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Abstract
The gastrointestinal peptide hormone gastrin is responsible for initiating the release of gastric acid
in the stomach in response to the presence of food and/or humoral factors such as gastrin releasing
peptide. However, it has a role in the growth and maintenance of the gastric epithelium, and has been
implicated in the formation and growth of gastric cancers. Hypergastrinemia resulting from atrophic
gastritis and pernicious anemia leads to hyperplasia and carcinoid formation in rats, and contributes
to tumor formation in humans. Additionally, gastrin has been suspected to play a role in the formation
and growth of cancers of the colon, but recent studies have instead implicated gastrin processing
intermediates, such as gastrin-17-Gly, acting upon a putative, non-cholecystokinin receptor. This
review summarizes the production and chemical structures of gastrin and the processing intermediate
gastrin-17-Gly, as well as their activities in the gastrointestinal tract, particularly the promotion of
colon cancers.

1. Gastrin processing in the GI tract
John Sydney Edkins postulated in 1905 [1–2] that the acid secretory activity of the stomach
could be attributed to the agent gastrin. The gastrin gene is expressed and gastrin secreted in
a variety of cells in the body, among them those of the small and large intestine (duodenal,
jejunal, ileal, and colonic mucosas), the pancreas, neuroendocrine tissue (the pituitary and
hypothalamus, cerebellum, vagal nerve, and adrenal medulla), the genitals and the respiratory
tract, where it serves a variety of purposes [3–18]. However, “mature” gastrin is predominantly
manufactured by the antral mucosa of the stomach, where G endocrine cells secrete the peptide
in response to the presence of amino acids, dietary amines, and calcium in the stomach, for the
purpose of stimulating gastric acid secretion [19–25, reviewed in 26]. Neutralization of acid
or inhibition of acid secretion also stimulates gastrin release [27–33]. In addition to luminal
stimuli, basolateral stimuli of the G cells by GRP or Ach from nerve fibers, or by humoral
factors such as EGF, also cause the expression and secretion of gastrin in some species [34–
35]. In response to increased acid levels or VIP, D endocrine cells, in turn, secrete somatostatin,
which acts to inhibit the secretion of gastrin.

The expression of the gastrin gene and the processing of its polypeptide product in the
gastrointestinal tract have been gradually revealed through extraction from gastrin-producing
tissues and characterization of its processing intermediates with antibodies, chromatography
and peptide analysis tools such as mass spectrometry. Genomic DNA information revealed the
gastrin gene structure. The mRNA of the 101-residue gastrin precursor preprogastrin is
translated at the endoplasmic reticulum, where an N-terminal signaling sequence is cleaved
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from the peptide between an alanyl and a seryl residue to yield the 80-residue progastrin [36–
38] (Figure 1). Progastrin then passes through the Golgi complex and the trans-Golgi network,
where it can be sulfated on Tyr86 and/or phosphorylated on Ser96. It is further packaged into
secretory vesicles, in which the dibasic sites Arg57-Arg58 and Arg94-Arg95 are probably
cleaved on the C-terminal side by the prohormone convertases PC1/3 and PC2, and the
remaining C-terminal basic residues Arg94-Arg95 are removed by carboxypeptidase E to give
the peptide G34-Gly [39–41; reviewed 42–43]. Another cleavage by prohormone convertases
at Lys74-Lys75 gives G17-Gly [39–41]. Various factors within the secretory vesicles modify
these cleavages, including the differential expression of PC1/3 and PC2 and the pH of the
vesicle interior (pH > 5.5 may inhibit the maturation of prohormone convertases) [41,44–46].

In addition, the sulfation of Tyr86 and the phosphorylation of Ser96 may affect the cleavage of
local dibasic sites, though they have not been shown to affect the biological activity of gastrin,
unlike the closely related peptide CCK, which requires sulfation of tyrosine for activity.
Sulfation and phosphorylation may both increase processing of progastrin [44,46], while
phosphorylation may also affect the conversion of glycine-extended gastrin intermediates to
mature gastrins [47].

The C-terminal glycyl residue of G34-Gly is finally converted to a terminating amide group
by the PAM enzyme to give the mature G34, which is additionally sometimes cleaved to give
mature G17 [39–40] (Figure 2). G17-Gly is not generally converted directly to G17 by PAM
[39]. G17 and G34 are the “classical” gastrins, those that were originally found to stimulate
gastric acid secretion, while G17-Gly, G34-Gly, and progastrin are the “non-classical” gastrins,
or “processing intermediates,” those peptides were not known to have any biological activity
until recently. The ratio of amidated gastrins to processing intermediates varies considerably
across the tissues in which the gastrin gene is expressed. Processing intermediates are quite
scarce in the gastric antrum, making up only about 5% of gastrin gene products, while in the
duodenum the value is 20% [48]. In the colonic mucosa, amidated gastrins are virtually
unknown [48]. Additionally, probably due to variable cleavage of the Lys74-Lys75 bond, the
amount of G34 compared to G17 varies in different tissues. In the GI tract, region-specific
antisera have shown that G17 predominates in the antral mucosa, while G34 is more prevalent
in the duodenum [26].

2. Physiological roles of gastrin in the stomach
Ultimately, gastrin has two major roles in the GI tract, the first of which is the well- known
stimulation of gastric acid secretion in the stomach. The mature gastrins (as well as a small
percentage of non-classical gastrins) are secreted via Ca2+-dependent release in the regulated
secretory pathway from G cells in the gastric antrum and, to a lesser extent, the duodenum
[49,50]. These mature gastrins act upon ECL cells of the gastric fundus, stimulating the release
of histamine, again dependent on intracellular calcium from stores or from the activation of
calcium channels [51–59]. Histamine then, via paracrine diffusion, interacts with parietal
(oxytinic) cells, stimulating the upregulation of surface H+/K+ proton pumps and thus the
secretion of acid [51,60]. Gastrin itself and acetylcholine also act directly on parietal cells
through surface receptors to stimulate acid secretion; in this case, histamine potentiates the
activity of gastrin, but this effect is still secondary to the stimulation of acid secretion by
histamine [61–65]. Gastrin may also sensitize parietal cells to other acid secretagogues [66].

As acid secretion increases, D endocrine cells release somatostatin, which acts on parietal cells
to inhibit acid secretion, and on ECL cells to inhibit histamine secretion, providing a negative
feedback control mechanism [30–31,67–68]. In the duodenum, secretin (through bicarbonate
release) and CCK (through the potentiation of secretin) also inhibit acid secretion as stomach
contents pass into the small intestine.
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Additionally, gastrin promotes the maintenance and proliferation of the gastric epithelium
[reviewed in 26,42–43,48,69]. It does this by promoting the proliferation of gastrin receptor-
expressing ECL cells, as well as mucous neck cells in the gastric mucosas, that can differentiate
into parietal cells, though gastrin does not cause proliferation of parietal cells themselves
[70–76]. H2 receptor antagonists and proton pump inhibitors, as well as resection of the acid-
secreting mucosa, suppress gastric acid secretion, which promotes elevated gastrin secretion.
This promotes increased ECL proliferation [77–80]. Resection of the antral mucosa inhibits
this ECL cell hyperplasia, additionally indicating that gastrin is responsible for mucosal
proliferation [81]. ECL cells, in turn, may indirectly promote the proliferation of other gastric
epithelial cells that do not express the gastrin receptor through the secretion of growth factors
such as TGF-α and HB-EGF [82–85, reviewed in 86]. Patients with increased levels of gastrin
in circulation show a greater thickness of the gastric and colonic mucosa, as well as a larger
mass of parietal and ECL cells [75].

The acceptance of gastrin as a growth factor for the gastric mucosa naturally led to the
suggestion that it might play a role in gastrointestinal cancers. Along with the ability to
stimulate proliferation, gastrin has been found to have other biological activities, including
inhibition of apoptosis [87] and the stimulation of invasion and migration of epithelial cells
[88–90]. Conditions such as atrophic gastritis and pernicious anemia, as well as the
aforementioned administration of proton pump inhibitors or H2 receptor antagonists, reduce
gastric acid secretion significantly (achlorhydria), leading to hypergastrinemia [91–92,
reviewed in 48]. The presence of gastrin-secreting neoplasms (gastrinomas), associated with
the Zollinger-Ellison syndrome, in the pancreas, duodenum, and the gastric antrum, may also
lead to hypergastrinemia [95–100]. The resulting stimulation of ECL cell proliferation from
hypergastrinemia frequently leads to ECL cell hyperplasia and carcinoids in rats [91–94].
Similar hypergastrinemia in humans generally leads to hyperplasia only, and progression to
tumor formation seems to be condition-specific and require other factors in addition to gastrin
[101]. Zollinger-Ellison multiple endocrine neoplasia-1 syndrome patients, for instance, are
considerably more likely to have ECL cell carcinoids (up to 30% of those with the disease)
than those with atrophic gastritis/pernicious anemia (5%) [101–102]. Colonization of the
stomach by the bacteria Helicobacter pylori, a significant factor in the development of atrophic
gastritis, causes a decrease in acid secretion, leading to an increase in gastrin secretion. This
increase in gastrin stimulates the proliferation of H. pylori that in turn, leads to a further
decrease in gastric acid secretion and eventual achlorhydria and hypergastrinemia, leading to
gastric atrophy and cancer, as well as the formation of ulcers [103–104]. The small percentage
of patients who actually develop cancer, as noted above, indicates that other factors must be
involved, including environmental or inherited factors or the inflammatory response [105–
107].

It has been suggested that gastrin is itself not a factor in tumor formation, but merely a marker
of achlorhydria, which is the actual factor in causing infection and inflammation that leads to
carcinogenesis [108–110]. Regardless, gastrin is probably involved in the acceleration of
malignant tumor formation [104] and promotion of the growth of gastric tumors [111–115,
reviewed in 48].

3. Gastrin and CCK2-R
The actions of the hormones CCK are mediated by two receptors, CCK1-R and CCK2-R
(formerly CCK-A and CCK-B). Both belong to the family of G-protein-coupled receptors,
(GPCRs) which are characterized by seven trans-plasma membrane helical domains. CCK1-R
is distributed widely in the peripheral nervous system and in the upper gastrointestinal tract,
and less often in the central nervous system. In the nervous system, CCK1-R is present on vagal
afferent neurons and may mediate the physiological response of satiety [116–117]. It also
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regulates dopamine release that may affect neuropsychiatric disorders such as schizophrenia
[118, reviewed in 119]. In the gut, CCK1-R is present in the gastric mucosa (mostly in the basal
region of the fundic mucosa) and gallbladder and GI smooth muscle cells, and is probably
expressed by pancreatic acini and islets, as well as vagal nerve cells [120–121, reviewed in
122–124]. It mediates the release of pepsinogen from gastric chief cells and somatostatin from
D cells to inhibit gastric acid secretion [125–126], gall bladder contraction [127–128], delay
of gastric emptying [129–131], the relaxation of the sphincter of Oddi and the lower esophageal
sphincter [132], and the secretion of enzymes and hormones from the pancreas [133–138], as
well as pancreatic proliferation [139–142].

CCK2-R, on the other hand, is dominant in the central nervous system, where it may be involved
in inhibiting dopamine release and provoking the anxiety response [119,143]. CCK2-R is also
found in the upper GI tract in the gastric mucosa (mostly in the midglandular region of the
fundic mucosa, where parietal cells are present), where in non-cancerous cells it mediates the
activities linked to gastrin above: proliferation of the gastric mucosa, stimulation of histamine
from ECL cells, stimulation of acid from parietal cells, as well as inhibition of somatostatin
release from D cells [62,144–145, reviewed in 122–124]. It is also expressed in the pancreas
and probably mediates glucagon secretion there in humans [146]. CCK2-R is also expressed
in gastric and pancreatic tumor cell lines where it may mediate tumor growth [147–156], while
CCK1-R may be present in some pancreatic tumor cell lines but role of the receptor there is
unclear [157–159]. Ultimately, the cloning of cDNAs for brain CCK2-R and for the gastrin
parietal cell receptor indicated that the two receptors are identical, and thus, that CCK2-R is
bound by gastrin with high affinity and mediates its effects in the gastric mucosa [160–162].

Like gastrin, CCK is produced from the processing of a 115-amino acid residue preprohormone
into mature C-terminally amidated peptides, occurring as 58- and 8-residue forms [163–164].
The primary structure of gastrin and CCK are related by their identical C-terminal tetrapeptide
sequences (Trp-Met-Asp-Phe) and amidation. This sequence is essential for biological activity
at both receptor subtypes. Maximum biological activity at the CCK1-R receptor requires at
least the seven C-terminal residues of the CCK sequence, with the N-terminal tyrosyl residue
sulfated (Tyr52 of CCK-58). Sulfated CCK-8 meets this requirement. G17 (sulfated or not) and
non-sulfated CCK-8 bind with 500–1000-fold less affinity, while CCK-4 binds with 10000-
fold less affinity [165–166, reviewed in 122]. Binding at CCK2-R is less exclusive. Sulfated
and non-sulfated gastrin and CCK-8 bind with nearly equal (sub-nanomolar) affinity to
CCK2-R, and CCK-4 binds with micromolar affinity [167, reviewed in 122]. Despite the
importance of sulfation to gastrin processing, it has seemingly no role in the biological activity
mediated by CCK2-R, in contrast to CCK1-R. C-terminal amidation is, however, essential to
high binding affinity, as the processing intermediate G17-Gly has less affinity for CCK2-R
than CCK-4 [168–169].

The signal transduction pathways of CCK2-R leading to gastric acid secretion and factors
promoting cancer (such as motility, invasion, inflammation, proliferation, and anti-apoptotic
action) are varied, with some being typical pathways of other GPCRs, and others novel
[reviewed in 69,122,124]. Notably, the phosphatidyl inositol pathway has been shown to be
triggered in gastric parietal [170–171] and ECL cells [171], AR4-2J pancreatic cells [172–
173], normal colonic epithelial cells [174–178] and HT-29 colon cancer cells [179]. Binding
of CCK or gastrin activates a pertussis toxin insensitive Gq protein, which dissociates into the
Gαq and Gβγ subunits. Gαq is bound to a GDP molecule in the inactive form; this GDP is
exchanged for a GTP molecule upon dissociation of the Gq protein [170,180–181]. Gq then
activates the PLC-isoform (among other phospholipases in different cell types), which
hydrolyzes plasma membrane-bound PIP2 into the second messengers IP3 and DG [170,173,
175,177,179,182]. IP3 binds to a ligand-gated Ca2+ channel in the ER and mobilizes Ca2+ from
internal stores, while DG activates PKC [176–178,183–186]. PKC and/or Ca2+ mobilization
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in turn probably activate a cascade of MAPKs, including ERK1/2 and JNKs in several studied
cell types [90,171–172,187–189] that have been shown to be involved in cell growth,
differentiation, survival, and apoptosis. Using ERK kinase inhibitors, the ERK1/2 pathway
activated by CCK receptors has been shown to control cell proliferation, migration, and
regulation of gastrin-sensitive gene transcription [88,187,190]. CCK2-R has also been shown
to initiate MAPK cascades through the activation of tyrosine kinases [reviewed in 124,191].
In pancreatic AR42J cells and in human gastric cancer cells, CCK2-R activates Src family
kinases that in turn, and dependent on PKC, phosphorylate Shc, enabling it to complex with
Grb2 and Sos [172,188,192–193]. This complex then activates the small GTPase Ras and the
protein kinase Raf, which activate the ERK cascade. The ERK cascade might also be initiated
by a direct, Ras-independent activation of Raf by PKC [194–195].

Another signaling pathway through the Src kinases is the PI3-K pathway. Activation of the
pathway in response to gastrin in cell lines expressing CCK2-R has been reported [190,196–
198]. PI3-K is activated by tyrosine kinases through a complex with the adaptor protein IRS-1,
and activates the downstream effector protein Akt [190,198]. The PI3-K/Akt pathway, as
activated by gastrin in pancreatic AR4-2J cells, mediates cell proliferation, anti-apoptotic
actions, and cell migration and adhesion [87,196–197,199]. Finally, the JAK2/STAT3 pathway
has been shown to be directly activated by CCK2-R in rat pancreatic acinar cells, though few
GPCRs do so (the pathway is typically initiated by cytokine receptors) [197,200]. JAK2 is a
tyrosine kinase that activates the transcription factor STAT3, which then binds to certain genes.
The JAK/STAT pathway is known to mediate anti-apoptosis, cell proliferation, and
carcinogenesis.

As discussed previously, cell proliferation may also be stimulated by gastrin in gastric epithelial
cells that do not express CCK2-R by transactivation of the EGF receptor. Gastrin stimulates
the secretion of HB-EGF, which binds to the EGF receptor on the surface of epithelial cells.
This causes tyrosine phosphorylation of the EGF receptor and eventual downstream initiation
of the ERK cascade [82,85].

In addition to the signaling pathways described above that mediate acid secretion, cell
proliferation, migration, invasion, and survival, in gastric and colonic cancer cells and intestinal
epithelial cells, the PI3-K and MAPK pathways also increase the expression of COX-2 [201–
203]. As well as the inflammation mediated by COX-2-formed prostaglandins being a major
risk factor for cancer, COX-2 has also been linked to cell proliferation, transformation,
invasion, and angiogenesis, all major factors in carcinogenesis. Similarly, the transcription
factor NF-κB is activated by CCK2-R leading to the expression of interleukin-8 and other
proinflammatory gene products [204].

4. The conformation of gastrin in aqueous and membrane-mimicking
solutions

While the C-terminal tetrapeptide fragment of G17 and CCK-8 is essential for biological
activity at CCK2-R [205] the secondary and tertiary structure of G17 that affects binding and
activation of CCK2-R has been repeatedly investigated using NMR, CD spectroscopy, and
computational analysis. ECD as well as NMR spectroscopic analysis of G17 and various C-
terminal fragments of G17 up to [Nle15]G17(5–17) (replacement of Met15 with Nle does not
significantly affect the conformation or biological activities of the peptide [206]) have shown
that the peptide has no secondary and tertiary structure in aqueous solution or in DMSO
[207–210] However, subsequent studies in TFE, aqueous solutions containing phospholipids,
and aqueous solutions containing SDS micelles have shown G17 and G17 C-terminal analogs
adopt a similar, ordered structure in these solvents [207–209,211–212]. Whether or not this
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structure represents an active conformation of G17 in the presence of CCK2-R has been the
subject of considerable study.

Results of CD and computational studies of the C-terminal tetrapeptide G17(14–17) indicate
that the peptide is partially folded in TFE into a C7 structure, with a hydrogen bond between
the carbonyl oxygen of Met15 and the amide proton of Phe17 [208–209,212]. While, in the
short gastrin fragments the aromatic side chain of the C-terminal tetrapeptide appear to not be
subject to any conformational constraints, extending the chain to [Nle15]G17(10–17) seems to
cause a change in the C-terminal environment and rigidity of the Trp14 side chain [208–209].
Extending the N-terminus further to [Nle15]G17(6–17), and then to [Nle15]G17(5–17) strongly
enhances the α-helical signature of the CD spectrum, suggesting that a portion of the peptide
folds into an α-helix in TFE [208]. While chain extension increases the α-helicity of the peptide,
it does not significantly change the local conformation of the C-terminal region [208].

On the basis of the above results and on the propensity of the various amino acid residues to
form secondary structure [214], Peggion and associates suggested a model for the conformation
of G17 in TFE and membrane-mimicking environments [208]. They concluded that the C-
terminal amino acids are unlikely to form α-helical structure, but that since elongation of the
peptide through the pentaglutamyl sequence clearly causes conformational changes in the C-
terminal region, an interaction must exist between the “head” and the “tail” of the peptide. This
implies a β-bend or β-turn as an additional structure in the central portion of the peptide; they
suggested Ala-Tyr-Gly-Trp as the most likely sequence to form a turn. The existence of α-
helical structure including the residues of the N-terminal portion of the peptide, on the other
hand, is strongly supported by the increase in intensity of the CD spectrum when the chain is
extended to [Nle15]G17(5–17). Further evidence in favor of this hypothesis is that ionization
of the glutamyl side chains by addition of base disrupts the CD-observed helical structure, as
with α-helical polyglutamyl sequences [208]. The difference CD spectrum of [Nle15]G17(6–
17) and [Nle15]G17(5–17) also indicates rapid onset of an α-helix upon the addition of the N-
terminal Leu residue, further supporting the likelihood that the N-terminal region of [Nle15]
G17(5–17) forms an α-helix segment [208]. Their model, then, consisted of an α-helix in the
pentaglutamyl sequence, β-bend or β-turn in the central region, and, consistent with the earlier
conformational calculation of Abillion and associates, a C7 conformation in the biologically
essential C-terminal tetrapeptide [208,213].

Following these CD studies, Mammi and coworkers conducted 1H NMR studies of gastrin
peptides in TFE and TFE/H2O mixtures in order to more clearly define and quantify minigastrin
structures, as the presence of numerous aromatic residues, which absorb strongly in the UV
region, make defining the backbone structure from CD spectra difficult. Despite solubility
problems with the longer gastrin fragments ([Nle15]G17(10–17) and ([Nle15]G17(5–17)) in
TFE and in 10% TFE/H2O the existence of six hydrogen bonds between backbone amide
protons and carbonyl groups in the peptides were deduced [209,215]. Six amide protons were
determined to be solvent shielded based on low temperature coefficients [214]. Two of these
are amide protons of two of the Glu residues (though it is not clear which) in the N-terminal
portion of the peptide, while the remaining are those of the residues of the essential C-terminal
tetrapeptide sequence (Trp14, Nle15 (in their study), Asp16, and Phe17). Based on model
proposed by Mammi and associates, they assigned hydrogen bonds between Glu9-NH and
Leu5-CO and between Glu10-NH and Glu6-CO, in accordance with the prediction that the N-
terminal sequence of minigastrin prior to Gly13 forms a α-helical structure in organic solvent.
Because they showed the Ala11 and Tyr12 backbone amide protons are exposed to solvent, they
concluded that the α-helix does not extend throughout the peptide, but ends at Glu10. Finally,
having considered several possible structures to account for the C-terminal amide protons, they
proposed that the C-terminal tetrapeptide sequence forms a 310-helix, with hydrogen bonds
between Trp14-NH and Ala11-CO, Nle15-NH and Tyr12-CO, Asp16-NH and Gly13-CO, and

Copps et al. Page 6

Protein Pept Lett. Author manuscript; available in PMC 2010 May 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Phe17-NH and Trp14-CO. The researchers noted that, while the short two-turn α-helix at the
N-terminus would likely be unstable, the existence of a flexible region immediately following
allows the possibility of the two helices at opposite ends of the peptide interacting and
stabilizing each other [210].

Recently, NMR and MD studies have suggested a more complex structure for G17. Through
examination of the backbone dihedral angles and alpha carbon intramolecular distances of
[Nle15]G17 solvated in a box of water/decane, Stone and coworkers a 310-helix involving
residues Leu5-Glu9 and an α-helix terminating in a type I β-turn from Ala11 to Asp16, with the
C-terminal tetrapeptide folding into a type IV β-turn conformation [211,212]. These
investigators suggest that this type I β-turn structure seen in Gly13-Asp16 may be indeed be the
structure required for binding CCK2-R.

Understanding the relevance of the folded conformation of gastrin to receptor binding and
activation is, of course, of great importance, and, thus, the biological activity of the various C-
terminal gastrin fragments and fragments have been studied extensively. As shown previously,
the conformation of G17 and its C-terminal analogs in phospholipids and SDS micelles is
similar to that in TFE, suggesting that the TFE conformation is close to that of these peptides
upon entering the membrane environment [208,213]. Elongation of the chain from the N-
terminus of tetragastrin not only changes the conformation, but also the biological potency of
the peptide. Extending the chain from [Nle15]G17(11–17) to [Nle15]G17(5–17) increases the
biological potency from 20% to 90% of the original activity of G17 [217–218]. This clearly
implies that the N-terminal sequence is important in effecting the full biological activity of the
peptide, most likely due to the conformational change imparted to the C-terminal tetrapeptide
[208]. Additionally, because no ordered structure of the peptide is seen in aqueous solution, if
structure is important to the biological activity of G17 and analogs, it should be the structure
formed in presence of a lipophilic environment. In continuing ECD and NMR studies, Mammi
and associates found that replacing the central Gly residue of [Nle15]G17(5–17) with Ala which
is more prone to helix-forming had the effect of extending the α-helix throughout the peptide
and changing the environment of the aromatic chromophores of the C-terminus [219]. The
analog retains only 10% of the potency of [Nle15]G17(5–17), about the same activity as
tetragastrin [220], and has greatly reduced affinity for parietal and nonparietal cells. Replacing
the pentaglutamyl sequence with a pentaaspartyl sequence prevents any formation of an α-
helix and also significantly reduces potency [221]. These results point to the importance of the
suspected “U-shaped” hairpin fold, with the N-terminally-located α-helix stabilizing the active
conformation of the C-terminal end, in ensuring the full activity seen in minigastrin and in
G17.

5. Structural features required for G17 binding and activation of CCK2-R
The dependence on the C-terminal sequence, Trp-Met-Asp-Phe-NH2, for the biological
activity of G17 was discovered shortly after the isolation and structural characterization of
gastrin [205]. More detailed studies of G17 revealed the importance of individual residues in
addition to that of Gly13 and terminal configurations described above. J. S. Morley synthesized
almost 500 tetrapeptide analogs of gastrin and tested their ability to stimulate acid secretion in
rats and dogs [222]. Acylation of the N-terminus did not affect activity negatively, but
modification of the C-terminal amide group decreased acid secretion. Meanwhile, replacing
the Trp14, Met15, or Phe17 residues in some cases resulted in analogs that were still biologically
active, but replacing the Asp16 residue always gave a loss of activity. It was concluded that the
Trp-Met-Asp residues are essential for receptor binding and that the Phe residue is needed for
activation.
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Later studies expanded on these findings, using radioligand binding assays in addition to
functional assays. Blocking the N-terminus of the tetrapeptide with t-Boc, Aloc, or acylation
increased binding affinity and biological activity in one study [223]. Substitution of Trp14 with
Ala caused a 1000-fold decrease in binding affinity, as well as a 36% loss of acid secretion
[224–225], and removing of the aromatic ring or formylating the indolyl nitrogen also severely
decreased binding and biological activity [226–227]. Substitution of Met15 with Ala causes a
100-fold loss in affinity and a 32% loss of acid secretion [224–225], but as aforementioned, it
can be replaced with Leu or Nle with no loss of binding or biological activity. Substitution of
Asp16 with Ala completely destroyed the peptide’s ability to bind and activate CCK2-R,
confirming Morley’s earlier work [224–225]. Finally, substitution of Phe17 with Ala causes a
104-105-fold decrease in affinity [169,224].

Some groups have also suggested that the binding of metal ions plays an important role in
enabling/disabling G17 and G17-Gly activity. Baldwin and colleagues showed that Fe3+ ions
bind to both Glu7 and Glu8-Glu9 of the pentaglutamyl sequence. An Ala substitution at position
7 lead to the inability of G17-Gly to stimulate proliferation or migration in IMGE-5 cells in
vitro, and the iron chelator desferrioxamine blocks the activity of G17-Gly [228]. Another
group showed that C-terminal gastrin fragments bind to calcium ions in TFE, and that these
ions can affect the conformation of the peptide [229].

6. Colon cancer and the putative high affinity non-CCK G17-Gly receptor
While it has been established that gastrin is a factor in the development and growth of gastric
cancers, there is less consensus about the effect of the peptide on colorectal carcinomas.
Exogenous gastrin appears to promote the in vitro growth of some human and rat colorectal
cancers, as well as the growth of transplanted mouse and rat tumors in nude mice [115,230–
241, reviewed in 48]. Additionally, exogenous gastrin promotes the growth of some colorectal
cancer cell lines, and this growth can be inhibited by gastrin antagonists [242]. Moreover,
hypergastrinemia has been considered a risk factor for colorectal carcinoma [243–245].
However, in recent years, investigators have failed to demonstrate that gastrin plays a role in
promoting colorectal carcinoma growth. Removal of the gastric fundus, inducing
hypergastrinemia, did not result in greater tumor incidence, nor did treatment of transgenic
mice, overexpressing gastrin, with the carcinogen azoxymethane produce increased incidence
of tumors [246–248]. Other studies failed to show that hypergastrinemia stimulated the growth
of the colonic mucosa [249–251]. Finally, the use of the gastrin receptor antagonist CR2945
to block CCK2-R over a period of 52 weeks did not reduce tumor numbers in the colonic
mucosa [252–253]. Overall, the studies seem to suggest that, while hypergastrinemic antral
mucosa may promote gastric carcinomas, if colorectal carcinomas are stimulated by gastrin or
gastrin processing intermediates these would have to be local autocrine or paracrine products
[251,254–255].

Some colorectal cancers were initially thought to synthesize gastrin and to express gastrin
receptors [255]. However, receptor autoradiography indicated that CCK2-R was expressed in
no more than 4% of colorectal carcinomas, while PCR showed CCK2-R mRNA to be present
in only 38% of colorectal carcinomas [256–257]. Equally important was the finding that while
gastrin gene product is expressed in the human adult colon [6,235,258–262], progastrin is
typically not processed to the mature, amidated peptide in colorectal cancers or in the normal
colon [6,260–262]. These revelations, combined with the likelihood that gastrin does not act
as an endocrine growth factor through hypersecretion of gastrin elsewhere in the GI tract,
strongly suggest that gastrin does not stimulate the colonic mucosa or colorectal cancers either
locally or in circulation and that CCK2-R largely does not mediate these effects [reviewed in
124,255]. Instead, because of the incomplete processing of the gastrin gene product, progastrin
and G17-Gly processing intermediates persist in the human adult colon. Resection of colon

Copps et al. Page 8

Protein Pept Lett. Author manuscript; available in PMC 2010 May 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



cancer in one study reduced circulating levels of gastrin precursors, while leaving the levels
of circulating mature gastrins unaffected [263], reflecting the production of precursors but not
mature gastrin peptides in the colon. Precursors are found in high concentrations in colorectal
tumors and in the blood of colorectal cancer patients [260–262,264, reviewed in 265].

Speculation naturally followed that the incompletely processed peptides might somehow play
a role in the stimulation of tumor growth. In fact, gastrin precursors have been shown to
stimulate proliferation of colonic mucosa in vitro and in vivo. Gastrin-deficient mice treated
with G17-Gly or progastrin had an increase in proliferation of colonic epithelial cells where
as mature gastrin had no effect [266–267]. Treatment with G17-Gly also increased aberrant
crypt foci and the sensitivity of cells to azoxymethane [268]. Transgenic mice overexpressing
progastrin or G17-Gly had increased epithelial cell proliferation and colonic cell hyperplasia,
and those mice overexpressing progastrin treated further with a carcinogen had increased
predisposition to neoplasia or adenocarcinoma [248,266,269–270]. Additionally, some groups
have shown that gastrin precursors stimulate proliferation of cells that do not express CCK
receptors [271–275]. However, there is still some controversy regarding the effect of
precursors. Some groups have not found evidence of precursors as growth factors [276], while
another group suggests that the precursors merely potentiate the effect of mature gastrin
[277–279].

The ability of gastrin precursors to bind and stimulate proliferation of normal and cancerous
colonic cells in the absence of CCK2-R suggests the presence of a putative receptor or receptors
that mediate these effects. In fact, high (nanomolar) affinity binding sites have been
demonstrated for G17 and G17-Gly on primary and cultured tissues [275,280–281]. HT-29
cancer cells were shown to possess a nanomolar affinity receptor in studies using radioiodinated
G17(2–17)-Gly and G17, respectively [274,279]. Additionally, saturation binding studies with
67 primary colon cancer specimens showed 57% to have a site to which gastrin binds with high
affinity [281]. However, some studies have instead shown a low (micromolar) affinity binding
site; Yang and coworkers revealed the presence of a micromolar affinity site for G17 and G17-
Gly on DLD-1 human colon cancer cells [282] and Imdahl et al., which showed a micromolar
affinity site on primary colorectal cancer cell lines [283].

The effect of G17-Gly binding on the proliferation of colon cancer cells has been a central
topic of investigation of our own laboratory in recent years. Following the discovery of
micromolar sites on DLD-1 cells, research was conducted to further characterize the G17-Gly
binding receptor using optimal conditions in vitro [284]. G17 and G17-Gly were modified by
replacing Met15 with a leucyl residue to prevent oxidation. It was found that [3H]G17-Gly
bound both intact DLD-1 cells and DLD-1 cell membranes, in a saturable and displaceable
manner. Both [Leu15]G17 and [Leu15]G17-Gly were able to displace the tritiated G17-Gly
dose-dependently. Non-linear regression analysis showed that, in addition to a low affinity
(micromolar) binding site for each peptide, both peptides bound at high affinity, with [Leu15]
G17-Gly binding with subnanomolar affinity and [Leu15]G17 with nanomolar affinity on
DLD-1 membranes. A subsequent experiment using intact DLD-1 cells and a smaller
concentration of the higher specific activity peptide [125I-Tyr12, Leu15]G17-Gly to better
resolve the two binding sites also showed that [Leu15]G17-Gly displaced the radiopeptide from
two binding sites with nanomolar and micromolar affinity. Finally, [3H]CCK-8 that was shown
to bind CHO-K1 cells expressing CCK2-R failed to bind the DLD-1 membranes, and CCK-8
failed to displace [125I-Tyr12, Leu15]G17-Gly from the intact DLD-1 cells. The observations
of the failure of CCK-8 to bind DLD-1 membrane or cells as well as the relative similarity of
the binding affinities of [Leu15]G17-Gly and [Leu15]G17 clearly indicate the presence of not
just non-CCK receptors on the surface of these cells, but possibly a heterogeneous population
of such receptors. More curiously, DLD-1 cell proliferation studies with these peptides showed
that both stimulated dose-dependent, biphasic growth of cell populations, with cell number

Copps et al. Page 9

Protein Pept Lett. Author manuscript; available in PMC 2010 May 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



reaching a maximum at 10−9 M for [Leu15]G17-Gly and at 10−8 M for [Leu15]G17, while cells
treated with micromolar concentrations showed no significant increase in number over
controls. This suggests that at low concentrations of these ligands the observed high affinity
sites mediate the proliferatory effect, but when ligand concentrations are increased, the low
affinity site is bound and mediates an effect countering that of the high affinity site.

Another study examined the importance of the N- and C-terminal residues of [Leu15]G17-Gly
and [Leu15]G17 in the promotion of activity in DLD-1 cells, and extended the investigation to
include the HT-29 colon cancer cell line [285]. [3H]G17-Gly bound to HT-29 cell membranes,
and [Leu15]G17-Gly displaced it in a dose dependent manner. However, only one low
(micromolar) affinity site was seen with non-linear regression analysis, in disagreement with
previous studies which showed the presence of a nanomolar site for G17-Gly on intact HT-29
cells. In experiments with intact HT-29 cells and [125I-Tyr12, Leu15]G17-Gly as the
radioligand, [Leu15]G17-Gly was seen to bind to two sites with nanomolar and micromolar
affinity [285]. The discrepancy between the two experiments was attributed to the relatively
low population of high affinity sites compared to low affinity sites, and the inability to resolve
them using the lower specific-activity tritiated peptide. A further cell proliferation experiment,
however, again revealed increased cell numbers at nanomolar concentrations of [Leu15]G17-
Gly and a biphasic growth effect at higher concentrations, as with the DLD-1 proliferation
study. Once again, CCK-8 failed to displace radioligand binding, as did the CCK2-R antagonist
L365-260.

Several other important observations were made. [Leu15]G17(2–17)-Gly, an analog created
by omitting the N-terminal pyroglutamatyl residue, was able to displace [3H]G17-Gly in
competition experiments with DLD-1 membranes. The analog bound to two sites, but at about
an order of magnitude lower affinity than that of [Leu15]G17-Gly to both. Conversely, first
omission the entire N-terminal pentapeptide preceding the central pentaglutamyl sequence
([Leu15]G17(6–17)-Gly), then the pentaglutamyl sequence as well ([Leu15]G17(11–17)-Gly)
resulted in binding only one site at micromolar and supermicromolar affinity, respectively.
Lastly, a cell proliferation experiment using HT-29 cells showed that the analog G17(1–12),
created by omitting only the C-terminal sequence 13 to 17 of G17 following the pentaglutamyl
sequence, stimulated an increase in cell number with a EC50 at nanomolar concentration.
However, unlike the experiments with [Leu15]G17-Gly, no decrease in cell number was seen
at higher concentrations. Combined with the previous proliferation data, this result supports
the hypothesis that the high affinity receptor for G17 and G17-Gly mediates the proliferatory
effect of these peptides. In all, the binding and proliferation results obtained further suggest
that N-terminal residues 1–5 are essential for binding the high affinity site, while the C-terminal
13–17 residues may be important for binding the low affinity site.

Further study of the N-terminal region of G17 in our laboratory has led to some surprising
observations. G17(1–12) was seen to stimulate the proliferation of DLD-1 cells in a
nonbiphasic manner, similar to that of the HT-29 cells treated with G17(1–12) previously
[286]. However, instead of binding selectively to one site, G17(1–12) continued to bind to both
high and low affinity sites, with affinities similar to those of the full sequence G17-Gly,
suggesting that the peptide activates the high affinity, growth promoting site, while acting as
an antagonist at the low affinity site [287]. However, the C-terminally truncated-peptide is
sufficient to bind both sites, even without the C-terminal tetrapeptide so vital to activity at the
CCK2 receptor. Secondly, truncating G17(1–12) to G17(1–6)-NH2 produced a peptide capable
of binding a single site with micromolar affinity and the ability to stimulate proliferation of
DLD-1 cells [287]. Furthermore, amidated and nonamidated N-terminal peptides as short as
G17(1–4) were able to bind a single site on DLD-1 cells albeit with very low affinity (∼10−5

M). However, these shorter peptides were not able to stimulate proliferation of cells [286].
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Structural studies using ECD and VCD spectroscopy as well as MD simulations in a variety
of aqueous and membrane-mimicking solvents revealed the presence of a β-turn structure from
pGlu1-Trp4 in these N-terminal peptides of increasing frequency with peptide length [288]. As
peptides shorter than G17(1–4) peptides were not seen to bind to a receptor on DLD-1 cells,
the 1–4 sequence appears to be important for binding. Additionally, higher affinity for the
binding site on DLD-1 cells as well as stimulation of proliferation of DLD-1 cells by G17(1–
6)-NH2 and G17(1–12) may be attributed to the C-terminal amidation and longer sequence,
respectively [286–287].

Recent studies have provided some insight into the signaling pathways activated by the putative
G17-Gly/G17 receptor leading to cell proliferation. Ogunwobi and Beales showed that MAPK
and NF-κB inhibitors significantly reduced the proliferatory effect of G17-Gly administered
to HT-29 cells [289]. The activation of ERK in particular supported an earlier report of ERK
signaling by G17-Gly in gastric epithelial cells [290]. CCK2-R activation also triggers the
MAPK, ERK, and NF-κB pathways leading to cell proliferation, among other functions. Unlike
CCK2-R, however, using the COX-2 inhibitor celecoxib it was shown that the G17-Gly/G17
pathway is COX-independent. An anti-apoptotic effect of G17-Gly dependent on these
pathways was also shown using celecoxib, and a further study revealed that the PI3-K/Akt,
JNK and JAK/STAT pathways to be involved as well [291].

Abbreviations

Ach acetylcholine

CCK cholecystokinin

COX-2 cyclooxygenase-2

[3H]CCK8 [3H]cholecystokinin-8

DG 1,2-diacylglycerol

DMSO dimethyl sulfoxide

ECD electronic circular dichroism

ECL enterochromaffin-like

EGF epidermal growth factor

ERK extracellular signal-related kinase

G17 gastrin-17

G17-Gly gastrin-17-Gly

GRP gastrin releasing peptide

HB-EGF heparin binding epidermal growth factor

IP inositol phosphate

IP3 inositol 1,4,5-trisphosphate

JNK c-jun NH2-terminal kinase

MAPK mitogen activated protein kinase

MD molecular dynamics

NMR nuclear magnetic resonance

PAM peptidyl-glycine α-amidating monooxygenase

PI3-K phosphatidylinositol 3-kinase
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PIP2 phosphatidyl inositol 4,5-bisphosphate

PKC protein kinase C

PLC-β phospholipase C-β

SDS sodium dodecyl sulfate

TFE 2,2,2-trifluoroethanol

TGF-α transforming growth factor-α

VCD vibrational circular dichroism

VIP vasoactive intestinal peptide
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Figure 1.
Processing of preprogastrin in G cells.
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Figure 2.
Primary structure of human G17.
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