Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1989 Jun;86(12):4515–4519. doi: 10.1073/pnas.86.12.4515

Colchicine analogues that bind reversibly to tubulin define microtubular requirements for newly synthesized protein secretion in rat lacrimal gland.

G Herman 1, S Busson 1, M J Gorbunoff 1, P Mauduit 1, S N Timasheff 1, B Rossignol 1
PMCID: PMC287301  PMID: 2660140

Abstract

The role of microtubules in 3H-labeled protein secretion in rat lacrimal glands was probed by the use of colchicine and two of its analogues that reversibly bind to tubulin. These analogues were 2-methoxy-5-(2,3,4,4'-trimethoxyphenyl)-2,4,6-cycloheptatriene-1-o ne and 2,3,4,4'-tetramethoxy-1,1'-biphenyl, the latter having been synthesized for these studies. Immunofluorescence revealed that untreated exocrine acinar cells contained an intact microtubule network, which was totally abolished by drug addition. Subsequent drug removal restored the network for the two reversibly binding drugs--more rapidly so for the biphenyl, but this was not the case with colchicine. The protein-secretory process was examined by adding the three drugs at various stages--prepulse incubation, pulse, maturation, apical storage of granules, and discharge under cholinergic stimulation. Comparison with the kinetics of microtubular network restoration, which differed for the two reversibly binding drugs, led to the conclusion that the microtubular system is critical to the maturation phase of secretion.

Full text

PDF
4515

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allan V. J., Kreis T. E. A microtubule-binding protein associated with membranes of the Golgi apparatus. J Cell Biol. 1986 Dec;103(6 Pt 1):2229–2239. doi: 10.1083/jcb.103.6.2229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andreu J. M., Gorbunoff M. J., Lee J. C., Timasheff S. N. Interaction of tubulin with bifunctional colchicine analogues: an equilibrium study. Biochemistry. 1984 Apr 10;23(8):1742–1752. doi: 10.1021/bi00303a025. [DOI] [PubMed] [Google Scholar]
  3. Andreu J. M., Timasheff S. N. Interaction of tubulin with single ring analogues of colchicine. Biochemistry. 1982 Feb 2;21(3):534–543. doi: 10.1021/bi00532a019. [DOI] [PubMed] [Google Scholar]
  4. Ash J. F., Louvard D., Singer S. J. Antibody-induced linkages of plasma membrane proteins to intracellular actomyosin-containing filaments in cultured fibroblasts. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5584–5588. doi: 10.1073/pnas.74.12.5584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bernier-Valentin F., Aunis D., Rousset B. Evidence for tubulin-binding sites on cellular membranes: plasma membranes, mitochondrial membranes, and secretory granule membranes. J Cell Biol. 1983 Jul;97(1):209–216. doi: 10.1083/jcb.97.1.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Busson-Mabillot S., Chambaut-Guérin A. M., Ovtracht L., Muller P., Rossignol B. Microtubules and protein secretion in rat lacrimal glands: localization of short-term effects of colchicine on the secretory process. J Cell Biol. 1982 Oct;95(1):105–117. doi: 10.1083/jcb.95.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chambaut-Guérin A. M., Muller P., Rossignol B. Microtubules and protein secretion in rat lacrimal glands. Relationship between colchicine binding and its inhibitory effect on the intracellular transport of proteins. J Biol Chem. 1978 Jun 10;253(11):3870–3876. [PubMed] [Google Scholar]
  8. Díez J. C., Avila J., Nieto J. M., Andreu J. M. Reversible inhibition of microtubules and cell growth by the bicyclic colchicine analogue MTC. Cell Motil Cytoskeleton. 1987;7(2):178–186. doi: 10.1002/cm.970070210. [DOI] [PubMed] [Google Scholar]
  9. Fitzgerald T. J. Molecular features of colchicine associated with antimitotic activity and inhibition of tubulin polymerization. Biochem Pharmacol. 1976 Jun 15;25(12):1383–1387. doi: 10.1016/0006-2952(76)90108-8. [DOI] [PubMed] [Google Scholar]
  10. Garland D. L. Kinetics and mechanism of colchicine binding to tubulin: evidence for ligand-induced conformational change. Biochemistry. 1978 Oct 3;17(20):4266–4272. doi: 10.1021/bi00613a024. [DOI] [PubMed] [Google Scholar]
  11. Hugon J. S., Bennett G., Pothier P., Ngoma Z. Loss of microtubules and alteration of glycoprotein migration in organ cultures of mouse intestine exposed to nocodazole or colchicine. Cell Tissue Res. 1987 Jun;248(3):653–662. doi: 10.1007/BF00216496. [DOI] [PubMed] [Google Scholar]
  12. Mauduit P., Herman G., Rossignol B. Protein secretion induced by isoproterenol or pentoxifylline in lacrimal gland: Ca2+ effects. Am J Physiol. 1984 Jan;246(1 Pt 1):C37–C44. doi: 10.1152/ajpcell.1984.246.1.C37. [DOI] [PubMed] [Google Scholar]
  13. Rindler M. J., Ivanov I. E., Sabatini D. D. Microtubule-acting drugs lead to the nonpolarized delivery of the influenza hemagglutinin to the cell surface of polarized Madin-Darby canine kidney cells. J Cell Biol. 1987 Feb;104(2):231–241. doi: 10.1083/jcb.104.2.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rossignol B., Chambaut-Guérin A. M., Muller P. Role of the cytoskeleton in secretory processes: lacrimal and salivary glands. Methods Enzymol. 1983;98:175–182. doi: 10.1016/0076-6879(83)98148-x. [DOI] [PubMed] [Google Scholar]
  15. Segawa A., Sahara N., Suzuki K., Yamashina S. Destruction of cell surface polarity by colchicine in rat salivary gland acinar cells: reevaluation of the microtubular function. J Electron Microsc (Tokyo) 1988;37(2):81–85. [PubMed] [Google Scholar]
  16. Segawa A., Yamashina S. Are cytoskeletons involved in establishment of cell polarity in rat salivary glands? J Electron Microsc (Tokyo) 1987;36(1-2):45–49. [PubMed] [Google Scholar]
  17. Vale R. D. Intracellular transport using microtubule-based motors. Annu Rev Cell Biol. 1987;3:347–378. doi: 10.1146/annurev.cb.03.110187.002023. [DOI] [PubMed] [Google Scholar]
  18. Zwierzchowski L., Flechon J., Ollivier-Bousquet M., Houdebine L. M. Effects of estramustine, a new anti-microtubule drug, on the induction of casein gene expression by prolactin. Biol Cell. 1987;61(1-2):51–57. doi: 10.1111/j.1768-322x.1987.tb00568.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES