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Abstract

Cell fates are instructed by signals emitted from specialized cell populations called organizers. The
study of epidermal patterning in Drosophila is contributing novel insights concerning the
establishment and action of such organizers. Juxtaposed rows of cells express either the wingless or
hedgehog signaling molecules and thereby act as organizers of segment pattern. These signals
mediate a mutually re-enforcing interaction between the two rows of cells to sustain organizer
function. In a distinct and subsequent phase, wingless and hedgehog act to specify the fates of cells.

Introduction

One of the early successes of experimental embryology was the demonstration of the
importance of induction to embryonic development. In this process, organizing centers emit
signals that direct the choice of fate in surrounding cells [1]; for example, a signaling center
in the posterior portion of the limb bud, the zone of polarizing activity (ZPA), organizes the
pattern of digits across the entire limb [2]. Such organizers also operate within the insect
epidermis, in which signaling centers near the borders of each segment specify cell fate [3,4].
Although the organisms favored by early experimental embryologists were well suited to the
transplantation experiments that defined organizers, genetically tractable organisms are more
suited to investigating the mechanisms by which organizers act.

In Drosophila, genetic screens have identified mutations in many of the genes involved in
patterning the epidermis [5,6]. Genetic and molecular analyses of these segment polarity genes
have revealed that two signaling molecules, encoded by wingless (wg) and hedgehog (hh),
specify most of the epidermal cell fates. The wg product is a member of the evolutionarily
conserved Wnt family of signaling proteins [7,8], and the hh product defines a novel class of
conserved developmental signaling molecules [9-12,13+—16¢]. Recent experiments have
demonstrated that not only are the molecules conserved across species, but their function is
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also conserved. This observation has stimulated broad interest in the action of these two
proteins, as well as other segment polarity genes. In this review, we outline a new framework
for thinking about the action of these patterning genes. We focus on the establishment and
action of the wg- and hh-expressing cells as organizers of pattern. The other segment polarity
genes fit into this framework as components of signal transduction pathways, or as factors
required to maintain and accurately position the signaling centers.

Steps in segmental patterning

Early in development, a cascade of regulatory genes generates stripes of localized transcription
factors that define repeating units along the body axis, called parasegments [17]. Within each
parasegment, the transcription factors initiate the expression of wg in one row of cells, and the
expression of both the secreted protein Hh [9-12] and the transcription factor Engrailed (En)
in the adjacent, posterior row [18-21] (Fig. 1). These two rows of cells flank the boundary
between adjacent parasegments and have been identified as sources of signaling. Each row of
cells signals at two different times during segmentation, with distinct outcomes [22-26,27¢,
28e°].

The early phase: stabilization of the signaling centers

The wg- and hh-expressing cells signal to each other, reinforcing gene expression in each cell
(Fig. 1; for a comprehensive review, see [29]). It has been demonstrated that the secreted
glycoprotein Wg is the ligand required for continued expression of en and hh in the neighboring
cells [22-24,30¢¢]. Reciprocally, it has been proposed that the secreted protein Hh is the signal
that maintains wg expression [31,32].

Several segment polarity genes act in the signal transduction pathways that operate during the
stabilization phase. Although no Wg receptor has yet been identified, the genes porcupine,
dishevelled, zeste-white3 and armadillo have been implicated in the sending or transduction
of the wg signal (Fig. 1; [33,34¢,35¢,36¢¢,37,38+—40¢]; review in preparation, J Klingensmith,
R Nusse, personal communication). One target of this transduction cascade may be en
autoactivation, and en, in turn, positively regulates hh expression [25,41].

Less is known about transduction of the putative hh signal, although some genetic evidence
[42,43¢+] implicates the gooseberry and cubitus interruptusP transcription factors [44,45] and
the fused serine/threonine kinase [46] in this pathway (Fig. 1).

At this stage in patterning, both wg and hh signaling appear to act over only short distances
[30e+,32]. Locally restricted signaling ensures that the domain of cells expressing either wg or
hh remains narrow during development, even though the width of the parasegment grows
threefold; for instance, as cell division and movements occur, some en/hh-expressing cells are
displaced from the interface with wg-expressing cells and the expression of en is shut off in
cells furthest away from the sustaining wg influence [47¢¢]. Such refinement in the domains
of en and wg expression is crucial for patterning, as several studies have demonstrated that
widened domains of either wg or en/hh expression cause severe mis-specification of cell fates
[22,23,32,48,49].

The late phase: signaling centers specify fates

The cell signaling events executed during the stabilization phase do not specify the final fate
of cells, as alterations in the expression of either signal at later times dramatically affect cell
fates [24,26,28+¢,32,48,50,51]. After the positions of the signaling centers have stabilized,
however, the two signals then act to specify the distinct cell types across the parasegment
[24,26,28++,50,51] (Fig. 1).
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Roughly ten diverse epidermal cell types are generated within each parasegment. The final fate
adopted by a cell is visualized at differentiation when the cytoskeleton distorts cells into distinct
shapes (Fig. 2) [52]. Each cell then secretes a cuticular covering that indelibly reflects its shape
change; therefore, cellular identity is easily visualized in the stereotyped pattern of segmentally
repeated cuticular features [53].

The wg input is necessary for several rows of cells anterior to the wg-expressing cells to adopt
their normal smooth cell fate [24,50]. The wg product also signals in the posterior direction,
but in this case its effect is local. Two rows of cells posterior to the wg-expressing cells express
en/hh. The most posterior row of en/hh-expressing cells adopts a denticle fate. However, wg
input to the more anterior row, instructs those cells to adopt the smooth fate (Fig. 2) [26].

The hh gene appears to signal many of the remaining cell fates across the parasegment [28e¢].
In the dorsal epidermis, Hh acts as a morphogen in executing this role, whereas ventrally, Hh
may cooperate with an unidentified signal from the en-expressing cells ([54¢¢]; S DiNardo,
unpublished data).

Uncoupling stabilization from fate specification

The mutual dependence of wg and hh expression during the stabilization phase initially masked
their later, separate roles in fate specification. The standard genetic approach by which to
uncover arole for a gene is to remove gene function and analyze the consequences on cell fate
specification. Ifthis gene is required for the expression of another signaling molecule, however,
it is difficult to determine which ligand is responsible for which fate changes; for example, any
of the changes in cell fate observed in a wg mutant could be attributed to loss of direct action
of W, to subsequent loss of Hh activity, or to combined loss of both Hh and Wg activity. Two
kinds of experiment have enabled researchers to distinguish between these possibilities and
have led to the above proposal that wg and hh signaling centers operate as the two organizers
of segmental pattern.

First, a temperature-sensitive allele of wg made it possible to inactivate wg at various times
during development [24,28+¢,50,55]. Loss of Wg activity during the later, fate specification
phase no longer affects the continued expression of en or of the hh signal [24,25]. This has
provided a way in which to analyze the contribution of wg to fate specification without affecting
the fates specified by hh signaling. Second, a key role for hh has been uncovered through
experiments that bypass the stabilization phase, maintaining the expression of hh in the absence
of any wg input. In this manner, we have discovered that hh can organize substantial pattern
in the dorsal epidermis independently of wg signaling [28e¢].

The difficulty in identifying the separate early and late roles for wg and hh illustrates a general
problem concerning all segment polarity genes. Does a given gene act early, during
stabilization, or does it act both early and later, during fate specification?

Components of the wg signal transduction pathway act both early and late. These genes were
first identified through their action during the stabilization phase, in which the target is en gene
expression. However, the same signal transduction cassette mediates wg signaling during limb
and wing patterning [35¢,37,38+—40¢], even though the target is not en expression. Thus, it is
likely that porcupine, dishevelled, zeste-white3, and armadillo mediate wg function during fate
specification also (Fig. 1).

In contrast to this, the segment polarity genes implicated in transduction of the hh signal act

only early. In embryos lacking gooseberry, cubitus interruptusP or fused, wg expression is lost,
but hh-dependent cell types are still specified ([42,56]; J Heemskerk, S DiNardo, PH O’Farrell,
unpublished data). Therefore, these three genes act only during early hh signaling, when hh is
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needed for the maintenance of wg expression, and are not required in the hh pathway for
signaling cell fates.

Particular segment polarity genes position the signaling centers

Segment polarity mutants that result in mis-specification of some cell fates were first thought
to define genes involved directly in the specification of the affected cell types. Genes in this
class include naked, patched, and costal-2. We argue that mutations in these genes affect cell
fates only indirectly and do so because they change the distribution of the important signaling
molecules Wg and Hh. The changes in Wg and Hh expression precede cell fate specification
[22,23], and the ultimate changes in cell fate can be explained by the altered positions of the
two signaling centers, or the distance over which they now act ([26]; J Heemskerk, S DiNardo,
PH O’Farrell, unpublished data). One test of this hypothesis is to determine whether the cell
fates missing in a mutant background can be restored by manipulating organizer function
without restoring the missing gene product; for example, naked mutants mis-express wg and
lack several cell types [22,26], but if wg function is inactivated after its mis-expression, but
prior to final fate specification, the missing cell types are restored [26]. Therefore, naked
activity is not required for the fates of these cells, but, rather, for the control of where wg is
expressed. Analogous experiments have not yet been carried out for patched and costal-2.
Nevertheless, as mutations in these genes also change the position of the organizers, we
postulate that these genes do not act directly in establishing cell fate, but, rather, constitute a
genetic circuit that assures the accurate positioning of the signaling centers during the
stabilization phase (Fig. 2). The patched and naked genes may execute this role by modulating
the transduction of either the wg or hh signal during stabilization, perhaps by encoding
components of the signal transduction apparatus itself [31,32,54¢¢]. It is presently less clear
how costal-2 acts to modify patterns of wg and hh expression. The view that these genes do
not specify cell fate directly contrasts with a recent proposal by Bejsovec and Wieschaus
[54e°].

Conclusions

The wg and hh genes act as organizers of epidermal pattern. Most other segment polarity genes
fit into this framework as components of the signal transduction apparatus, or as factors
required to maintain or accurately position these signaling centers. Thus, few if any of the other
segment polarity genes act specifically in signaling final cell fate; instead, most act in the
feedback between the adjacent signaling centers.

Reinforcement is a general property of organizers

The mutual reinforcing signals that occur during the stabilization phase may be a general feature
of organizers. In vertebrates, cell signaling interactions appear to sustain organizers; for
instance, in the limb bud, feedback from the apical ectodermal ridge is required for the
maintenance of the ZPA [57]. Recent analysis strongly suggests that the signaling molecule in
the apical ectodermal ridge is fibroblast growth factor 4 [57,58], whereas the vertebrate hh
homolog (vhh) encodes a ZPA signal [13]. Although such feedback will maintain an organizer,
it may also serve a larger purpose. Neighboring organizers that rely on mutually reinforcing
signals would remain highly localized during growth and proliferation. This would constrain
each organizer from inappropriately extending its influence and thereby disrupting overall
pattern.

Distinct responses to the same signal

Early wg input stabilizes en and hh expression, whereas the later input specifies the smooth
cell fate. It appears that the same components transduce the wg signal at both times. At present,
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we do not understand how the same transduction pathway leads to different read-outs from the
responding cell. The same issue is unresolved in other inductive cell signaling processes used
during development. For instance, the activation of most receptor tyrosine kinases leads to the
same intracellular cascade of Ras—Raf—mitogen-activated protein (MAP) kinase
interactions, yet the response of the cell differs depending on the tissue type being patterned
(reviewed in [59]). In the fly epidermis, either there are novel components in the wg
transduction pathway yet to be identified, or the available targets in the responding en/hh cell
must be different at the two times. Perhaps a solution will be found by focusing on the fate
specification phase, in which more components the wg pathway need to be identified.

Abbreviations

en
hh
wg
zpP

engrailed
hedgehog
wingless

A zone of polarizing activity
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Fig. 1.

The stabilization and fate specification phases of epidermal patterning. Cells first form at two
hours after fertilization, and the epidermal cells differentiate at twelve hours (time line). Shaded
bars indicate the approximate period during which signals stabilize wingless (wg) and
hedgehog (hh) expression, or specify cell fates (shading reflects uncertainty in timing). Line
of circles represent a short antero-posterior strip of epidermal cells. During the early period,
wg- and hh-expressing cells signal to one another (short arrows) across the parasegment
boundary (vertical dashed line). During the late period, wg specifies fates anteriorly (leftward
open arrow) and the fate of the adjacent hh-expressing cell [which co-expresses engrailed
(em)]. hh function specifies cell fates posteriorly (rightward open arrow). The other segment
polarity genes are grouped below according to their postulated roles in either the wg or hh
signaling pathways, or in restricting the position of the signaling cells. porc—porcupine, dsh
—dishevelled, zw3—zeste-white3, arm—armadillo, CiP—cubitus interruptus®, gsb—
gooseberry, fu—fused, ptc—patched, nkd—naked, and cos-2—costal-2. The mechanism by
which pair-rule segmentation genes first establish wg and en/hh expression is reviewed in
[60].
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Fig. 2.

Epidermal cell fate. The photograph shows a portion of the ventral epidermis within a
parasegment (anterior to the left, posterior to the right). Cell bodies are below the plane of
focus. Six rows of cuticular protrusions, called denticles, are indicated, and each row exhibits
unique characteristics of size and orientation that reflect the distinct positional identity of the
row of underlying epidermal cells. Two rows of cells at the left express en/hh as revealed by
an en-lacZ reporter gene (*; dark stain). Note that the posterior row adopts a denticle row #1
fate, whereas the anterior row adopts a smooth cell fate. This smooth fate is instructed by late
wg input [26], as are other smooth cell fates further to the anterior in the segment [24] (not
shown).
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