
A Note on the Behavior of the Randomized Kaczmarz Algorithm of
Strohmer and Vershynin

Yair Censor1, Gabor T. Herman2, and Ming Jiang3
Yair Censor: yair@math.haifa.ac.il; Gabor T. Herman: gabortherman@yahoo.com; Ming Jiang: ming-jiang@pku.edu.cn
1Department of Mathematics, University of Haifa, Mt. Carmel, Haifa 31905, Israel
2Department of Computer Science, The Graduate Center, City University of New York, 365 Fifth
Avenue, New York, NY 10016, USA
3LMAM, School of Mathematical Sciences, Peking University, 5 Yi He Yuan Street, Beijing 100871,
P.R. China

Abstract
In a recent paper by T. Strohmer and R. Vershynin [“A Randomized Kaczmarz Algorithm with
Exponential Convergence”, Journal of Fourier Analysis and Applications, published online on April
25, 2008] a “randomized Kaczmarz algorithm” is proposed for solving systems of linear equations

 . In that algorithm the next equation to be used in an iterative Kaczmarz process is
selected with a probability proportional to ‖ai‖ 2. The paper illustrates the superiority of this selection
method for the reconstruction of a bandlimited function from its nonuniformly spaced sampling
values.

In this note we point out that the reported success of the algorithm of Strohmer and Vershynin in
their numerical simulation depends on the specific choices that are made in translating the underlying
problem, whose geometrical nature is “find a common point of a set of hyperplanes”, into a system
of algebraic equations. If this translation is carefully done, as in the numerical simulation provided
by Strohmer and Vershynin for the reconstruction of a bandlimited function from its nonuniformly
spaced sampling values, then indeed good performance may result. However, there will always be
legitimate algebraic representations of the underlying problem (so that the set of solutions of the
system of algebraic equations is exactly the set of points in the intersection of the hyperplanes), for
which the selection method of Strohmer and Vershynin will perform in an inferior manner.
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1 Introduction
Kaczmarz’s algorithm [21] is a sequential projection method for the solution of linear systems
of equations of the form Ax = b. It was rediscovered in the field of image reconstruction from
projections in [13] where it is called the Algebraic Reconstruction Technique (ART), see, e.g.,
[5,7,17], and it is obtained also by applying to the hyperplanes described by the linear system
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the method of successive projections onto convex sets. The latter is called in the literature
POCS (for projections onto convex sets), see, e.g., [25], and was originally published by
Bregman [3] and further studied by Gubin, Polyak and Raik [15], see, e.g., Bauschke and
Borwein [1] and Combettes [9] for reviews. It belongs also to the class of row-action
methods described in [6], see also [7]. The literature on Kaczmarz’s algorithm is vast and ranges
from beautiful mathematical theoretical results to many successful applications in important
real-world problems. Kaczmarz’s method is also a special case of several other algorithmic
structures, see, e.g., [4,8,12,20].

In a recent paper [24] (see also [23]) Strohmer and Vershynin propose a randomized
Kaczmarz’s algorithm and claim that “it outperforms all previously known methods on general
extremely overdetermined systems.” In this note we point out that the reported success of the
algorithm of [24] in their numerical simulation depends on the specific choices that are made
in translating the underlying problem, whose geometrical nature is “find a common point of a
set of hyperplanes”, into a system of algebraic equations. If this translation is carefully done,
as in the numerical simulation provided by [24] for the reconstruction of a bandlimited function
from its nonuniformly spaced sampling values, then indeed good performance may result.
However, there will always be legitimate algebraic representations of the underlying problem
(so that the set of solutions of the system of algebraic equations is exactly the set of points in
the intersection of the hyperplanes), for which the selection method of [24] will perform in an
inferior manner.

2 The randomized Kaczmarz’s algorithm
Each equation of the m× n system Ax = b gives rise to a hyperplane

(1)

in the n-dimensional Euclidean space Rn, where ai ∈ Rn and bi ∈ R are the i-th row of the matrix
A and the i-th component of the right-hand side vector b ∈ Rm of the linear system, respectively.

The Euclidean inner product is  where  and  and ‖ai‖
denotes the Euclidean norm. The randomized Kaczmarz’s algorithm of Strohmer and
Vershynin is as follows.

Algorithm 1 [24, Algorithm 1]
Initialization—x0 ∈ Rn is arbitrary.

Iterative Step—Given the current iterate xk, calculate the next iterate xk+1 by

(2)

where r (i) is chosen from the set {1, 2, …, m} at random with probability proportional to
‖ar (i)‖ 2.

Obviously, the equations can be scaled, i.e., both sides of each equation 〈ai, x〉 = bi can be
divided through by an arbitrary nonzero real number, say, ci, without changing the hyperplane
Hi but changing only its algebraic presentation. The question is how do such permissible
changes affect the behavior of Algorithm 1, if at all, and what does that mean for the superiority
claim of this algorithm in [24].
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3 The results of Strohmer and Vershynin
Strohmer and Vershynin use the scaled condition number of a matrix A, introduced by Demmel
[10],

(3)

where ‖A‖2 and ‖A‖ F are the spectral norm and the Frobenius norm of A, respectively. Their
main result [24, Theorem 2] states that any iterative sequence  , generated by Algorithm
1, converges to the solution of the system Ax = b with an expected exponential rate, and that
the rate of convergence depends on the scaled condition number κ (A).

In their numerical experiments they compare what they call the standard Kaczmarz method (in
which the rows of A are selected in their “natural” order 1, 2, …) with a simple randomized
Kaczmarz method (in which the rows of A are selected at random with equal probability and
with the randomized Kaczmarz method of Algorithm 1 (where the rows of A are selected at
random with probability proportional to the 2-norm of the rows). They plot the least squares
error versus the number of projections for each algorithm and claim that “Algorithm 1
significantly outperforms the other Kaczmarz methods, demonstrating not only the power of
choosing the projections at random, but also the importance of choosing the projections
according to their relevance.”

4 Theory and practice
Clearly, Kaczmarz’s method is a geometric algorithm (this term was used by Gordon and
Mansour [14]) in the sense that the sequence of iterates generated by it depends only on the
hyperplanes defined by the equations and not on any particular algebraic representation of the
hyperplanes. One can always use real nonzero numbers, say ci, i = 1, 2, …, m, and divide
through each equation 〈ai, x〉 = bi, without affecting the hyperplanes defined by the equations
and the solution set of the system. Therefore, the rate of convergence of a geometric algorithm
must depend on properties of the underlying geometric objects (the hyperplanes) and not on
their algebraic representation. This geometric approach has been mathematically studied in
several works, see, e.g., Hamaker and Solmon [16], Kayalar and Weinert [22], Bauschke,
Borwein and Lewis [2] and Deutsch and Hundal [11] which consider, in various settings, the
connection between the angles among the underlying sets and the rate of convergence of the
alternating projections method. When specialized to hyperplanes, that algorithm coincides with
Kaczmarz’s method and the results apply to the linear system of equations Ax = b.

A scaling of the equations will change the system matrix A and its scaled condition number κ
(A) and, in the light of [24], it might be tempting to think that it is possible to control in such
a way the convergence rate of Kaczmarz’s method. However, the geometric nature of
Kaczmarz’s method precludes such a possibility. Given any probability distribution
whatsoever to be used for selecting the next hyperplane in Algorithm 1, we can always use real
nonzero numbers to divide through the equations so that the rule for selecting the rows in
Algorithm 1 will be exactly according to that probability distribution.1 Thus, the rule proposed
in Algorithm 1 cannot be in general optimal (or even in any sense superior).

1For any distribution λ i > 0, i = 1, 2, …, m, the equations may be scaled as follows. Let  . Then ‖ãi‖2 = λ i for the scaled
equation. This scaling method also works for any other norm in the Euclidean space.
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Thus, the results shown in Figure 1 of [24], cannot be fully explained by the presented theory
there. It is true that the convergence behavior depends on the order-selection of hyperplanes
(as is well-known), but this dependence is determined by the geometry of the hyperplanes (the
angles among them) and not by their algebraic representation, see, e.g., [2,11,16,18,19,22].

Stated differently, if, for any reason whatsoever, we believe that at iteration k hyperplane Hi
should be picked with higher probability then hyperplane Hj, then this is the case however the
equations representing Hi and Hj are scaled (since the step of projecting onto the selected
hyperplane is independent of the scaling). Hence, a claim that states that an order-selection
methodology that depends on the norms of the ais in the representation of the hyperplanes is
generally superior to another order-selection methodology must be inherently false.

To avoid inferior behavior by the randomized Kaczmarz algorithm, it is essential that the
system of algebraic equations that represent the set of hyperplanes be carefully chosen. Indeed,
this was done by Strohmer and Vershynin [24] in their numerical simulation in Section 4.1,
see their equation (18). Had they selected a different algebraic representation, they would have
obtained different convergence behavior. In particular, if they scaled their equations so that
‖ai‖ = 1 after scaling, then the reported difference between the behaviors of simple randomized
Kaczmarz and of Algorithm 1 would have disappeared. And, if by the luck of the draw, the
algebraic representation happened to be such that the norm associated with one equation is
very much larger than the norms associated with the other equations, then the progress made
by Algorithm 1 towards a solution would be poor due to the fact that the random selection
would keep selecting the same equation most of the time.
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