable in a single-locus analysis. Thus, although one may derive
mathematical models (sets of specific values for the regression coefficients) that lead to
single-locus models displaying no marginal effects 6, it remains to be seen whether such
models represent common underlying scenarios – and thus a potentially serious problem – in
complex genetic diseases.

For simplicity, I have concentrated here on defining interaction in relation to two genetic
factors (two-locus interactions). In practice, however, for complex diseases we might expect
three-locus, four-locus and even higher-level interactions to operate as well. Mathematically,
such higher-level interactions are simple extensions to the two-locus models described
earlier. The problem with these models is that they contain a large number of parameters,
which would require extremely large data sets to estimate accurately. Interpreting the
resulting parameter estimates is also complicated, except perhaps in some simple cases – for
example, when risk alleles at all loci are required to alter disease risk (i.e. when only the full
multilocus interaction term differs from zero).

Testing for interaction between known factors
Regression models

Given two or more known (or hypothesised) genetic factors influencing disease risk,
arguably the most natural way to test for statistical interaction (on the log-odds scale) is
simply to fit a LOGISTIC REGRESSION MODEL that includes main effects and relevant
interaction term(s) and then to test whether the interaction term(s) equal zero or not. A
similar approach can be used for quantitative phenotypes, in which case linear rather than
logistic regression is used. These analyses can be performed in virtually any statistical
analysis package after construction of the required genotype variables. Alternatively, the --
epistasis option in the whole-genome analysis package PLINK 12 provides a logistic
regression test for interaction that assumes an allelic model both for main effects and
interactions.

A more powerful approach in case-control studies is to use a ‘case-only’ analysis 32 33 34.
Case-only analysis exploits the fact that, under certain conditions, an interaction term in the
logistic regression equation corresponds to dependency or correlation between the relevant
predictor variables within the population of cases. A case-only test of interaction can
therefore be performed by testing the null hypothesis that there is no correlation between
alleles or genotypes at the two loci, in a sample restricted to cases alone. This test can easily
be performed via a simple χ2 test of independence between genotypes (a 4 degree of
freedom (df) test) or alleles (a 1df test), or via logistic or MULTINOMIAL REGRESSION,
in any statistical analysis package.

The main problem with the case-only test is its requirement that the genotype variables be
uncorrelated in the general population – indeed it is this assumption, rather than the design
per se, that provides the increased power compared to case-control analysis. The case-only
test is therefore unsuitable for loci that are either closely linked or show correlation for some
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other reason (e.g. if certain genotype combinations are related to viability). Unlike
epidemiological studies of environmental factors, where correlation and CONFOUNDING
between variables is common, in genetic studies the assumption of independence between
unlinked genetic factors would seem fairly reasonable. One could use a two-stage procedure
to test first for correlation between the loci in the general population, and then use the
outcome to determine whether to perform a case-only or case-control interaction test.
However, this procedure has potential bias 35.

A preferable approach is to incorporate the case-only and case-control estimators into a
single test. In this vein, Zhao et al. 36 proposed a test based on the difference in inter-locus
allelic association between cases and controls, an idea originally suggested by Hoh and Ott
37. The --fast-epistasis option in PLINK 12 performs a similar test. Zhao et al. 36

found their test had greater power than a 4df logistic regression test of gene-gene
interaction; however, this power increase may be largely due to the lower df in their allelic
(rather than genotypic) test. Mukherjee and Chatterjee 38 35 proposed an EMPIRICAL
BAYES PROCEDURE that uses essentially a weighted average of the case-control and
case-only estimators of the interaction. This approach exploits the gene-gene independence
assumption (and thus the power) of case-only analysis, while additionally incorporating
controls, allowing the estimation of main effects. Routines that implement this procedure are
available in Excel and/or Matlab.

Other approaches
Although regression-based tests of interaction would seem most natural (given the definition
of interaction as departure from some linear regression model), alternative approaches have
been proposed. Yang et al. 39 proposed a method based on partitioning of χ2 values that,
similar to 36, contrasts inter-locus association between cases and controls. Their method
showed higher power than logistic regression when the loci had no marginal effects.
Recently there has been interest in INFORMATION-THEORETIC or ENTROPY-BASED
approaches for modelling genetic interactions 40 41 42 43. It is unclear whether this
framework offers any advantage over more standard statistical modelling of the same
predictor variables, as in most cases the conditional probability statements implied by the
two approaches are entirely equivalent 44.

Family-based studies
Here I have focussed on testing for interaction in the context of case-control or population-
based studies. Several related methods have been proposed to test for interaction in the
context of family-based association studies 45 46 47 48 49. The case-pseudocontrol 46

approach offers a regression-based framework that allows interaction tests very similar to
those described here. Given the large sample sizes that are required when testing for
interaction as opposed to main effects, 50 51, it is unclear whether investigators will have
family-based cohorts of sufficient size to provide high power for detection of interactions.
However, such cohorts may provide a useful resource for replication and characterisation of
interaction effects that have been found using alterative means.

Testing for association while allowing for interaction
Rather than testing for interaction per se, many researchers are interested in allowing for
interaction (with other genetic or environmental factors) when testing for association at a
given genetic locus. The rationale is that if the test locus influences disease or phenotype
outcome via interaction with another factor, then allowing for this interaction should
increase the power to detect the effect at the test locus. From a mathematical point of view, a
test for association at a given locus C, while allowing for interaction with another locus B (a
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‘joint’ 16 test), corresponds to comparing the fit (to the observed data) of a linear model in
which main effects of B, C and their interactions are included, to a model in which all terms
(main or interaction) involving locus C are removed (Box 1).

Theoretically, if no interaction effects exist, these joint tests will be less powerful than
marginal single-locus association tests. However, if interaction effects do exist, then the
power of joint tests can be higher than that of single-locus approaches 52. Kraft et al. 16

showed that the joint test of a genetic effect, while allowing for interaction with a known
environmental factor, performed nearly optimally over a wide range of plausible underlying
models. This test uses case-control data to test the combination of a main effect at locus C
and an interaction effect; since case-only analysis provides a more powerful test for the
interaction effect 32 33 34, Chapman and Clayton 53 proposed using a version of the joint test
that combines a case-control main effect component with a case-only interaction component.

The joint test of association, while allowing for interaction, assumes that one has some
known (or hypothesised) measured factor with which the test locus may interact. In the
absence of a specific factor of this type, a natural approach is to average over all other
(potentially interacting) genetic factors when performing a test at a given locus. A Bayesian
approach for doing this, in the context of GWA studies, is in development 14 and a beta
version of the associated BIA software is available in limited release from its authors on
request. Rather than averaging over all possible interacting loci, Chapman and Clayton 53

proposed using the maximum value of the joint test, evaluated over a pre-defined set of
potentially modifying (interacting) loci, with significance assessed using a PERMUTATION
argument.

Here I have concentrated on the issue of testing (either for interaction, or for association
while allowing for interaction) at one or two specific genetic variants of interest. Rather than
testing a single variant, it is now quite common to have genotype data at a large number of
variants that may or may not have any prior evidence for involvement with disease. Given
such data, various model selection approaches have been proposed that allow one to
essentially step through a sequence of regression models searching for significant effects,
both main effects and interactions 37 8 9 10 13 54 55 56. These approaches will be described in
more detail in subsequent sections. First, I describe an approach that is feasible provided the
number of main and interaction effects to be examined is not too large, namely, simple
exhaustive search.

Exhaustive search
Two-locus interactions

Given genotype data at a number of different loci, arguably the simplest way to search for
interactions between these loci is by exhaustive search. For example, to test all two-locus
interactions, one could consider all possible pairs of loci and perform the desired interaction
test for each pair. Similarly if testing for association while allowing for interaction, one
could perform the relevant 3df or 8df 52 test (Box 1, Supplementary Text S1). Clearly an
exhaustive search of this type raises a MULTIPLE TESTING issue somewhat analogous to
the multiple testing issue encountered in single-locus analysis of GWA studies 1. If all tests
are independent, a BONFERRONI CORRECTION is appropriate 52; however, LD between
loci will induce correlation between many of the tests. If testing for association while
allowing for interaction, additional correlation occurs due to the fact that the main effect of a
locus will be a component of all tests involving that locus. Theoretically, one can use
permutation 53 to assess significance while allowing for the multiplicity of (and correlation
between) the tests performed, but, for large numbers of loci, this may be computationally
prohibitive.
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A pragmatic approach to the multiple testing issue in single-locus analysis of GWA studies
is to use a relatively stringent significance threshold (e.g. p = 5 × 10−7) coupled with
replication in an independent data set, to avoid generating large numbers of false positives.
Stringent significance thresholds can also be motivated by Bayesian arguments concerning
the low prior probability of any given variant being associated with disease 1. In practice, the
Q-Q PLOT 1 has emerged as the tool of choice for visualising the results from an entire
genome-scan.

Exhaustive search of all two-locus interactions from a genome-scan is time-consuming but
computationally feasible. Marchini et al. 52 quote a time of 33 hours on a 10 node cluster to
perform all pairwise tests of association (allowing for interaction) at 300,000 loci in 1000
cases and 1000 controls. The PLINK 12 website quotes 24 hours to test (using the --fast-
epistasis option) all pairwise interactions at 100,000 loci typed in 500 individuals. Given
that genome-wide studies now routinely generate between 500,000 and 1 million markers in
5000 or more individuals, these times will need to be scaled upwards by several weeks or
even months, but exhaustive search of all two-locus interactions still remains feasible. In
addition, the fact that each test can be computed independently of all other tests means that
the entire search can be split up into several separate jobs to make use of parallel processing
facilities, if available.

Higher-order interactions
The problem with exhaustive search is that it does not scale up to consideration of higher-
order interactions. Since the number of tests (and therefore the time taken to perform the
analysis) increases exponentially with the order of interaction considered, exhaustive search
of all three-way, four-way or higher-level interactions would seem impractical in a genome-
wide setting. For this reason, two-stage procedures have been proposed 57 52 58, whereby a
subset of loci that pass some single-locus significance threshold are chosen, and exhaustive
search of all two-locus interactions (or higher order if required, perhaps conditional on
significant lower order effects 58) is carried out on this ‘filtered’ subset. The obvious
drawback with this approach is that loci will only make it into the second (or subsequent)
stages of the testing procedure if they show some marginal association with phenotype.
Therefore this procedure would not be expected to be useful for detecting interactions that
genuinely occur in the absence of marginal effects.

Use of a single-locus significance threshold is not the only way to reduce the number of
markers for testing. Several of the machine learning approaches described in the next section
(in particular ReliefF and Random Forests) could be used, as they do not require a locus to
have a significant marginal effect. Biological plausibility offers an alternative strategy.
Bochanovits et al. 59 used evidence of co-adaptation between loci in the mammalian genome
to inform their selection of genes to undergo interaction testing in a human study. Emily et
al. 60 used experimental knowledge on biological networks to reduce the number of
interaction tests from 125 billion to 71,000, when analysing genotype data from the WTCCC
1. In their analysis of seven disease cohorts they found four significant interaction effects,
including one (p = 1 × 10−9) between rs6496669 on chromosome 15 and rs434157 on
chromosome 5 in Crohn's disease. An example of applying semi-exhaustive testing to this
same data set, using the --fast-epistasis and --case-only options in PLINK 12, is
shown in Figure 1.

Data-mining/machine learning and related approaches
Traditional regression-based methods are often criticised 8 61 31 for their inability to deal
with non-linear models and with HIGH-DIMENSIONAL DATA (containing many
potentially interacting predictor variables, leading to sparse contingency tables with many
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empty cells). For this reason, machine learning or data-mining methods, developed in the
field of computer science, are sometimes preferred. The selection of predictor variables, and
interactions between them, that predict an outcome variable is a well-known problem in
these fields. Data-mining approaches do not fit a single pre-specified model, nor do they
attempt exhaustive search, but rather they attempt to step through the space of possible
models (including potentially large numbers of main effects and multi-way interactions) in
some computationally efficient way. Many data-mining approaches are, in fact, equivalent
to stepping through a particular sequence of regression models and attempting to find the
model that best fits the data; the distinction that is often made between data mining and
regression models is therefore, to some extent, a false one. Non-linearity is not an issue
when fitting a SATURATED MODEL (although it may be an issue for more restricted
models). One common theme in data-mining is the use of CROSS-VALIDATION 62 to
avoid problems of OVERFITTING.

Data-mining methods typically have problems dealing with incomplete and/or unbalanced
data sets (e.g. when the number of cases and controls are unequal 63). They also do not
always deal particularly well with correlated predictors showing colinearity. This has been
addressed in the mainstream statistics literature by the introduction of penalized regression
approaches 64 65 that allow large numbers of predictor variables to be included in a
regression model, but with many estimated regression coefficients ‘shrunk’ towards zero. In
genetics, use of such techniques is just starting to emerge, including penalized logistic
regression 66 67 and least angle regression 68 for identifying gene-gene interactions 69 70 in
binary traits.

A good overview of several machine learning approaches for detecting gene-gene
interactions is given by McKinney et al. 31. For the remainder of this section, I will focus on
several methods that have become particularly popular and/or appear to show particular
promise for detection of gene-gene interactions, or, more precisely, for detection of genes
that may interact.

Recursive partitioning approaches
Recursive partitioning approaches (Box 2) have been used as an alternative to traditional
regression methods for detecting genetic loci (and their interactions) that influence a
phenotypic outcome 71 72 73. These approaches produce a graphical structure (resembling an
upside-down tree) that maps possible values of certain predictor variables (e.g. SNP
genotypes) to a final expected outcome (e.g. disease status). Each vertex or node of the tree
represents a predictor variable, and from each node there are arcs or edges leading down to
so-called ‘child’ nodes, where each edge corresponds to a different possible value that could
be taken by the variable in the ‘parent’ node. A path through the tree represents a particular
combination of values taken by the predictor variables appearing within that path.

Recursive partitioning approaches do not include interaction variables per se in the model.
Rather, the nature of the trees constructed allows for interaction in the sense that each path
through a tree corresponds to a particular combination of values taken by certain predictor
variables, thus including potential interactions between them. The aim of tree-based
approaches therefore corresponds most closely to testing for association while allowing for
interaction rather than testing for interaction per se. One limitation of recursive partitioning
is that, since it conditions on main effects of variables at the first stage (and on main effects
conditional on previously selected variables at subsequent stages), pure interactions in the
absence of main effects can be missed 74.

Rather than using a single tree, significant improvements in classification accuracy can
result from growing an ensemble of trees. A popular ensemble tree approach is random
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forests 75 (Box 2). This approach has been used in several genetic studies 76 77. Apart from
the classification of future observations (not our focus of interest), the main result of a
random forests analysis is a list of variable importance measures. These measure the impact
of each predictor variable both individually and via multi-way interactions with other
predictor variables, and therefore have an advantage over a list of significance values from
single-locus association testing.

Random forests provide a parallelizable and relatively fast algorithm for measuring variable
importance, partly because at each split only a small random subset of predictors is used. To
allow each predictor the opportunity to enter the model and to produce accurate prediction,
one must choose carefully a number of key parameters such as the number of trees in the
forest, the number of randomly-chosen SNPs considered at each node and the number of
permutations used to assess variable importance. In an ideal world one might repeat the
analysis several times to assess sensitivity to choice of these parameters. An example of
applying random forests to the WTCCC Crohn's disease and control data, using the software
package Random Jungle 78, is shown in Figure 2.

Multifactor Dimensionality Reduction method
A variety of other data-mining approaches have been used for detection of interactions or
potentially interacting variables in genetic association studies, including logic regression, 79

80 genetic programming 81, neural networks 54 55 and pattern-mining 82 83. One particularly
popular method is Multifactor Dimensionality Reduction (MDR) 8 9 10. MDR has been used
to identify putatively interacting loci in several phenotypes including breast cancer 8, type 2
diabetes 84, rheumatoid arthritis 85 and coronary artery disease 86, although, to date, it is
unclear whether any of these identified interactions have been replicated in larger samples.

The MDR algorithm is described in Box 3 and in detail elsewhere 8 9 10 11 49. Rather than
testing for interaction per se, MDR seeks to identify combinations of loci that influence a
disease outcome, possibly via interactions rather than (or in addition to) via main effects.
MDR achieves dimension reduction by converting a high-dimensional (multi-locus) model
to a one-dimensional model, thus avoiding the issues of sparse data cells and over-
parameterised models that can cause problems for traditional regression-based methods.
MDR classifies genotypic classes as either ’high risk’ or ’low risk’ according to the ratio of
cases and controls that are represented in each class. This could be considered overly
simplistic: improvements that embed a more traditional regression-based approach into the
cell classification step, allowing application to continuous as well as binary traits and
adjustment for covariates, have been proposed 87 88.

The main problem with MDR (in common with other exhaustive search techniques) is that it
does not scale up to consideration of large numbers of predictor variables (e.g. large
numbers of loci from a genome-wide association study) 8 9. By performing exhaustive
search for the best n-locus combination (within each of ten cross-validation replicates),
anything more than a two-locus screen on more than a few hundred variables will be
computationally prohibitive. An additional problem with early versions of the widely-used
Java implementation of the MDR software (although note that other software
implementations do exist 11 88) is that it was not designed with genome-wide data sets in
mind, and thus could fail due to memory and disc-usage issues; these problems, however,
appear to have been addressed in the most recent version of the software.

For investigation of higher-order interactions, MDR is therefore perhaps best suited for use
with small numbers of loci (up to a few hundred), perhaps from a candidate gene study or
selected from a larger set of potential predictors via a prior pre-processing or filtering step
40. This step could be as simple as using a single-locus significance threshold, but that
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would seem counter-intuitive if the goal is to detect interactions in the absence of marginal
effects. Perhaps more appealing would be to use a measure of variable importance that
allows for possible interactions, such as the variable importance measure from a random
forests analysis or from one of the alternative filtering methods described below.

ReliefF, Tuned ReliefF and Evaporative Cooling
One promising filtering algorithm that has been proposed 40 is ReliefF 89, or its modified
version, Tuned Relief (TuRF) 90. This approach uses a measure of proximity between
observations (individuals) – calculated, for example, on the basis of the genome-wide
genetic similarity between individuals – to determine each individual's nearest neighbours
from within his or her own phenotype class, and from within the opposite phenotype class.
For each predictor variable, its difference in value between pairs of neighbouring
individuals, weighted negatively or positively according to whether the individuals come
from the same or different phenotype classes, can be used to construct an importance
measure for that variable 90. The algorithm is relatively simple and scalable and so should be
applicable to large numbers of predictor variables and observations; an in-house C++
implementation was able to analyse 1 million loci in 200 individuals in approximately four
minutes 90.

ReliefF and TuRF have both been implemented in the Java version of the MDR software.
One problem with ReliefF is that it can be sensitive to large backgrounds of variants that are
irrelevant to phenotype 74. This has motivated development of an alternative approach,
Evaporative Cooling 91 74, that can be used to combine the strengths of ReliefF with those of
random forests 74.

An example of analysis using the Java implementation of TuRF and MDR, applied to the
WTCCC Crohn's disease data, is shown in Figure 3.

Bayesian model selection approaches
Bayesian model selection techniques 92 offer an alternative approach for selecting predictor
variables, and interactions between them, that best predict phenotype. The key difference
between Bayesian model selection and simple comparisons of nested regression models via
FREQUENTIST (non-Bayesian) procedures, lies in the specification of prior distributions
for the unknown regression parameters as well as for a dimension parameter, specifying how
many non-zero predictors are to be included in the regression equation. A posterior
distribution for these parameters, given the observed data, can then be calculated through
use of Markov chain Monte Carlo (MCMC) 93 simulation techniques, in which one traverses
the space of possible models (sets of parameter values), sampling realisations at intervals.
Although MCMC is an extremely flexible approach, it can require some care with respect to
the choice of prior distributions, proposal schemes (determining how one moves between
models) and the number of iterations required to achieve convergence.

Lunn et al. 56 propose essentially a Bayesian version of stepwise regression, implemented in
the software WinBUGS. This method focuses on main effects of loci rather than
interactions, but inclusion of interaction effects represents a relatively straightforward
extension. The main problem with this method is that it can deal with at most only a few
hundred variables 56 and does not scale to the large numbers of predictor variables that
might be encountered in a genome-wide study. However, related approaches that can deal
with data sets of higher dimensionality have been proposed 94.
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Bayesian Epistasis Association Mapping
A recently-proposed MCMC approach specifically designed for the detection of interacting
(as well as non-interacting) loci is Bayesian Epistasis Association Mapping 13, implemented
in the software package BEAM. In BEAM, predictors in the form of genetic marker loci are
divided into three groups: group 0 contains markers that are unassociated with disease,
group 1 contains markers that contribute to disease risk via main effects only, and group 2
contains markers that jointly influence (i.e. interact) to cause disease via a saturated model.
Given prior distributions concerning the membership of each marker in each of the three
groups, and prior distributions for values of the relevant regression coefficients given group
membership, a posterior distribution for all relevant parameters can be generated using
MCMC simulation. As well as making inferences in a fully Bayesian inferential framework,
one may use the results from BEAM in a frequentist hypothesis testing framework via
calculation of a so-called ‘B-statistic’ 13 that tests each marker or set of markers for
significant association with disease phenotype.

BEAM can handle relatively large numbers of markers (e.g. 100,000 SNPs typed in 500
cases and 500 controls 13) although, in practice, some modification to the default parameters
(namely the BURN-IN PERIOD, number of starting points and number of MCMC
iterations) may be required in order to apply the method in reasonable time. BEAM does not
currently handle the 500,000 - 1 million markers that are now routinely being genotyped in
genome scans of perhaps 5000 or more individuals. In theory, BEAM can account for LD
between adjacent markers 13. However, it is unclear whether LD between non-adjacent
markers is fully accounted for, suggesting that some ‘thinning’ of the marker set may be
required, not only for computational reasons, but also to ensure that the markers are in low
LD. An example of applying BEAM to the WTCCC Crohn's data is shown in Figure 4.

Biological interpretation
The extent to which statistical interaction implies biological or functional interaction has
been extensively debated in both the genetics 95 21 96 97 19 98 99 and epidemiological 100 101

102 literature. One problem has been the inherently different nature of definitions of
interaction, and use of a common term, ‘epistasis’, to encapsulate these definitions 95 21

(Supplementary Text S2). In a recent review, Phillips 20 defines three different forms of
epistasis – COMPOSITIONAL, STATISTICAL and FUNCTIONAL – that capture rather
different concepts often lumped together under this single term. A unified framework, the
natural and orthogonal interactions (NOIA) model, was proposed by Alvarez-Castro and
Carlborg for modelling both statistical and functional epistasis. However, Alvarez-Castro
and Carlborg's definition of ‘functional’ seems rather far removed from that of Phillips. The
NOIA model is actually a mathematical model that is essentially a reparameterization of
classical quantitative genetics models 19 (Supplementary Text S2) that allows main effects
to be defined with respect to a different reference point, and interaction effects to be defined
with respect to different definitions of ‘independence’ of main effects, in order to allow
mapping of models between different experimental populations. Since, in a sense, the whole
issue in interaction modelling is how one defines the ‘effect’ of a variable, and therefore
how one measures ‘departure’ from ‘independence’ of effects (Supplementary Text S2), this
reparameterization does not seem especially biologically enlightening.

Although it seems reasonable to assume that functional epistasis in the form of biomolecular
or protein-protein interaction is a ubiquitous component of the underlying biological
pathways determining disease progression 103 7, it does not follow that it will be detected as
a mathematical or statistical interaction 102 104 - particularly if the variables being examined
are, as in many cases, simply surrogates for the true underlying causal variants, correlated
with these variants because of LD. The historical lack of success in genetic studies of
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complex disease can largely be attributed, not to ignored biological interactions 6 61 7, but
rather to under-powered studies that surveyed only a fraction of genetic variation; the recent
success of GWA studies 1 2 3 4 5 has demonstrated that single-locus association analysis in
sufficiently large sample collections can detect modest genetic effects reliably and with
robust replication 105 106.

Although the extent to which biological interaction can be inferred from statistical
interaction may be limited 102, some interesting recent work 107 108 109 has focussed on
whether, given a strong prior biological model (or set of models), one can use genetic and/or
genomic data from outbred populations or inbred strains, to assess model fit and compare
the fit of competing models. This is, in a sense, a more modest goal in that it relies on some
prior understanding (or at least a strong biological hypothesis) concerning the action of the
relevant predictors.

Conclusions
As we have seen, there are numerous methods, and an even larger number of software
implementations, that allow investigators to examine or test for interaction between loci,
given data of the type currently generated from large-scale genotyping projects. Although
precise details of the methodologies differ, in many cases there are close conceptual links
between the different approaches, an understanding of which can perhaps best be obtained
through understanding the difference between testing for interaction versus testing for
association while allowing for interaction.

From a practical point of view, probably the main difference between the methods I have
described is the computational time required to implement the analysis. As data sets become
ever larger, development of efficient and parallelizable computational algorithms will
become increasingly more important. On this note, the use of ‘filtering’ approaches, that
allow one to pre-select a subset of potentially interesting loci for input to a more computer-
intensive exhaustive or stochastic search algorithm, may hold promise. In my application of
various methods to the WTCCC Crohn's disease data, I found semi-exhaustive search of
two-locus interactions (implemented in PLINK 12) and a random forests analysis
(implemented in Random Jungle 78) to be the most computationally feasible of the methods
examined. Bayesian Epistasis Association Mapping (implemented in BEAM 13) was
feasible only for a filtered data set and with some modification to the default
(recommended) input parameter settings: it is unclear what effect (if any) this will have had
on the reliability of the results. MDR was feasible for examining two-locus interactions in a
drastically filtered data set, or for examining higher-level interactions in an even further
reduced data set.

To date, very few publications have incorporated interaction testing of GWA data. This is
perhaps not surprising as GWA studies have naturally focussed on single-locus testing in the
first instance. Curtis 110 performed pairwise tests of association at 396,591 markers using
541 subjects (cases and controls) from a genomewide study of Parkinson's disease. He found
no significant epistatic interactions, possibly because of the small sample size and/or
because of the interaction test employed (which might have been more powerful if restricted
to cases alone). Gayan et al. 15 used the same data set to perform two-locus interaction
testing via their interaction-detection approach known as ‘Hypothesis Free Clinical Cloning’
(HFCC). This approach involves testing for association (while allowing for interaction)
under a set of pre-specified fully penetrant disease models, with the tests performed within
several different subgroups of the data (considered as ‘replication groups’). For the
Parkinson's analysis, each subgroup consisted of approximately 90 cases and 90 controls,
which seems a remarkably small sample size for this kind of analysis; not surprisingly, little
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consistency between results was found when the analysis was repeated using different
partitions of the data. Emily et al. 60 reported four significant cases of epistasis in the
WTCCC data using an approach that narrows the search space based on experimental
knowledge of biological networks.

Given the large number of GWA studies that have recently or are currently being performed,
it is clear that, for many, genomewide interaction testing will be the natural next step
following single-locus testing. We await with interest the results of these analyses.

Box 1

Statistical models of interaction

Linear, multiple and logistic regression

Statistical interaction can best be described in relation to a linear model describing the
relationship between an outcome variable and some predictor variable(s). In linear
regression we model a quantitative outcome y as a function of a predictor variable x via
the regression equation y = mx + c. Here the regression coefficient m corresponds to the
slope of the best fit line and the regression coefficient c to the intercept. We use the
values of pairs of data points (x,y) (for example where x and y are, respectively,
measurements of height and weight on different individuals) to estimate m and c such
that the line y = mx + c fits the observed data as closely as possible. In multiple
regression we extend this idea to include several different predictor variables using an
equation such as y = m1x1 + m2x2 + m3x3 + c. Here we are implicitly assuming that there
is a linear relationship between each of x1, x2, x3 and the outcome variable y, so that for
each unit increase in x1, y is expected to increase by m1 (and similarly for x2 and x3). In
logistic regression, rather than modelling a quantitative outcome y, we model the log-
odds ln[p/(1 − p)] (where p is the probability of having a disease). For example, we might
propose the model ln[p/(1 − p)] = α + βxB + γxC + ixBxC, where xB and xC are measured
binary indicator variables representing presence or absence of genetic exposures at locus
B and C respectively, β and γ are regression coefficients representing the main effects of
exposures at B and C, and coefficient i represents an interaction term 16 (a term required
in addition to the linear terms for B and C).

Testing for interaction

Tests of interaction essentially correspond to testing whether the regression coefficient(s)
representing interaction terms in the above mathematical formulation equal zero or not.
In the logistic regression example above, this would correspond to a 1df test of i = 0. In
the saturated genotype model (described in Supplementary Text S1), it would correspond
to a 4df test of i11 = i12 = i21 = i22 = 0. Tests of association (e.g. at a given locus C) while
allowing for interaction (e.g. with another locus B) correspond to comparing a linear
model in which main effects of B, C and their interactions are included, to one in which
all terms (main or interaction) involving locus C are removed. For example, if modelling
the log-odds as ln[p/(1 − p)] = α + βxB + γxC + ixBxC, then the test of association at C,
allowing for interaction with B, corresponds to a 2df test of γ = i = 0. This contrasts with
the 1df pure interaction test of i = 0. One could also construct a pairwise test of the joint
effects at both loci (including interactions) by comparing a model in which the main
effects of loci B, C and interactions are included, to a model in which only the baseline
intercept α is included. This gives a 3df test of association (allowing for interaction) if a
binary or allelic coding is used, or an 8df test 52 if a saturated genotype model (see
Supplementary Text S1) is used. Tests with fewer df could be achieved by prior grouping
of the two-locus genotypes according to certain pre-specified classification schemes 15

29.
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Box 2

Recursive partitioning approaches

Single classification tree

Recursive partitioning approaches are based on classification and regression trees
(CART) 111. Trees are constructed (see figure) using rules concerning how well a split at
a node (based on the values of a predictor variable – such as a SNP) can differentiate
observations with respect to the outcome variable (such as case-control status). A popular
splitting rule is to use at each node the variable that maximises the reduction in a quantity
known as the Gini impurity 111 112. In the figure, SNP 3 maximises the reduction in Gini
impurity at the first node and so is chosen for splitting (according to genotype at SNP 3)
the original data set of 1000 cases and 1000 controls into two smaller data sets. Once a
node is split, the same logic is applied to each child node (hence the recursive nature of
the procedure). The splitting procedure stops when no further gain can be made (e.g.
when all terminal nodes contain only cases or only controls, or all possible SNPs have
been included in a branch), or when some pre-set stopping rules are met. At this stage it
is usual to prune the tree back (i.e. remove some of the later splits or branches) according
to certain rules 111 to avoid over-fitting and to produce a final, more parsimonious,
model.

Ensemble approaches: Random Forests

Rather than using a single classification tree, significant improvements in classification
accuracy can result from growing an ensemble of trees and letting them in some sense
‘vote’ for the most popular outcome class given a set of input variable values. Such
ensemble approaches can be used to provide measures of variable importance, a feature
that is of considerable interest in genetic studies and that is often lacking in machine
learning approaches. Probably the most widely-used ensemble tree approach is random
forests 75. A random forest is constructed by drawing (with replacement), from the
original sample, several BOOTSTRAP SAMPLES of the same size (e.g. the same
number of cases and controls). For each bootstrap sample, an unpruned classification tree
is grown, but with the restriction that, at each node, rather than considering all possible
predictor variables, only a random subset of the possible predictor variables is
considered. This procedure results in ‘forest’ of trees, each of which will have been
trained on a particular bootstrap sample of observations. The observations that were not
used in growing a particular tree can be used as ‘out-of-bag’ instances to estimate
prediction error. The out-of-bag observations can also be used to estimate variable
importance in various different ways including via use of a permutation procedure 77 31

113.

The actual model whereby the important predictor variables act (or interact) to influence
phenotype is somewhat obscured because it results from the predictions of many different
classification trees, and so one may wish to follow a random forests analysis with another
approach. For example, one might choose the top-ranking variables from a random
forests analysis as input variables for a simple regression-based search, a standard CART
analysis, or for analysis using an alternative data-mining procedure.

See 
3111374

 for a good summary of the approach, available R software (the randomForest,
cforest and party libraries) and a discussion of some limitations.
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Box 3

Multifactor Dimensionality Reduction

The MDR method is a constructive induction 40 algorithm that proceeds as follows: The
observed data is divided into ten equal parts and a model is fit to each 9/10 of the data
(the training data) with the remaining 1/10 (the test data) used to assess model fit via 10-
fold cross-validation. Within each 9/10 of the data, a set of n genetic factors is selected
and their possible multifactor classes or cells are represented in n dimensional space. For
example, for n = 2 diallelic loci, there are nine possible genotype classes or cells
(Supplementary Text S1). The ratio of the number of cases to the number of controls is
estimated in each cell and the cell is labelled as either ‘high-risk’ if the case:control ratio
reaches or exceeds some predetermined threshold (e.g. ≥ 1.0) and ‘low-risk’ otherwise.
This reduces the original n-dimensional model to a one-dimensional model (i.e. one
variable with two classes: high-risk and low-risk). The procedure is repeated for each
possible n-factor combination, and the combination that maximizes the case:control ratio
of the high-risk group (i.e. in some sense ‘fits’ the current 9/10 of the data best, giving
minimum classification error among all n-locus models) is selected. The testing accuracy
(= 1–prediction error) of this best n-locus model can be estimated using the remaining
1/10 of the data. The whole procedure is repeated for each of the 9/10 partitions of the
data, and the final best n-locus model is the model that maximises the testing accuracy or,
equivalently, minimizes the prediction error. The cross-validation consistency is defined
as the number of cross-validation replicates in which that same model n-locus model was
chosen as ‘best’ (i.e. the number of replicates in which it minimized classification error).
The average prediction error is defined as the average of the prediction errors over the 10
cross-validation test data sets. (Note that the prediction error of each individual cross-
validation replicate refers to the prediction error of the n-locus model chosen as ‘best’ in
that replicate, which will not always correspond to the final best n-locus model).

In practice, rather than selecting a single value of n in each cross-validation replicate, one
may consider all possible values up to a certain maximum e.g. all single-locus genotype
combinations (n = 1), all two-locus combinations (n = 2), all three-locus combinations (n
= 3) etc. One thus generates a best model within each cross-validation replicate as well as
a final best model (with associated cross-validation consistency and average prediction
error) for each different value of n. The cross-validation consistencies and average
prediction errors can be used to determine the ‘best’ value of n (that giving the highest
cross-validation consistency and/or lowest average prediction error) and thus the
resulting overall best model.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Glossary

Data-mining The process of extracting hidden patterns and potentially useful
information from large amounts of data.

Machine learning The ability of a program to learn from experience — that is, to
modify its execution on the basis of newly acquired information. A
major focus of machine learning research is to automatically produce
models (rules and patterns) from data. Hence, machine learning is
closely related to fields such as data-mining, pattern recognition and
statistics.

Bayesian model
selection

A statistical approach for selecting (choosing between) models by
incorporating both prior distributions for parameters of the models
and the observed experimental data.

Maximum
likelihood

A statistical approach that is used to make inferences about the
combination of parameter values that gives the greatest probability
of obtaining the observed data.

Saturated A term for a statistical model that is as full as possible (‘saturated’)
with parameters. Such a model is sometimes useful as it serves as a
benchmark to quantify how well a simpler model (one with fewer
parameters) fits the data.

Penetrance The probability of displaying a particular phenotype (e.g.
succumbing to a disease) given that one has a specific genotype.

Marginal effects The average effects (e.g. penetrances) of a single variable, averaged
over the possible values taken by some other variable(s). These
could be calculated, for one locus of a two-locus system, say, as the
average of the two-locus penetrances, averaged over the three
possible genotypes at the other locus, using the relevant population
genotype frequencies for both loci

Logistic
regression model

A statistical model that is used when the outcome is binary in nature.
Relates the log odds of the probability of an event to a linear
combination of predictor variables.

Multinomial
regression

A statistical approach, similar to logistic regression, that is used
when the outcome takes one of several possible categorical values.

Information
theory

A branch of applied mathematics involving the quantification of
information.

Confounding A phenomenon whereby the measure of association between two
variables is distorted because other variables, associated with both
variables of interest, are not controlled for in the calculation.

Empirical Bayes
procedure

A hierarchical model in which the hyperparameter is not a random
variable but is estimated by some other (often classical) means.

Information
theory

A branch of applied mathematics involving the quantification of
information

Entropy A key measure used in information theory, that quantifies the
uncertainty associated with a random variable. For example, a
variable indicating the outcome from a throw of a fair coin (2
equally likely outcomes) will have less entropy than a variable
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indicating the outcome from a roll of a die (6 equally likely
outcomes).

Permutation An approach often used in hypothesis testing. In this approach, an
empirical distribution of a test statistic is obtained by permuting the
original sample many times and re-calculating the value of the test
statistic in each permuted data set. Each permuted sample is
considered to be a sample of the population under the null
hypothesis.

Multiple testing An analysis in which multiple independent hypotheses are tested. If a
large number of tests are performed, the significance level (p-value)
of any particular test must be interpreted in the light of this fact, as
the overall combined probability of making a type I error will
increase.

Bonferroni
correction

The simplest correction of individual p-values for multiple-
hypothesis testing: pcorrected = 1 − (1 − puncorrected)n, where n is the
number of hypotheses tested. This formula assumes that the
hypotheses are all independent, and simplifies to pcorrected =
npuncorrected when npuncorrected <<1.

Q-Q plot A quantile-quantile (Q-Q) plot is a diagnostic plot that can be used to
compare the distribution of observed test statistics with the
distribution expected under the null. Those tests that lie significantly
above the line of equality between observed and expected quantiles
are considered significant in the context of the number of tests
performed.

High-dimensional
data

Data containing information on a very large number of variables,
albeit possibly measured in a small number of subjects or replicates.

Cross-validation A technique that involves partitioning a data set into smaller sub-
samples, performing an analysis in one sub-sample and using the
other sub-sample to measure or validate how well the analysis has
performed. To reduce variability, multiple rounds of cross-validation
are often performed using different partitions of the data and the
validation results are averaged over the rounds.

Overfitting The phenomenon whereby a complex model might provide a good
fit to the current data set, but is in fact ‘over’ fitted to the random
quirks in that paticular data set, and thus does not provide such good
generalizabililty to future data sets as would a simpler model.

Frequentist A statistical approach for testing hypotheses by assessing the
strength of evidence for the hypothesis provided by the data.

Burn-in period In Markov chain Monte Carlo (MCMC) analysis, a period at the start
of the computation in which the values taken by the parameters are
ignored (thrown away) for the purposes of constructing the posterior
distribution.

Compositional,
statistical and
functional
epistasis

Three different forms of epistasis as described by Phillips 20.
Compositional epistasis refers to the blocking of one allelic effect by
an allele at another locus. Statistical epistasis refers to the average
effect of substitution of alleles at combinations of loci, with respect
to the population average genetic background. Functional epistasis
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refers to the molecular interactions that proteins and other genetic
elements have with one another.

Bootstrap
samples

These are data sets obtained by taking a random sample of the
original data, usually with replacement. One then applies the same
analysis as was applied to the real data. This is repeated many times,
allowing one to assess the variability in results incurred due to
random sampling.
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Box 2 Figure.
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Figure 1. Semi-exhaustive search of pairwise interactions between 89294 SNPs
I used the --fast-epistasis and --case-only options in PLINK to analyse the
WTCCC Crohn's disease and control samples. I used the same quality control procedures as
the WTCCC to remove poor-quality SNPs and samples prior to analysis. I additionally
discarded 561 SNPs that had been analysed by WTCCC but were subsequently discarded
based on visual inspection of the SNP intensity cluster plots (Jeff Barrett, personal
communication). To reduce the number of interaction tests to be performed I selected a set
of 89294 SNPs that passed a single-locus p value threshold of 0.2. Analysis of the 89294
SNPs on a single node of a computer cluster took 14 days. Unfortunately, neither SNP in the
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interaction detected by Emily et al. 60 had the opportunity to appear in my analysis, as
neither had a single-locus p value <=0.2.
(A) Results from --case-only analysis, in which SNP pairs were discarded if they were <
1Mb apart (Panel a), <5Mb apart (Panel b), and <50Mb apart (Panel c). The default in
PLINK is to exclude tests of pairs of SNPs that are less than 1Mb apart. Even when extreme
separations of 5Mb or 50Mb are enforced (Panels b and c), we find an excessive number of
apparently significant results. Closer inspection revealed that in many cases these significant
results result from correlation (within the sample of cases) between alleles at loci on
different chromosomes. Given the general departure from the expected distribution, it seems
likely that these significant --case-only results are artifacts rather than genuine
interaction effects. Panel d: Q-Q plot of all results from the --fast-epistasis with p
value < 0.0001. These results lie much closer to the expected line: indeed only one result
appears to show strong departure from expected significance. The top ranking results (those
with χ2 > 35, as indicated by the dashed line on Panel d) are shown in Supplementary Table
1. Interestingly, most of the SNPs involved in the putative interactions show little single-
locus significance, apart from rs4471699 on chromosome 16. This SNP was not reported as
significantly associated by WTCCC 1.
(B) Single-locus association results across chromosome 16. rs4471699 at position 30227808
shows the highest significance, but is far removed from the bulk of the significant results
which are situated close to the NOD2/CARD15 gene (around position 49297083) Further
investigation revealed that this SNP had been excluded from the WTCCC analysis owing to
poor genotype clustering (Jeff Barrett, personal communication), even though it passed the
stated WTCCC exclusion criteria and had not appeared in the original list of additional
exclusions I was given. It therefore seems highly likely that both the single-locus and
interaction results at rs447169 represent false positives.
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Figure 2. Random Jungle Analysis of 89294 SNPs
I used the software package Random Jungle 78 to perform a random forests analysis of the
89294 SNPs passing a single-locus p value threshold of 0.2 in the WTCCC Crohn's and
control data. Since Random Jungle, in common with many other machine-learning
approaches, prefers not to have missing (incomplete) genotype data, missing genotypes were
imputed as the single most likely value on the basis of the genotype frequencies in the case-
control data set. Analysis of the 89294 SNP set took approximately 5 hours, using 6000 trees

in the forest and  randomly chosen variables at each node. Panel A: Importance
values from random jungle analysis. These are clearly dominated by the (likely false
positive) result at rs4471699 on chromosome 16. Panel B: Results from random jungle
analysis with SNP rs4471699 removed. Once this SNP is removed, the remaining SNPs are
better distinquished, but it is unclear whether this analysis offers any greater insight than the
single-locus analysis. Panel C: Results from single-locus association analysis of all 6113
SNPs using the trend test implemented in PLINK. In many cases the highest ranking SNPs
appear in similar locations to Panel B, but with clearer significance in Panel C.
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Figure 3. MDR and TuRF analysis of 6113 SNPs
I used the Java implementation of MDR to analyse 6113 SNPs passing a single-locus p
value threshold of 0.01 in the WTCCC Crohn's and control data, with missing (incomplete)
genotypes imputed as described in the legend to Figure 2. Examination of all pairwise
combinations in the entire 6113 SNP set proved computationally prohibitive but analysis via
use of a prior filtering step with ReliefF or TuRF, which reduced the data set for MDR
analysis to 1000 SNPs, was achievable. The best single-locus model identified was
rs4471699, providing testing accuracy of 0.5852 and cross validation consistency of 10/10.
The best two-locus model identified was rs4471699 and rs2076756, providing testing
accuracy of 0.5879 and cross validation consistency of 4/10. MDR, in common with the
other methods investigated, has clearly been dominated by the false positive result at
rs4471699. Interestingly, however, this SNP is not selected by TuRF when filtering down
the set of SNPs for MDR analysis to include only 100 SNPs. With the 100 SNP set, the best
single-locus model identified was rs931058, providing testing accuracy of 0.5114 and cross
validation consistency of 5/10. The best two-locus model identified was rs931058 and
rs10824773, providing testing accuracy of 0.5205 but cross validation consistency of only
2/10. With the 100 SNP set it was computationally feasible to fit 3-locus and 4-locus
models, however the resulting best models had similarly low cross validation consistencies.
I also found extreme sensitivity (in both TuRF and MDR) to the choice of random number
seed (data not shown), suggesting that, overall, these results should be interpreted with
caution. A problem with MDR is that it outputs only the ‘best’ model rather than a measure
of significance for all models or variables considered. Some idea of the ‘importance’ of
variables can be determined by examining the ‘fitness landscape’ output from the program,
shown here. Panel A: Fitness landscape scores from TuRF analysis of all 6113 SNPs Panel
B: Fitness landscape scores from MDR analysis using top 1000 out of 6113 SNPs (filtered
using TuRF) Panel C: Results from single-locus association analysis of all 6113 SNPs using
the trend test implemented in PLINK. It is unclear whether the fitness landscape results from

Cordell Page 27

Nat Rev Genet. Author manuscript; available in PMC 2010 May 19.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



TuRF (Panel A) or MDR (Panel B) offer any great advantage over standard single-locus
analysis (Panel C) with respect to determining the importance of variables.
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Figure 4. BEAM analysis of 47727 SNPs
I used BEAM to analyse a set of 47724 SNPs passing a single-locus p value threshold of 0.1
in the WTCCC Crohn's and control samples. Analaysis of the 47724 SNPs took 8 days (with
some modification to the default settings, most notably imposing a maximum of 5 × 107

MCMC iterations 13 as opposed to the default value of n2, where n is the number of loci). I
estimated that analysis of the 89294 SNP set (passing a single-locus p value threshold of
0.2) with a similar number of MCMC iterations would have taken more than five weeks.
Panel A: ‘B-statistic’ p values for the 1321 single-locus associations detected by BEAM.
Panel B: Results from single-locus association analysis of all 47727 SNPs using the trend
test implemented in PLINK. BEAM detects essentially the same loci as are detected by
single-locus analysis. BEAM additionally detects (with quoted p = 0.000000) four two-locus
interactions, each involving an interaction of rs2532292 on chromosome 17 with a nearby
SNP (either rs12150547, rs17689882, rs17650381 or rs17574824) within the same cluster.
None of these SNPs shows particularly strong single-locus association and so this putative
interaction is intriguing. However, none of these pairs of SNPs showed significant (defined
as p value < 0.0001) interaction in the PLINK --fast-epistasis analysis. Closer
inspection of these SNPs in the control sample indicated that they are in strong LD (D′ >
0.99) with one another, suggesting that the detected interactions may in fact correspond to
marker dependencies due to LD, rather than to genuine interaction effects.
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