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Abstract
Epidemiological studies of DNA methylation (DNAm) profiles may hold substantial promise for
identifying mechanisms through which genetic and environmental factors jointly contribute to
disease risk. Different cell types are likely to have different DNAm patterns. We investigate the
DNAm differences between two types of biospecimens available in many genetic epidemiology
studies. We compared DNAm patterns in two different DNA samples from each of 34 participants
in the Genetic Epidemiology Network of Arteriopathy study (20 Caucasians and 14 African-
Americans). One was extracted from peripheral blood cells (PBC) and the other from transformed
B-lymphocytes (TBL). The genome-wide DNAm profiles were compared at over 27,000 genome-
wide methylation sites. We found that 26 out of the 34 participants had correlation coefficients higher
than 0.9 between methylation profiles of PBC and TBL. Although a high correlation was observed
in the DNAm profile between PBC and TBL, we also observed variation across samples from
different DNA resources and donors. Using principal component analysis of the DNAm profiles, the
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two sources of the DNA samples could be accurately predicted. We also identified 3,723 autosomal
DNAm sites that had significantly different methylation statuses in PBC compared to TBL
(Bonferroni corrected p value <0.05). Both PBC and TBL provide a rich resource for understanding
the DNAm profiles in humans participating in epidemiologic studies. While the majority of DNAm
findings in PBC and TBL may be consistent, caution must be used when interpreting results because
of the possibility of cell type-specific methylation modification.

Introduction
Both environmental and genetic effects contribute to the development and progression of
common human diseases. Understanding the interplay between environmental and genetic
factors is critical for unraveling the complex etiology and pathology of many of these diseases.
Several studies have shown that environmental modulation of genetic effects may act at the
level of gene expression regulation through epigenetic mechanisms (Davis and Ross 2007;
Herceg 2007). The modern definition of epigenetics is the study of heritable changes in gene
expression levels that are unrelated to changes in the underlying DNA sequence (Bird 2007;
Richards 2006). DNA methylation (DNAm), the covalent addition of a methyl (CH3-) group
to the nucleotide cytosine number 5, is the best understood and most easily measured
mechanism of epigenetic modification. DNAm sites located at CpG islands in the promoter
region of a gene are known to play a key role in regulating gene expression level (Suzuki and
Bird 2008). DNA methylation is mediated by DNA methyltransferases (DNMT) and in
eukaryotes, at least three functional DNMTs have been identified (DNMT1, DNMT3A, and
DNMT3B). DNMT1 is the primary enzyme involved in maintenance of methylation patterns
during replication, while DNMT3A and DNMT3B have more de novo methylation activity
and are active during embryogenesis.

During fetal development, tissue-specific DNAm profiles have been observed and are thought
to be a central mechanism underlying cellular differentiation that manifests through differential
gene expression (Ehrlich 2003; Meissner et al. 2008; Namihira et al. 2008). It is also well
established that alterations in DNAm occur in cancer, including hypomethylation of oncogenes
and hypermethylation of tumor suppressor genes (Christensen et al. 2009; Irizarry et al.
2009). Ladd-Acosta et al. (2007) also reported that DNAm profile of CpG sites can classify
different human brain tissues and that these tissue-specific DNA methylation patterns affect
gene transcription. There is also evidence for an age-related loss of normal epigenetic patterns,
which may contribute to diseases with later onset (Bjornsson et al. 2008).

Epidemiological studies of DNAm profile may hold substantial promise for identifying
mechanisms through which genetic and environmental factors jointly contribute to disease risk
(Foley et al. 2009). However, the tissue-specificity of DNAm profiles raises key questions
about what cell populations are appropriate for epidemiological studies of disease association.
In most genetic epidemiology studies, DNA samples are extracted from fresh or frozen
peripheral blood cells (PBC) obtained directly from a blood draw. In more established
epidemiological cohorts, it is also not uncommon to have transformed B-lymphocytes (TBL)
samples on individuals that have been developed to supply the epidemiological study with an
‘unlimited’ supply of DNA for future genetic studies. Because DNAm patterns are known to
be tissue-specific and may be affected by the transformation process in TBL, it is important to
understand the reproducibility and variability between the DNAm profiles from the two sources
of DNA likely to be used in large epigenetic studies of common human diseases. To address
these questions, we obtained two DNA samples from each of 34 participants in the Genetic
Epidemiology Network of Arteriopathy (GENOA) study (20 Caucasians and 14 African-
Americans), one extracted from PBC and the other extracted from TBL, to compare the
genome-wide DNAm profiles between the two sources of DNA. In addition, we randomly
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selected four of these participants to have replicate measures of their DNAm profiles assayed
on one of the two DNA sources.

Methods
Sample

The GENOA study is a community-based study of hypertensive sibships that aims to identify
genes influencing blood pressure (Daniels et al. 2004; FBPP Investigators 2002). GENOA data
were collected in two phases. Phase I (1996–1999) and Phase II (2000–2004) data consist of
demographic information, medical history, clinical characteristics, lifestyle factors, and blood
samples for genotyping and biomarker assays. The GENOA study was approved by the
Institutional Review Boards of all participating institutions. Each participant gave written
informed consent. For this study, participants’ stored samples were selected based on race
(Caucasians and African-Americans), gender (male and female), and leukoariosis score. All
participants were hypertensive at the time of collection. In addition, four individuals (one from
each race–sex category) were randomly selected to assess the reproducibility of the Illumina
chip's assessment of methylation status.

Sample preparation
The DNA from each selected participant's transformed B-lymphocytes and peripheral blood
cell pellets were extracted by utilizing an automated platform (AutoGen FlexStar Qiagen
Chemistries), including quantification by UV absorbance and quality control by 260/280 OD
ratio. Samples were stored in Tris–EDTA buffer at concentration of 250 ng/ul. The genomic
DNA samples were bisulfite converted, and then subjected to methylation profiling of 27 K
CpG loci at the Mayo Clinic Genotyping Resource (GSR) facility. The EZ DNA Methylation
Gold Kit (Zymo Research, Orange, CA, USA) was used for bisulfite conversion of all DNA
samples (1 μg of genomic DNA per sample), according to the manufacturer's
recommendations. An aliquot of the converted DNA (corresponding to 250 ng starting gDNA)
was then used to assay up to 27,578 methylation sites simultaneously on an array. The DNA
extracted for the four individuals chosen for the replication experiment was the same across
chips (replicate 1 vs. replicate 2) in order to assess chip-to-chip variation rather than variation
in sample preparation.

Genome-wide methylation assay
The Illumina Infinium HumanMethylation27 BeadChip (Illumina, San Diego, CA, USA) was
used to measure 27,578 methylation sites. Bisulfite-converted DNA samples were whole-
genome amplified, enzymatically fragmented, and purified. Samples then were hybridized in
batches of 12 to the BeadChip, which contains locus-specific DNA oligomers. The allele
specific extension reaction, washing, and staining were carried out in a TECAN Te-Flow
Chamber. The arrays were fluorescently stained, scanned, and assessed for fluorescence
intensities at the methylated and unmethylated bead sites using Illumina iScan system. The
intensity data were then loaded into the GenomeStudio Methylation Module for analysis.

Data processing and methylation quantitation
Each methylation site is represented by the fluorescent signals from the methlyated and
unmethylated alleles on the bead chip. The raw fluorescence data from the scanner were
processed in BeadStudio software to yield β values, which are continuous variables ranging
from 0 to 1. The beta value (β) is used to estimate the methylation level of the locus using the
ratio of intensities between methylated and unmethylated alleles. For the Infinium Methylation
Assay, β is calculated as:
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where SignalA and SignalB are produced by two different bead types and reported in the same
color.

Illumina chose the calculation above to provide an estimate of the intensity of the methylated
signal (SignalB) as a percentage of the overall signal. As such, β values range from 0 to 1 and
can be analyzed statistically using a Beta distribution. A constant bias of 100 was added to
regularize β when both the methylated and unmethylated signals are small (Illumina 2009).

Statistical methods
We calculated the Pearson product–moment correlation coefficient between the β values (i.e.,
the DNAm profiles) of each cell type (PBC vs. TBL) for each individual in order to estimate
the covariation in methylation states of each of the ~27,000 methylation sites measured. The
correlation between the DNAm signals for each of the four replicates (replicate 1 vs. replicate
2) was also estimated using the Pearson product–moment correlation.

In order to identify the DNAm sites which differentiate the two DNA sources, PBC versus
TBL, we first calculated the log2 ratio of the two β-values from a single participant at each
DNAm site. Then we tested H0: βPBC = βTBL which is equivalent to log2(βPBC/βTBL) = 0 for
each measured DNAm site across individuals using t test. A p value threshold of 1.8 × 10–6

(equivalent to 0.05 after correcting for multiple testing using Bonferroni correction) was used
to identify log2β-ratios that significantly deviated from 0 (i.e., levels of methylation derived
from the fluorescence measurement are different between the two DNA sources).

We used principal component analysis (PCA) to study the underlying variability of the full set
of DNAm sites measured by the HumanMethylation27 BeadChip (27,578 sites) including X
and Y chromosomes, as well as the autosomal DNAm sites only (26,486 sites). The raw beta-
values were directly used for computing the principal components (PCs) without centering or
rescaling the data. We first calculated the PCs of all DNAm sites and antosomal DNAm sites
separately using the pooled sample of 34 pairs of DNAm measurements. We presented the
patterns of the top five PCs among all 68 samples using a parallel coordinates plot implemented
in R package “lattice”. We tested the association of the top five PCs of 26,486 autosomal
DNAm sites with age, sex, race, and body mass index (BMI) using a linear mixed model for
the continuous traits and a generalized estimating equations (GEE) model for the categorical
traits to adjust for repeated measurements. We then estimated the PCs of the autosomal DNAm
sites using the 34 DNA samples from each of the two cell types, PBC and TBL (separately)
and tested the association of the top five PCs from each cell type with age, sex, race, and BMI
using linear regression for the continuous traits and logistic regression for the categorical traits.

Based on chromosomal location (NCBI 36.1), we identified the genes that were significantly
different between PBC and TBL in their DNAm status. We then used gProfile (Reimand et al.
2007) to estimate the most over-represented Gene Ontology terms associated with these genes.

All statistical analyses were performed with R statistical environment version 2.9.0 from R
Project (http://www.r-project.org/). The authors had full access to the data and take
responsibility for its integrity. All authors have read and agree to the manuscript as written.
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Results
In Fig. 1, we present the histogram of β values—a continuous measurement of the methylation
status of each CpG site—from a single Illumina HumanMethylation27 BeadChip randomly
chosen from the 72 samples. The majority of the measured DNAm sites were unmethylated
with the β value close to 0. The bimodal distribution also indicates a cluster of methylated
DNAm sites with a β value close to 1 (Fig. 1). This bimodal distribution is consistent across
all 72 chips measured in this study (data not shown).

For each of the 34 pairs of DNAm profiles from the two cell types of the same individual, we
calculated the correlation coefficient using all 27,578 measured DNAm sites. Table 1 is a
summary of the correlation results by race and sex. The average correlation coefficients of
male Caucasians, female Caucasians, male African-Americans and female African-Americans
are 0.916, 0.934, 0.910, and 0.888, respectively (Table 1). There were 26 pairs of DNAm
profiles (76.5%) with correlation coefficient larger than 0.9. The correlation coefficients of the
four pairs of DNA replicates (one pair each in the four race–cell type combinations) ranged
from 0.985 to 0.996.

By comparing the top PCs from the 27,578 DNAm sites (including X and Y chromosomes)
and 26,486 DNAm sites (autosomes only), we found that the top PCs divided the samples into
distinct clusters (Fig. 2). The first two PCs of the DNAm profiles, PC1 and PC2, discretely
separated the DNA samples into two clusters, one from PBC and the other from TBL, using
all DNAm sites (Fig. 2a) or only the autosomal DNAm sites (Fig. 2b). When the DNAm sites
located on chromosome X and Y were included in the full genomic set of DNAm sites, the
samples from the males and females were separated by PC3 (Fig. 2a); however, the effect of
sex on the DNAm profile was not observed when only the autosomal DNAm sites (Fig. 2b)
were included. The first PC of the 26,486 autosomal DNAm sites explained 96.4% of the total
variability, and the top five PCs explained 98.3% of the total variability altogether.

In the regression analysis using the PCs of the autosomal DNAm sites, we did not identify any
significant associations of the top five PCs with age or BMI (Table 2) in either the pooled
samples (PBC + TBL) or the cell type specific samples. We did not observe any significant
associations of top five PCs with sex or race except the association of PC2 with race in PBC
(Table 2). The associations of PC2 and PC5 with sex in PBC were also significant at an alpha
level of 0.05 (Table 2); however, they were not statistically significant after correcting for
multiple testing.

Using the log2β-ratio test described in the “Methods” section, we identified 3,723 (14.1%)
autosomal DNAm sites which had significantly different methylation status in PBC and TBL
(Supplementary Table 1). Among these cell-specific DNAm sites, 81.7% exhibited a lower
level of methylation in TBL than in PBC. There are ~3,000 genes associated with the 3,723
cell-specific DNAm sites. By searching the Gene Ontology (GO) database through g:Profiler
(Reimand et al. 2007), which uses cumulative hypergeometric p values to identify the most
enriched terms corresponding to the input set of genes, we found the most over-represented
GO terms (p < 10–20) among these genes are GO:0005576 (extracellular region), p value of
1.78 × 10–54; GO:0005886 (plasma membrane), p value of 1.97 × 10–30; GO:0009605
(response to external stimulus), p value of 7.44 × 10–29; GO:0044459 (plasma membrane part),
p value of 1.31 × 10–28; GO:0006952 (defense response), p value of 4.30 × 10–27; GO:0050896
(response to stimulus), p value of 1.12 × 10–24; GO:0002376 (immune system process), p value
of 3.68 × 10–24; GO:0005615 (extracellular space), p value of 9.57 × 10–24; GO:0005887
(integral to plasma membrane), p value of 1.81 × 10–23; GO:0031226 (intrinsic to plasma
membrane), p value of 3.80 × 10–23; GO:0009611 (response to wounding), p value of 8.43 ×
10–23; and GO:0006955 (immune response), p value of 1.03 × 10–21.
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Discussion
Environmental agents may modify gene expression independently of the primary DNA
sequence through epigenetic modifications, which are mitotically heritable chemical/structural
changes that regulate gene activity in the absence of underlying changes to DNA sequence.
These modifications are the likely mediators of gene–environment interaction, and aberrant
epigenetic modification can have downstream genetic consequences. The primary DNA
sequence is generally fixed at conception, but epigenetic marks are dynamic and modifiable,
probably throughout the entire lifespan.

Blood draws are the primary sources of genetic information for epidemiologic studies because
they are inexpensive and non-invasive. DNA from blood draws is obtained directly from
leukocytes present in the blood (PBC) or after transformation into immortalized cell lines of
B-lymphocytes (TBL). The cellular composition of peripheral blood leukocytes has been
shown to exhibit significant inter-individual variation, but is composed primarily of neutrophils
(mean = 57% in a sample of elderly men), lymphocytes (mean = 30%), and monocytes (mean
= 9%) (Moverare-Skrtic et al. 2009). DNAm profiles have been shown to differ among these
cell types (Moverare-Skrtic et al. 2009) which may account for the detection of sites that are
not fully methylated or fully unmethylated in PBC (sites with β-value significantly different
from 0 or 1). Cell types such as neutrophils and B-lymphoctyes undergo relatively few mitotic
divisions and have been shown to exhibit less methylation at CpG rich regions (tag sites) that
begin unmethylated at infancy than T-lymphocytes which replicate frequently throughout life
(Chu et al. 2008). The same phenomenon of increased methylation at tag sites has been
observed in tissues that undergo frequent mitotic division (for example, epithelial tissues)
compared to tissues that undergo infrequent mitotic division (for example, brain and heart
tissues) (Chu et al. 2007). Due to the differences in DNAm profiles among the different cell
types in PBC, adjustment for individual cell-type composition is necessary when analyzing
DNAm profiles from PBC in epidemiologic studies (Moverare-Skrtic et al. 2009).

TBL is a convenient source of DNA for epidemiologic studies because they are immortalized
cell lines that provide an essentially endless source of genetic material. Although the primary
DNA sequence of these cells remains unchanged during the immortalization process and
through subsequent cellular division, the epigenetic changes to immortalized cells are not fully
understood. Changes in DNAm at key cell cycle regulating genes are known to be a necessary
process in the immortalization of cancerous cells (Fridman and Tainsky 2008). In addition,
there is emerging evidence that changes in the methylation of promoter regions of genes that
mediate the cell cycle are an important regulator of cell division (Metivier et al. 2008).

Recent study by Brennan et al. (2009) compared the DNAm profile of the promoter regions of
320 genes in peripheral blood leukocytes versus TBL from six Caucasians. They identified
~8% of the promoter regions that revealed different DNAm profile in the DNA samples from
two cell types. In our DNAm study of 14,475 human genes using a larger sample size (34 pairs
vs. 6 pairs), a larger proportion (14.1%) of the DNAm sites revealed statistically different
methylation status in DNA samples from PBC and TBL. Our DNAm investigation provides a
more comprehensive coverage of DNAm on human genome and a finer map of DNAm sites
with different methylation status in the two resources of DNA.

PBC and TBL are both excellent resources for DNAm profiles associated with chronic diseases
that involve inflammation and immunity, as leukocytes play a key role in the inflammatory
process and immune response. Epigenetic profiles have been shown to influence the expression
of genes involved in inflammation and immunity, and epigenetic dysregulation has been
proposed as a mechanism leading to an increase in inflammatory/immune diseases with age
(Dong et al. 2002; Wilson 2008). Lower levels of DNAm at the promoter regions of several
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inflammatory cytokines have been shown to be associated with decreased gene expression in
leukocytes, including interferon γ (IFN-γ) and interleukin 3 (IL-3) in mouse CD8+ T-cells
(Fitzpatrick et al. 1998) interleukin 2 (IL-2) in mouse CD4+ T-cells (Bruniquel and Schwartz
2003), and tumor necrosis factor (TNF) in human monocytes (Kochanek et al. 1991; Wilson
2008). Changes in methylation patterns at promoter regions in T-cells in response to
inflammatory cytokines have also been shown to immediately follow T-cell activation
(Bruniquel and Schwartz 2003; Northrop et al. 2006; Pearce and Shen 2006), and these changes
are stably transmitted to activated T-cell progeny (Fitzpatrick et al. 1998).

It is notable that the GO categories that were over-represented among the significant DNAm
differences detected between PBC and TBL are those involved in the extracellular region,
plasma membrane, response to stimulus/wounding/defense, and immune system process/
response. These types of differences are expected between PBC and TBL because they are
different types of leukocyte cell populations, and thus differentially express genes related to
immune response. DNA methylation is known to be involved in regulating the differentiation
of immune cells into specific cell types such as neutrophils, lymphocytes, and monocytes and
maintaining the differentiated state of the cells (Fitzpatrick and Wilson 2003). Some key
differences between differentiated types of immune cells are the proteins expressed on the
plasma membrane and in the extracellular matrix, specifically proteins responsible for cell
migration and binding such as integrins and selectins, as well as their response to environmental
stimulus, such as the release of cytokines (Cotran et al. 1999).

The method of GEE (Liang and Zeger 1986) has been developed to analyze repeated measures.
Use of empirical covariance estimators in a GEE analysis provides consistent estimation of
regression parameters and standard errors of these estimates even when the correlation model
is mis-specified. However, use of the empirical estimator tends to underestimate the true
variance in small samples and results in inflated type I error rates (Kauermann and Carroll
2001; O'Brien and Fitzmaurice 2004). Lu et al. (2007) reported that no bias adjustment is
required for binary outcomes when the size of the cluster is larger than 40. Although GEE does
tend to have liberal estimates (i.e., smaller standard errors and lower p values) for sample sizes
less than 40, the size of the cluster in this study is 34 (only slightly smaller than 40). Importantly,
we did not observe any statistically significant associations between the top PCs and the binary
outcomes (i.e., sex and race). Therefore, the potential bias caused by the small sample size is
unlikely to change the statistical significance of the PC association with sex and race.

Results from this study indicate that the overall DNAm profiles of PBC and TBL are similar.
The correlation between the overall methylation between the two cell types was generally high
(most samples exhibited a correlation greater than 0.9), and no significant difference in DNAm
status was observed at 86.5% of the assayed sites. However, the 3,723 autosomal sites that
differed between the two cell types indicate that there are important differences in the DNAm
profiles that cannot be ignored in the data analysis phase. This study provides a resource for
beginning to understand the way in which methylation patterns may be affected during the
transformation process and may be a starting point for epidemiologic researchers that wish to
extrapolate findings from one cell type to another or investigate the source of cell type-specific
differences. Overall, these results indicate that both PBC and TBL provide a rich resource for
assaying the DNAm profiles of leukocytes in epidemiologic studies. However, our findings of
differential methylation of 3,000 genes suggest that comparison of DNAm results across tissues
and cell types requires serious consideration and careful interpretation.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Histogram of β-value distribution from a single sample
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Fig. 2.
The clustering of the DNA samples by the top PCs using a all DNAm sites including
chromosome X and Y, and b DNAm sites on autosomes (chromosomes 1–22)
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Table 1

Summary of correlation of DNAm status between peripheral blood cells and transformed B-lymphocytes

Caucasians African-Americans

Male (N = 10) Female (N = 10) Male (N = 7) Female (N = 7)

Mean of correlation 0.916 0.934 0.910 0.888

SD of correlation 0.026 0.031 0.043 0.081

Median of correlation 0.919 0.948 0.921 0.920

Max of correlation 0.949 0.960 0.953 0.956

Min of correlation 0.865 0.861 0.823 0.721

Hum Genet. Author manuscript; available in PMC 2011 June 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Sun et al. Page 13

Ta
bl

e 
2

Su
m

m
ar

y 
of

 th
e 

as
so

ci
at

io
n 

te
st

s o
f t

op
 fi

ve
 P

C
s f

ro
m

 2
6,

48
6 

au
to

so
m

al
 D

N
A

m
 si

te
s w

ith
 a

ge
, B

M
I, 

se
x,

 a
nd

 ra
ce

p 
va

lu
e

PC
1

PC
2

PC
3

PC
4

PC
5

A
ge

65
.2

 ±
 2

.7
PB

C
 +

 T
B

L
0.

27
2

0.
06

4
0.

41
7

0.
38

0
0.

81
8

PB
C

0.
81

0
0.

31
7

0.
67

8
0.

97
4

0.
53

8

TB
L

0.
45

4
0.

70
6

0.
84

0
0.

61
4

0.
83

7

B
M

I
32

.7
 ±

 5
.4

PB
C

 +
 T

B
L

0.
90

6
0.

31
6

0.
72

2
0.

43
6

0.
81

5

PB
C

0.
29

6
0.

89
2

0.
90

2
0.

94
4

0.
56

0

TB
L

0.
96

3
0.

69
6

0.
85

6
0.

12
8

0.
62

7

Se
x

50
%

PB
C

 +
 T

B
L

0.
26

3
0.

14
3

0.
27

8
0.

30
0

0.
06

2

PB
C

0.
47

6
0.

01
0*

0.
87

3
0.

84
3

0.
02

8*

TB
L

0.
26

5
0.

45
7

0.
27

2
0.

38
0

0.
96

7

R
ac

e
41

%
PB

C
 +

 T
B

L
0.

90
9

0.
11

5
0.

12
1

0.
42

7
0.

21
1

PB
C

0.
78

0
0.

00
6*

*
0.

55
9

0.
56

0
0.

17
2

TB
L

0.
99

7
0.

36
0

0.
37

8
0.

69
3

0.
15

4

* p 
va

lu
e 

le
ss

 th
an

 0
.0

5

**
p 

va
lu

e 
le

ss
 th

an
 0

.0
1

Hum Genet. Author manuscript; available in PMC 2011 June 1.


