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C. elegans agingAn algorithm for determining networks from gene expression data enables the identifica-tion of genes potentially linked to aging in worms.
Abstract
A central goal of biogerontology is to identify robust gene-expression biomarkers of aging. Here we develop a method 
where the biomarkers are networks of genes selected based on age-dependent activity and a graph-theoretic 
property called modularity. Tested on Caenorhabditis elegans, our algorithm yields better biomarkers than previous 
methods - they are more conserved across studies and better predictors of age. We apply these modular biomarkers to 
assign novel aging-related functions to poorly characterized longevity genes.

Background
Aging is a highly complex biological process involving an
elaborate series of transcriptional changes. These changes
can vary substantially in different species, in different indi-
viduals of the same species, and even in different cells of
the same individual [1-3]. Because of this complexity, tran-
scriptional signatures of aging are often subtle, making
microarray data difficult to interpret - more so than for
many diseases [4,5]. Interaction networks represent prior
biological knowledge about gene connectivity that can be
exploited to help interpret complex phenotypes like aging
[6,7]. Here for the first time, we integrate networks with
gene expression data to identify modular subnetwork bio-
markers of chronological age.

With few exceptions, previous analyses of aging microar-
ray data have been limited to studying the differential
expression of individual genes. However, single-gene anal-
yses have been criticized for several reasons. Briefly, they
are insensitive to multivariate effects and often lead to poor
reproducibility across studies [8-10] - even random subsets
of data from the same experiment can produce widely
divergent lists of significant genes. Recent studies have
shown that examining gene expression data at a systems
level - in terms of appropriately chosen groups of genes,
rather than single genes - offers several advantages. Com-
pared to significant genes, significant gene groups are more

replicable across different studies, lead to higher perfor-
mance in classification tasks, and are more biologically
interpretable [8,11].

Many complementary approaches to the systems-level
analysis of microarray data have been proposed. These
range from methods like Gene Set Enrichment Analysis
[12], which determines whether members of pre-defined
groups of biologically related genes (such as those supplied
by the Gene Ontology (GO) [13]) share significantly coor-
dinated patterns of expression, to machine learning meth-
ods that consider all possible combinations of genes and
identify groups whose combined expression pattern can dis-
tinguish between different phenotypes - with no constraint
that the genes in a group must be biologically related.

Network methods for interpreting gene expression data
[11,14-19] fall in between these two extremes: they incor-
porate prior biological knowledge in the form of an interac-
tion network - so that genes in a significant group are likely
to participate in shared functions - but they consider many
different combinations of genes, and so are more flexible
than methods using pre-defined gene groups. Gene groups
identified by these methods constitute novel biological
hypotheses about which genes participate together in com-
mon functions related to the class variable.

Here, we propose a novel strategy for identifying subnet-
work biomarkers: we incorporate a measure of topological
modularity into the expression for subnetwork score. This
yields subnetwork biomarkers that are biologically cohe-
sive and that have different activity levels at different ages.
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Using two aging microarray datasets, we show that our
method improves on previous approaches, yielding subnet-
works that are more conserved across studies, and that per-
form better in a machine learning task. We identify the
subnetworks that play a role in worm aging, and then
explore their connection with known longevity genes.
Finally, we apply them to assign putative aging-related
functions to longevity genes (genes that affect lifespan
when deleted or perturbed). Worm is the ideal model organ-
ism for studying these questions, since it has the largest
number of characterized longevity genes [20], and microar-
ray datasets using worms of four or more ages are publicly
available [2,21]. Our work builds on a family of successful
algorithms that incorporate supervised information to find
subnetworks with phenotype-dependent activity, which we
discuss below.

Methods for extracting active subnetworks by integrating 
gene expression data, network connectivity, and 
supervised class labels
To date, some of the most successful network-based meth-
ods of gene group identification for class prediction have
been the score-based subnetwork markers originally pro-
posed in Ideker et al. [22] and developed and expanded in
later works, for example, [11,14,15,18,23,24]. Subnetworks
identified using these approaches were recently shown to be
highly conserved across studies and to perform better than
individual genes or pre-defined gene groups at predicting
breast cancer metastasis [11].

Most of these methods share the same basic architecture.
Each algorithm aggregates genes around a seed node in a
way that maximizes some measure of performance. In pre-
vious implementations, the score is a function of the sub-
network activity (often calculated as the mean expression
value of the genes in the subnetwork) and the class label -
that is, subnetworks get high scores if their activity is differ-
ent for different classes. Subnetworks are grown outward
iteratively from a seed node, typically using a greedy search
procedure to maximize subnetwork score: at every step, the
network neighbor of the current subnetwork yielding the
largest score increase is added to the subnetwork.

Subnetwork scores are calculated differently in individual
implementations (for example, [18] uses the t-statistic and
[11] uses mutual information) but are always solely a func-
tion of what we refer to as class relevance, that is, of
expression data and class labels. In particular, in all previ-
ous implementations the subnetwork score is insensitive to
network topology - the only topological constraint is that
subnetwork members must form a connected component.

However, a large body of work in network theory has
demonstrated the value of more sophisticated topological
measures of network cohesiveness, or modularity [25,26].
In fact, many algorithms successfully identify groups of
functionally related genes on the basis of network topology

alone. The simple intuition behind these algorithms is that
genes that are members of a highly interconnected group
(that is, only sparsely connected to the rest of the network)
are more likely to participate in the same biological func-
tion or process. In biological networks, genes belonging to
the same topological module are more likely to share func-
tional annotations or belong to the same protein complex
[27-29].

No score-based subnetwork method proposed to date
takes advantage of the rich modular structure of biological
interaction networks. Here, we propose incorporating topo-
logical modularity into the expression for subnetwork
score, and show that this approach offers important advan-
tages - increased conservation across studies, and improved
performance on a learning task. For the remainder of the
paper, we refer to subnetworks grown using scores that are
a function of class relevance alone as regular subnetworks,
and to those grown using our new scoring criterion as mod-
ular subnetworks.

Results and discussion
Identifying active subnetworks in aging by trading off 
network modularity and class relevance
Here, we give a basic outline of our method for identifying
subnetworks that are both highly modular and relevant to
the class variable (Figure 1), and then we discuss the novel
aspect - the subnetwork scoring method - in detail; other
algorithm parameters are listed in Materials and methods.
We compared the performance characteristics of modular
and regular subnetworks using two microarray studies of
worm aging [2,21].
Identifying modular subnetworks
Our method is summarized in Figure 2. First, we assign a
weight to every edge in the interaction network that reflects
the strength of the relation between the two genes that flank
it (quantified using Spearman correlation). For genes i and j
with normalized expression vectors zi and zj, the weight wij
is defined as:

Next, we grow subnetworks starting at particular seed 
genes in the network (see Materials and methods). At each 
stage of the network growth procedure, the algorithm con-
siders all network neighbors of the current subnetwork N. 
For each neighbor, the algorithm calculates the change in 
subnetwork score that would result if that neighbor were 
added to N. Here, we define the subnetwork score S as a 
weighted sum of class relevance R and modularity M, 

where R captures how related subnetwork activity is to age 
and M measures subnetwork cohesiveness:

w corrij i j ij ij= ⋅ =( , )z z δ δ, where 
 if there is a network edg1 ee between nodes  and 

 otherwise

i j

0

⎧
⎨
⎩



Fortney et al. Genome Biology 2010, 11:R13
http://genomebiology.com/2010/11/2/R13

Page 3 of 15
At every stage, the neighbor that leads to the highest
score increase (without reducing either class relevance or
modularity) is added to the subnetwork.

The intuition behind the modularity parameter M is that it
allows us to trade off the information in gene expression
data with the prior knowledge about gene connectivity
encoded in the functional interaction network: for noisy
microarray studies, or ones with few samples, we should
place a greater emphasis on prior knowledge by choosing
higher values for β. Previous subnetwork scoring algo-
rithms effectively assume that β = 0, or S = R.

Class relevance R

We measure class relevance as the Spearman correlation
between subnetwork activity and age, so that a subnetwork
is considered age-related to the extent that its activity level
either increases or decreases monotonically with increasing
age (Figure 1b). Subnetwork activity is calculated as the
mean expression level of subnetwork genes. Thus, if the
genes in subnetwork N have normalized expression vectors
{z1, ..., zn}, and c is the vector of ages for each sample, then

the activity is , and the class relevance is R =

|corr(a, c)|.
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Figure 1 High-scoring subnetworks fulfill two criteria: they are modular and related to aging. (a) High-scoring subnetworks have high modu-
larity, that is, they are highly interconnected, and sparsely connected to the rest of the network. (b) High-scoring subnetworks have high class rele-
vance, that is, they have activity levels that increase or decrease as a function of worm age.
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Figure 2 Identifying modular subnetworks. (a) Start with the largest connected component of the functional interaction network representing all 
genes whose expression has been measured. (b) Weight every edge of the network with the absolute value of the Spearman correlation between the 
two genes flanking it. (c) Identify age-related subnetworks by growing subnetworks iteratively out from seed nodes.
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Network modularity M
To define the modularity of a connected set of genes in a
network, we use a weighted generalization of the local mea-
sure proposed in Lancichinetti and Fortunato [30]. We cal-
culate the modularity for a subnetwork as the edge weight
internal to the subnetwork divided by the total edge weight
of all subnetwork nodes, squared. For subnetwork N, we
define the internal, external, and total weight:

Then the modularity of N can be written as .

For all subnetworks, M lies between 0 and 1.
Comparing regular and modular subnetworks
To compare the performance of regular and modular sub-
networks, we generated several subnetworks of each type
by adjusting algorithm parameters. For modular subnet-
works, we set the modularity coefficient β = 50, 100, 250,
500, or 1,000 (significant subnetworks generated using
these parameters are called m1, m2, m3, m4 and m5). For
regular networks we set β = 0, and halted subnetwork
growth at different score cutoff thresholds r = 0.01, 0.02,
0.05, 0.1 or 0.2 (groups of significant subnetworks are
called r1, r2, r3, r4, and r5).

We generated modular subnetworks m1 to m5 and regular
subnetworks r1 to r5 separately for two different C. elegans
aging microarray datasets: 104 microarrays of individual
wild-type (N2) worms over 7 ages (9 to 17 microarrays per
age) [2], and 16 microarrays of pooled sterile (fer-15)
worms over 4 ages (4 microarrays per age) [21]. For each
study, we grew subnetworks seeded at every node in the
functional interaction network, so that corresponding sub-
networks grown using different expression datasets could
be directly compared. We used randomization tests to deter-
mine which subnetworks were significantly associated with
age in each study. For further details, see Materials and
methods. Below, we compare these regular and modular
subnetworks in terms of their robustness across studies and
performance on a machine learning task.

Modular subnetworks are more robust across studies than 
regular subnetworks
Comparing the modular subnetworks m1 to m5 and the reg-
ular subnetworks r1 to r5 derived from both studies, we
found that modular subnetworks identified as significant in
one study were highly likely to be significant in the other
study (that is, seed genes of significant modular subnet-
works were highly conserved across studies). Figure 3
shows that 15 to 18% of significant modular subnetworks
were identified in both studies; in contrast, only 3 to 5% of
significant regular ones were.

For each modular and regular network type, we also cal-
culated the significance of the overlap between sets of sig-
nificant seed genes using the hypergeometric test, and these
values showed the same trend (Figure 3). While all subnet-
work types were more conserved across studies than would
be expected by chance (P < 10-3), modular subnetworks
were much more conserved than regular ones - they had
enrichment P-values ranging from 10-84 to 10-137, while reg-
ular subnetworks had P-values from 10-3 to 10-38.

While substantially more modular than regular subnet-
works were conserved across studies, many subnetworks
were identified in only one study; this can be partially
accounted for by noise in the individual microarray studies,
the fact that the two studies used different microarray plat-
forms and different strains of worm, and the fact that the
current functional interaction network is not complete and
contains some errors.
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Figure 3 Modular subnetworks are highly conserved across stud-
ies. Modular subnetworks m1 to m5 are shown in green and regular 
subnetworks r1 to r5 in blue. Bar height shows the percentage overlap 
across studies for seed genes of significant modular and regular sub-
networks derived from the data in Golden et al. [2] and Budovskaya et 
al. [21]; this is calculated as the size of the intersection of sets of signif-
icant seed genes from both studies, divided by the union. P-values 
above each bar show the significance of the overlap calculated using 
the hypergeometric test.
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Modular subnetworks trained on aging gene expression 
data from wild-type worms successfully predict age in fer-
15 worms
We compared the performance of single genes, regular sub-
networks, and modular subnetworks on a machine learning
task: predicting worm age on the basis of gene expression
levels (Figure 4). We acquired sets of significant genes
from [2]; g1 is made up of all the genes considered signifi-
cant in that study, and g2 is the aging gene signature used
for machine learning in [2] (that is, g2 is the 100 most sig-
nificant genes from g1). Using machine learning features
drawn from gene sets g1 to g2, regular subnetworks r1 to
r5, or modular subnetworks m1 to m5 derived from the
larger microarray study [2], we trained support vector
regression (SVR) algorithms to predict the age of wild-type
worms on the basis of gene expression (for details, see
Materials and methods). We then tested the performance of
the learned feature weights on an independent data set in a
different strain of worm (fer-15) [21]. Performance on the
test set was quantified as the squared correlation coefficient
(SCC) between worm ages predicted by the SVR and true
worm ages (measuring performance in terms of mean-
squared error would be inappropriate here, because the
worms in the training and test sets had different lifespans).
All P-values reported in this section were calculated using
the Wilcoxon rank-sum comparison of medians test.

To capture the typical performance of machine learners
that used either genes or subnetworks as features, we con-

sidered four different sizes of feature set (5, 10, 25, or 50
features). Then, for each size of feature set, and for each set
of genes (g1 to g2) or subnetworks (r1 to r5, m1 to m5), we
performed 1,000 tests. For example, for the 25-feature
SVRs, and for the m1 significant subnetworks, we ran-
domly drew 25 subnetworks from m1, trained them on the
wild-type worm data, and then tested them on the fer-15
data - and repeated that process of drawing, training, and
testing 1,000 times. Figure 5 summarizes test results at each
feature level, showing the typical performance of the best
sets of genes, regular subnetworks, and modular subnet-
works. Full results for every parameter setting are available
in Additional file 1, and P-value comparisons in Additional
file 2.

Over all tests, the SVRs using 25 or 50 modular subnet-
work features (of the m1 and m3 types) achieved the high-
est typical performance, with a median SCC of 0.91
between predicted and true worm age; this is a statistically
significant 7% and 26% improvement over the best perfor-
mances of regular subnetworks (P < 10-83) and genes (P <
10-202), respectively (Figure 5).
Subnetworks versus genes
Modular and regular subnetworks dramatically outperform
significant genes across a range of parameters. For exam-
ple, using 25 features (Figure 5), the best modular subnet-
works have a median SCC of 0.91 and the best regular
subnetworks of 0.85, versus 0.70 for the 100-gene signa-
ture. This result was consistent across feature levels and

Figure 4 Predicting worm age using machine learning. The activities of genes or subnetworks (subnetwork activity is calculated as the mean ac-
tivity of its member genes) are used by support vector regression (SVR) algorithms to predict age on the basis of gene expression. Performance is 
typically measured using both the mean-squared error (MSE) of the difference between true and predicted ages, and the squared correlation coeffi-
cient between true and predicted ages.
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parameter settings, and is highly significant for all tests:
that is, for every comparison between modular subnetwork
features and gene features, we have P < 10-15. For all sizes
of feature set, the best-performing subnetworks (m3)
always showed a median SCC at least 0.16 higher than the
best-performing genes (g2), that is, at least a 24% improve-
ment.
Modular versus regular subnetworks
For all sizes of feature set, the median SCC of the best mod-
ular subnetwork type always exceeded that of the best regu-
lar subnetwork type by 0.05 to 0.08, corresponding to a 6 to
10% performance improvement (Figure 5). The perfor-
mance difference between the best modular subnetworks
and the best regular subnetworks is highly significant at all
feature levels (P < 10-32).

It was not only the best modular subnetworks that outper-
formed the best regular subnetworks; in fact, modular sub-
networks significantly outperformed the best regular
subnetworks for most parameter settings. With the excep-
tion of m5 (β = 1,000), each modular subnetwork type sig-
nificantly outperforms the best regular subnetwork type at
all feature levels. For three types of modular subnetwork
(m1 to m3), the performance difference between them and

the best regular subnetworks is highly significant (rank-sum
P < 10-26 for every comparison); m4 outperforms the best
regular subnetworks at P < 10-5 for three feature levels, and
at P < 10-2 for five features; for m5, there is no consistent
trend (Additional file 1). All pairwise comparisons (P-val-
ues) between regular and modular subnetworks are avail-
able in Additional file 2.
The role of the modularity coefficient β in machine learning
Different values of β correspond to giving different propor-
tional weights to the information in gene expression data
and to the prior knowledge about gene connectivity
encoded in the functional interaction network: for noisy
microarray studies, or ones with few samples, we might
want to depend more on prior knowledge by choosing a
high value for β.

For the Golden et al. dataset [2] that we used for training,
we found that a value of β = 100 corresponds roughly to
treating class relevance and modularity as equally impor-
tant in the expression for subnetwork score: in simulations
where we generated subnetworks using either modularity or
class relevance alone as the scoring criterion (that is, S = M
or S = R), the median modularity of the S = M subnetworks
was two orders of magnitude smaller than the median class
relevance of the S = R ones, that is, 'good' values for modu-
larity are roughly 100 times smaller than 'good' values for
class relevance.

As β becomes larger, the proportional contribution of
class relevance to the expression for subnetwork score
becomes smaller - and so for large enough values of β, the
algorithm will behave essentially like other purely unsuper-
vised network clustering algorithms that greedily aggregate
nodes around a seed to maximize modularity [29-31]. In
our tests, subnetworks generated using β = 50, 100, or 250
behaved virtually identically on the learning task; the per-
formance of β = 500 subnetworks was typically a bit lower;
and that of β = 1,000 ones lower still. For large enough val-
ues of β, we would expect the typical performance of mod-
ular subnetworks to fall below that of regular subnetworks,
because supervised feature selection is superior to unsuper-
vised feature selection [32].

In the previous two sections, we established that modular
subnetworks are more robust across studies than regular
subnetworks and perform better in a worm age prediction
task. Modular subnetworks grown using the coefficient β =
250 showed both the highest robustness across studies and
the best performance on the test set, so we chose to analyze
them in greater detail. For the remainder of the paper, we
will explore the relation between these subnetwork bio-
markers (generated from the larger microarray study [2])
and worm aging. The full set of these subnetworks is avail-
able in Additional file 2.

Figure 5 Subnetworks and genes predict the age of fer-15 worms. 
Modular subnetworks are shown in green, regular subnetworks in 
blue, and gene sets in gray. This figure shows the best-performing type 
of modular subnetworks, regular subnetworks, and genes at each fea-
ture level. For modular subnetworks, this is type m3 at every feature 
level; for regular subnetworks, type r3 at 5 and 10 features, r2 at 25 fea-
tures, and r4 at 50 features; for genes, g2 at all feature levels. Support 
vector regression algorithms using 5, 10, 25, or 50 features were trained 
to predict age on the data from Golden et al. [2] and tested on Budovs-
kaya et al. [21]. For each size of feature set, 1,000 different support vec-
tor regression learners were computed; curves show their median 
performance (quantified using the squared correlation coefficient 
(SCC) between true and predicted age in the bottom panel), and error 
bars indicate the 95% confidence intervals for the medians (calculated 
using a bootstrap estimate).
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Modular subnetworks predict wild-type worm age with low 
mean-squared error
Here, we show using 5-fold cross-validation that modular
subnetworks grown using β = 250 can predict the age of
individual wild-type worms in the original dataset (104
worm microarrays over 7 ages) with low mean-squared
error and a high SCC. Again, we used support regression
algorithms (SVRs) for all learning tasks.

Because it would be circular to predict age on the same
dataset that was used to determine the features [33], we first
divided the wild-type worm aging dataset into five stratified
folds for cross-validation. We repeated the search for signif-
icant subnetworks five times, each time using four-fifths of
the data to select significant subnetworks and train SVRs,
and then the remaining fifth as a test set to evaluate the
learned feature weights. We compared the performance of
modular subnetworks with that of the top 100 differentially
expressed genes reported in [2]. To construct SVRs using
genes as features, we used the same five stratified folds -
that is, we used four-fifths of the data to select the top 100
most significant genes and learn feature weights, and the
remaining fifth as test data, and repeated this process for
each of the five folds. As in the original study [2], for each
fold we selected the top 100 significant genes by perform-
ing an F-test and applying a false discovery rate [34] (FDR)
correction.

For four different sizes of feature set (5, 10, 25 or 50), we
generated 1,000 different SVRs using either modular sub-
networks or genes as features to capture their typical perfor-
mance. All P-values reported here were computed using the
Wilcoxon rank-sum test.

At every size of feature set (5, 10, 25 or 50), modular sub-
networks significantly outperform differentially expressed
genes (P < 10-28) according to the metrics of mean-squared
error (MSE) and SCC between predicted age and true age.
For example, using feature sets of size 50, we obtained a
median MSE of 7.9 for subnetworks versus 11.2 for genes
(P < 10-98), and a median SCC of 0.77 for subnetworks ver-
sus 0.69 for genes (P < 10-65). Figure 6a shows the median
performance of modular subnetworks and genes across all
tests, and Figure 6b shows the predictions of a typical SVR
learner built using 50 modular subnetworks as features. At
every size of feature set, the MSE for genes was at least
1.76 higher than the corresponding MSE for subnetworks
(that is, at least 22% higher than the corresponding MSE for
subnetworks) (P < 10-28), and the SCC for subnetworks was
at least 0.05 higher (P < 10-28).

Over all tests, the modular SVRs with 50 features
achieved the best performance: a median SCC of 0.77 and a
median MSE of 7.9. This SCC is substantially lower than
the highest one achieved on the test set of pooled fer-15
worms in the last section (0.91) because predicting the age
of an individual worm is more difficult than predicting the

age of a large pooled group of age-matched worms (pooling
removes individual variability).

Longevity genes play crucial roles in significant 
subnetworks
For these analyses, we compiled two sets of known longev-
ity genes (see Materials and methods; Additional file 3):
L1, a set of 233 genes that extend lifespan when perturbed,
and L2, a larger set of 494 genes that either shorten or
extend lifespan when perturbed.
Significant subnetworks are enriched for known longevity 
genes
We found that significant subnetworks derived using both
C. elegans aging microarray studies [2,21] were signifi-
cantly enriched for both sets of longevity genes, relative to
the background set of 12,808 genes represented in the func-
tional interaction network. All P-values reported here were
calculated using the hypergeometric test. For the Golden et
al. data [2], of the 1,957 genes that play a role in significant
subnetworks, 65 are in L1 (P < 10-6) and 124 are in L2 (P <
10-8), and of the 535 seed genes that produce significant
subnetworks, 27 are in L1 (P < 10-5) and 45 are in L2 (P <
10-6). For the Budovskaya et al. study [21], subnetwork
seeds were highly enriched for known longevity genes, and
the set of all subnetwork genes was slightly enriched for
them. Of the 1,559 seed genes of significant subnetworks,
43 are in L1 (P = 0.003) and 90 are in L2 (P < 10-4), and of
the 4,158 genes represented in some subnetwork, 88 are in
L1 (P = 0.048) and 181 are in L2 (P = 0.025).
Examples of significant subnetworks containing known 
longevity genes
While high-throughput experimental methods have helped
to identify hundreds of worm longevity genes [20], their
aging-related functions remain poorly understood. We
found that subnetwork biomarkers are highly enriched for
longevity genes. Thus, subnetworks can provide a molecu-
lar context for these genes in aging: they can be applied to
uncover new connections between different longevity
genes, or to assign putative aging-related functions to them.

In Figure 7, we show several representative examples of
significant subnetworks derived from the Golden et al. data
[2] that involve multiple known longevity genes. The com-
plete list is given in Additional file 3; individual NAViGa-
TOR XML [35] and PSI-MI XML [36] files for each
subnetwork are available from the supplementary website
[37]. Subnetwork A involves longevity genes vit-2 and vit-
5. B has known longevity genes age-1, daf-18, and vit-2;
previous work has uncovered that a mutation in daf-18 will
suppress the lifespan-extending effect of an age-1 mutation
[38]. C contains longevity genes rps-3 and skr-1, which are
involved in protein anabolic and catabolic processes,
respectively. Subnetwork D contains longevity genes unc-
60 and tag-300, which are both involved in locomotion. E
contains longevity genes fat-7 and elo-5, which are
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involved in fatty acid desaturation and elongation. Subnet-
work F has longevity genes rps-22 and rha-2, and G has
longevity genes blmp-1, his-71, and Y42G9A.4. Blmp-1
and his-71 are both involved in DNA binding.

Modular subnetworks participate in many different age-
related biological processes
Aging is highly stochastic and affects many distinct bio-
chemical pathways. We analyzed the union of all genes in
significant modular subnetworks using biological process
categories from the GO [13] and pathways from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) [39] data-
bases to determine their relation to known mechanisms of
aging. Full results are given in Tables 1 and 2; all functions
and pathways shown in the table and discussed below are
significant at P < 0.05 after an FDR correction.

In total, we identified 27 KEGG pathways and 37 non-
redundant GO biological processes (see Materials and
methods) that were significantly enriched for subnetwork
genes. To test whether these pathways and processes were
also related to aging, we calculated the significance of their
overlap with the set of experimentally determined longevity
genes (Additional file 4). We found that one-third of the GO
biological processes (12 of 37) and KEGG pathways (10 of
27) associated with subnetworks were significantly
enriched for longevity genes (P < 0.05). Aging-associated
GO categories enriched for subnetwork genes include 'loco-

motory behavior,' which has recently been proposed as a
biomarker of physiological aging [2], and 'determination of
adult life span'; KEGG pathways include 'cell cycle' and
several metabolic pathways (including 'citrate cycle,' 'glyc-
olysis').

Modular subnetworks can be used to annotate longevity 
genes with novel functions
An important advantage of subnetwork over single-gene
biomarkers is that they can be applied to infer novel func-
tions for subnetwork members [40]. Most worm longevity
genes were identified in high-throughput RNA interference
screens, and thus many remain poorly characterized. And
though several longevity genes do have some previously
known functions, their aging-related function is still
unknown.

We used modular subnetworks (derived from the expres-
sion data in [2]) to assign putative functions in aging to
known longevity genes by annotating them with the GO
biological process categories that their associated subnet-
works were significantly enriched for. In total, we provided
49 longevity genes with novel annotations; 9 of these genes
had no previous GO biological process annotations (apart
from those electronically inferred) or well-characterized
orthologs (named NCBI KOGs [41]). The most significant
novel annotation for each longevity gene is given in Table
3, as an example of our approach (poorly characterized

Figure 6 Modular subnetwork biomarkers of aging predict the age of individual wild-type worms. (a) Machine learners built from modular 
subnetworks or genes, predicting worm age in a cross-validation task on the data from Golden et al. [2] using 5, 10, 25, or 50 features. For each size of 
feature set, 1,000 different support vector regression learners were computed; curves show their median performance (quantified using mean-
squared error (MSE) in the top panel, and the squared correlation coefficient (SCC) between true and predicted age in the bottom panel), and error 
bars indicate the 95% confidence intervals for the medians (calculated using a bootstrap estimate). (b) The performance of a typical support vector 
regression learner built using 50 modular subnetworks as features; true worm age is shown on the x-axis, and predicted age on the y-axis.
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genes are indicated with an asterisk). The full list of all lon-
gevity gene GO categories inferred by subnetwork annota-
tions is available in Additional file 5, and on the
supplementary website [37]. All GO categories in the tables
are significant with P < 0.05 (after an FDR correction), and
annotated to at least 25% of subnetwork genes.

Conclusions
Aging results not from individual genes acting in isolation
of one another, but from the combined activity of sets of
associated genes representing a multiplicity of different
biological pathways. For the most part, the organization and
function of these aging-related pathways remain poorly
understood. In particular, the role of most longevity genes
in aging is still unknown.

In this work, we showed that high-throughput informa-
tion about which genes are likely associated with which
other genes - in the form of a functional interaction network
- can yield new insights into the transcriptional programs of
aging. We identified modular subnetworks associated with
worm aging - highly interconnected groups of genes that
change activity with age - and showed that they are effec-
tive biomarkers for predicting worm age on the basis of
gene expression. In particular, they outperform biomarkers
of aging based on the activity of single genes or regular

subnetworks. Furthermore, we found that modular subnet-
work biomarkers were significantly enriched for known
longevity genes. Thus, modular subnetwork biomarkers can
provide a molecular context for each longevity gene in
aging - in effect, each longevity subnetwork constitutes a
biological hypothesis as to which genes interact with
known longevity genes in some common age-related func-
tion.

This work is the first to use a new subnetwork perfor-
mance criterion that incorporates modularity into the
expression for subnetwork score, and the first to integrate
network information with gene expression data to identify
biomarkers of aging. The subnetwork biomarkers identified
by our method are highly conserved across studies, and this
opens the door to studying longevity genes - or indeed, any
age-related gene set of interest - over a range of different
health and disease conditions. In particular, we are inter-
ested in investigating the different subnetworks associated
with longevity genes in diseases like cancer, and in aging
across species.

Materials and methods
Code
Code for most simulations was written in Matlab R2008b
and is available on the supplementary website [37]. For

Figure 7 Some examples of significant longevity subnetworks. (a-g) Examples of significant modular subnetworks from Golden et al. [2] contain-
ing multiple known longevity genes (from L2; see Materials and methods). Edge width is proportional to gene-gene co-expression, node size is pro-
portional to the Spearman correlation between gene expression and age, and known longevity genes are indicated by green circles.
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support vector regression experiments, we used the Matlab
wrapper to LIBSVM [42]. We analyzed gene sets for
enriched gene ontology using the topGO package (version
1.10.1) [43] in R 2.8.0. Subnetworks were visualized using
NAViGaTOR version 2.1.7 [35,44].

Data sets
Microarray experiments
Aging expression datasets for two recent studies were
downloaded from the Gene Expression Omnibus [45].
From Golden et al. [2], we obtained data for 104 microar-
rays of individual wild-type (N2) worms over 7 ages (9 to
17 microarrays per age). From Budovskaya et al. [21], we
obtained 16 microarrays of pooled sterile (fer-15) worms
over 4 ages (4 microarrays per age). For both studies, we
discarded probesets containing more than 30% missing val-
ues for some age group.
Interaction network
Functional interactions for C. elegans ORFs were down-
loaded from WormNet [46]. The network used in our analy-
ses consists of the largest connected component of the
network formed from all WormNet ORFs represented by
some probeset in two separate worm aging microarray stud-
ies [2,21], and represents 12,808 distinct C. elegans ORFs
and 275,525 interactions.
Longevity genes
We obtained L1, our high confidence set of genes that
extend lifespan when perturbed or knocked out, from the
recent list compiled in [47]. In total, 233 genetic perturba-
tions that extend lifespan belonged to the largest connected

Table 1: Gene Ontology biological process categories 
enriched in the set of genes represented in modular 
subnetworks

Gene Ontology biological 
process

P-value

Translation 6.45E-17

Hermaphrodite genitalia 
development

1.20E-16

Embryonic cleavage 1.37E-15

Germline cell cycle switching, 
mitotic to meiotic cell cycle

8.32E-14

Locomotory behavior 1.84E-13

Meiosis 1.10E-11

Positive regulation of 
multicellular organism 
growth

4.25E-11

Morphogenesis of an 
epithelium

3.85E-06

Protein catabolic process 1.13E-05

Phosphate transport 4.99E-04

Negative regulation of 
multicellular organism 
growth

8.07E-04

Ubiquitin-dependent protein 
catabolic process

1.94E-03

Nucleosome assembly 1.97E-03

Establishment of nucleus 
localization

2.37E-03

Tricarboxylic acid cycle 3.26E-03

DNA replication 4.64E-03

Protein transport 5.01E-03

Energy coupled proton 
transport, against 
electrochemical gradient

5.02E-03

Leucyl-tRNA aminoacylation 5.02E-03

Collagen and cuticulin-based 
cuticle development

5.12E-03

Organelle organization and 
biogenesis

5.19E-03

Chromosome segregation 7.48E-03

mRNA metabolic process 8.44E-03

Protein import into nucleus 1.15E-02

Purine base biosynthetic 
process

1.15E-02

Sulfur compound 
biosynthetic process

1.40E-02

DNA repair 1.45E-02

Determination of adult life 
span

1.74E-02

Threonine metabolic process 1.75E-02

Water-soluble vitamin 
biosynthetic process

1.78E-02

ATP synthesis coupled proton 
transport

3.14E-02

rRNA processing 3.85E-02

Isoleucyl-tRNA 
aminoacylation

4.02E-02

Methionyl-tRNA 
aminoacylation

4.02E-02

Valyl-tRNA aminoacylation 4.02E-02

Embryonic pattern 
specification

4.04E-02

Regulation of cell cycle 4.04E-02

All categories shown are significant at P < 0.05 after an FDR 
correction for multiple testing. GO categories written in italics are 
also enriched for known longevity genes (Additional file 4).

Table 1: Gene Ontology biological process categories 
enriched in the set of genes represented in modular 
subnetworks (Continued)
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component of WormNet made up of genes covered by both
expression studies. We constructed L2, our larger set of lon-
gevity genes, by taking the union of L1 and the set of muta-
tions that affect worm lifespan downloaded from the
GenAge database [20]. This yielded 494 genes that either
shorten or extend lifespan when perturbed (and are anno-

tated to the network we use). Both gene lists are available in
Additional file 4.

Subnetwork analyses
Subnetwork search parameters
Seed genes Previous methods [11,18] seed the subnetwork
search process at a random subset of genes on the network;
a problem with this approach is that different choices of
seed genes might yield substantially different significant
subnetworks. To avoid this bias, we grew subnetworks
seeded from every node of the interaction network. For all
machine learning tests, the total set of significant subnet-
works was reduced to a non-redundant set - that is, if two
significant subnetworks shared more than 25% overlap (as
measured with the Jaccard index), the lower-scoring sub-
network was deleted from the set of candidate features.
Stopping criteria For modular subnetworks grown itera-
tively out from a seed node, the search was halted when
there were no nodes that would increase both subnetwork
modularity and class relevance. For regular subnetworks,
the search was halted when there were no nodes that would
increase the subnetwork score (class relevance) past some
threshold r (r = 0.01, 0.02, 0.05, 0.1 and 0.2 for regular sub-
networks r1 to r5), or when there were no remaining local
nodes (that is, nodes at most two edges away from the
seed).
Identifying significant subnetworks
We calculate subnetwork significance using both self-con-
tained and competitive gene set tests [8,48]. Our competi-
tive test is identical to that used in [11], and our self-
contained test is more stringent - we use the method sug-
gested in [18].

For the self-contained test, we randomized the assign-
ment of ages to worms (samples), and then repeated the
search for subnetworks starting from each network node.
The subnetwork score of the original subnetwork deter-
mined from the true data was then ranked against the corre-
sponding subnetworks determined from the artificial data
that seeded from the same gene. This process was repeated
1,000 times.

For the competitive test, we generated 100 artificial inter-
actomes by randomizing the assignment of gene names to
nodes on the functional interaction network and recalculat-
ing the weight for each network edge based on the new
genes that flanked it (only for modular networks - regular
networks do not use edge information). We repeated the
search for significant subnetworks on each artificial interac-
tome. Scores for subnetworks determined from the true
interactome were ranked against the scores of all subnet-
works generated from the artificial interactomes.

Subnetworks were considered significant if they achieved
P < 0.001 on the local self-contained test and P < 0.05 on
the global competitive test.

Table 2: KEGG pathways enriched in the set of genes 
represented in modular subnetworks

KEGG pathway P-value

Ribosome 2.17E-27

Metabolic pathways 2.70E-15

Proteasome 2.33E-10

Pyrimidine metabolism 1.34E-09

Purine metabolism 7.08E-07

DNA replication 1.54E-06

Nucleotide excision repair 1.81E-05

Aminoacyl-tRNA biosynthesis 2.80E-05

Cell cycle 4.37E-05

Glutamate metabolism 1.54E-04

Glycolysis/gluconeogenesis 2.97E-04

Citrate cycle (TCA cycle) 5.41E-04

Methionine metabolism 1.25E-03

Ubiquitin mediated 
proteolysis

7.19E-03

Pyruvate metabolism 7.27E-03

Base excision repair 7.38E-03

Glyoxylate and dicarboxylate 
metabolism

7.39E-03

Arginine and proline 
metabolism

8.35E-03

Glycine, serine and threonine 
metabolism

8.38E-03

Pentose phosphate pathway 1.23E-02

Valine, leucine and isoleucine 
biosynthesis

1.30E-02

One carbon pool by folate 1.30E-02

RNA polymerase 1.76E-02

Alanine and aspartate 
metabolism

1.76E-02

Non-homologous end-
joining

2.15E-02

Selenoamino acid metabolism 2.17E-02

Mismatch repair 2.20E-02

All categories shown are significant at P < 0.05 after an FDR 
correction for multiple testing. KEGG pathways written in italics 
are also enriched for known longevity genes (Additional file 4).
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Table 3: Assigning putative functions to longevity genes

Gene Gene Ontology biological process P-value

rpl-4 Cellular macromolecular complex 
assembly

2.16E-02

vit-5 Phosphate transport 3.70E-05

rha-2 Cellular macromolecular complex 
assembly

2.16E-02

C06E7.1 Protein complex assembly 2.26E-02

C25H3.6* Transcription from RNA polymerase II 
promoter

4.87E-02

pat-4 Chromatin assembly or disassembly 4.92E-03

C33H5.18 Chromatin assembly or disassembly 3.02E-03

unc-60 Protein complex assembly 2.26E-02

vit-2 Phosphate transport 3.70E-05

ril-1* Cell adhesion 3.57E-02

CD4.4* Ribosome biogenesis 1.85E-02

eif-3.F Organelle organization and biogenesis 3.75E-03

F09F7.5* Pigment metabolic process 5.01E-03

pab-2 Chromatin assembly or disassembly 8.99E-05

hpk-1 Growth 2.78E-02

mdh-1 Lipid metabolic process 3.36E-02

blmp-1 Chromatin assembly 7.22E-04

daf-3 Protein complex assembly 2.26E-02

F28B3.5* Amine metabolic process 3.04E-03

rps-23 tRNA aminoacylation for protein 
translation

1.04E-03

F30A10.10 Chromatin assembly or disassembly 4.95E-02

dlk-1 Transcription from RNA polymerase II 
promoter

4.87E-02

F40F8.5* Nucleobase metabolic process 5.08E-05

elo-5 Lipid metabolic process 4.34E-02

F43G9.3 Water-soluble vitamin metabolic process 2.04E-03

ife-1 Organelle organization and biogenesis 3.75E-03

spt-4 Chromatin assembly or disassembly 8.40E-05

aakb-1 Nucleobase, nucleoside and nucleotide 
metabolic process

1.45E-03

dod-22* Gene expression 1.85E-02

F57B9.3 Amine metabolic process 2.83E-02

cdc-25.1 Amine metabolic process 1.90E-02

nac-3 Cellular macromolecular complex 
assembly

2.16E-02

lin-23 Cytoskeleton organization and biogenesis 2.59E-02

K10D2.2 Anion transport 5.54E-04

ifg-1 Organelle organization and biogenesis 3.75E-03

sir-2.1 Lipid transport 2.44E-04

wip-1* Chromatin assembly or disassembly 1.99E-02
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Machine learning comparisons
We used ε-insensitive SVR algorithms [49] to learn worm
age as a function of the activity of regular subnetworks,
modular subnetworks or differentially expressed genes. All
SVRs were trained using a linear kernel and the default
parameters provided by LIBSVM [42]. For SVR features
made up of subnetworks, subnetwork activity for a sample
was calculated as the mean activity of all the genes in the
subnetwork.
GO and KEGG enrichment analyses
The union of all genes present in some significant modular
subnetwork (β = 250; derived using data from [2]) was
compared with the background network, that is, the set of
12,808 genes present in the largest connected component of
the network formed from all WormNet ORFs represented
by some probeset in both microarray studies [2,21].

Because there is a lot of redundancy in the GO tree, we
used the 'elim' method [43] to determine the most specific
significant biological process categories (that is, those at
the deepest level of the tree), and then controlled for multi-
ple testing using an FDR [34] cutoff of 0.05. For KEGG, we
calculated an enrichment P-value for each term using the
hypergeometric test, and again controlled for multiple test-
ing using an FDR cutoff of 0.05.
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skn-1 Chromatin assembly or disassembly 3.56E-04

vha-6 Regulation of metabolic process 3.84E-02

W01B11.3 Establishment of protein localization 1.93E-04

W06B11.3* Fatty acid metabolic process 6.78E-03

rpl-30 Chromatin assembly or disassembly 3.02E-03

tag-300 Cytoskeleton organization and biogenesis 2.59E-02

Y42G9A.4 Chromatin assembly or disassembly 3.32E-02

gdi-1 Secondary metabolic process 1.98E-02

spl-1 Sulfur metabolic process 2.33E-02

pod-1 Intracellular protein transport 2.04E-02

lrs-2 Intracellular protein transport 2.04E-02

let-60 Nucleotide-excision repair 1.11E-02

The first column lists longevity genes, column 2 shows the most highly enriched Gene Ontology biological process in subnetworks containing 
that gene, and the P-value of the enrichment (hypergeometric test with FDR correction) is shown in column 3. Genes with no previously 
known manual Gene Ontology biological process annotation are indicated with an asterisk.
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