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Abstract
Mesenchymal stem cells (MSCs) represent a promising new approach to the treatment of several
diseases that are associated with dismal outcomes. These include myocardial damage, graft versus
host disease, and possibly cancer. Although the potential therapeutic aspects of MSCs continue to
be well-researched, the possible hazards of MSCs, and in particular their oncogenic capacity are
poorly understood. This review addresses the oncogenic and tumor-supporting potential of MSCs
within the context of cancer treatment. The risk for malignant transformation is discussed for each
stage of the clinical lifecycle of MSCs. This includes malignant transformation in vitro during
production phases, during insertion of potentially therapeutic transgenes, and finally in vivo via
interactions with tumor stroma. The immunosuppressive qualities of MSCs, which may facilitate
evasion of the immune system by a tumor, are also addressed. Limitations of the methods employed
in clinical trials to date are reviewed, including the absence of long term follow-up and lack of
adequate screening methods to detect formation of new tumors. Through discussions of the possible
oncogenic and tumor-supporting mechanisms of MSCs, directions for future research are identified
which may eventually facilitate the future clinical translation of MSCs for the treatment of cancer
and other diseases.
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INTRODUCTION
Mesenchymal stem cells (MSCs) have received considerable attention in recent years for
several potential therapeutic applications, including myocardial tissue repair, prevention of
graft versus host disease, and the treatment of cancer. While the therapeutic promise of MSCs
has been reiterated time and again in multiple reviews, the potential hazards of their use are
infrequently addressed. This review considers the oncogenic potential of MSCs, with a focus
on the use of MSCs to treat cancer. Although almost all animal studies that have employed
genetically-modified MSCs for the treatment of cancer have shown therapeutic effects [1], an
understanding of oncogenic mechanisms that may give rise to cancers in humans over an
extended time frame will be necessary to facilitate the clinical translation of MSCs. The
approach in this review is to describe how MSCs may undergo malignant transformation at
each phase of their clinical lifecycle, from initial isolation, to expansion in culture, transfection
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with therapeutic transgenes, and finally, administration to patients. Additionally, the
immunosuppressive properties of MSCs, which may promote evasion of the immune system
by tumors, are also addressed. By identifying these potential oncogenic and tumor-enhancing
mechanisms, we define areas for further research which we hope will facilitate the translation
of MSCs to clinical use for the treatment of cancer.

DEFINITION OF A MESENCHYMAL STEM CELL
MSCs are classically defined by the initial experimental protocols that were used to isolate
them from bone marrow [2,3]. Bone marrow aspirates can be dissociated into a suspension
containing hematopoietic stem cells and marrow stromal cells. The hematopoietic stem cells
give rise to erythroid, lymphoid, and myeloid progenitors; whereas the marrow stromal cells
support hematopoiesis, comprise the structural matrix of bone marrow, and are capable of
differentiating into the osteogenic, chondrogenic, and adipogenic lineages. When cultured,
only the marrow stromal cells adhere to the flask, and it is possible to separate these cells by
repeatedly changing the media. These adherent cells were termed colony-forming unit
fibroblasts due to their fibroblast-like morphology and the propensity to form colonies in
culture [3]. They are now referred to as mesenchymal stem cells or marrow stromal cells. Their
characteristic morphology is shown in Fig. (1).

The immunophenotypic definition of what constitutes an MSC has only recently been
standardized. The minimal criteria that define an MSC, as set forth in 2006 by the International
Society of Cellular Therapy (ISCT) are:

1. Plastic-adherence in standard culture conditions;

2. Expression of the mesenchyme markers CD105, CD73 and CD90, and no expression
of markers of contaminating endothelial, hematopoietic, or immunological cells
(CD45, CD34, CD14 or CD11b, CD79α, or CD19 and HLA-DR surface markers);
and

3. The ability to differentiate into osteoblasts, adipocytes and chondroblasts [4,5].

There is no one marker that is specific for MSCs, and combinations of markers must be
specified to distinguish cell types with behavior characteristic of MSCs. Although the ISCT
definition will help to standardize future research, most of the existing studies published since
the initial isolation of MSCs in 1970 have used inconsistent defining characteristics of MSCs,
which may in part explain the high prevalence of conflicting experimental results. This
inconsistency could call into question the validity of many of the experiments that have used
these cells, and at worst, may influence the results of clinical trials [6].

IN VITRO MALIGNANT TRANSFORMATION
Considerable in vitro expansion is often necessary to achieve adequate numbers of MSCs for
therapeutic purposes [7–9]. This in vitro expansion phase is the first point at which MSCs
become susceptible to malignant transformation, as shown in Fig. (2a). Rubio et al. showed
that human adipose-derived MSCs undergo spontaneous transformation after 4–5 months of
culture, through the sequential upregulation of c-myc and downregulation of p16, although this
phenomenon was not observed after only 6 to 8 weeks in culture [10]. Wang et al. noted that
the in vitro culture of human bone marrow-derived MSCs produces a sub-population of cells
with high levels of telomerase activity, chromosomal aneuploidy, and translocations, that are
capable of forming tumors in multiple organs in NOD/SCID mice [11]. These findings were
not reproduced in a subsequent study, in which chromosomal abnormalities were absent, and
normal telomere shortening was observed, in human bone marrow-derived MSCs that were
propagated to senescence or 25 passages [12]. Because the results of such experiments conflict

Momin et al. Page 2

Curr Immunol Rev. Author manuscript; available in PMC 2010 May 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



with one another, and because available research on in vitro characteristics of MSCs is limited,
the possibility of malignant transformation in vitro remains highly controversial. Future studies
which employ standardized isolation protocols for MSCs will therefore be needed to elucidate
the poorly understood potential for malignant transformation during the in vitro expansion
phase [13].

MESENCHYMAL STEM CELLS MIGRATE TO TUMORS
In vivo experimental studies on the migration of MSCs are summarized in Table 1 and Table
2. These tables include several supporting clinical studies that have rigorously tracked the
distribution of MSCs administered to patients. Taken together, these studies demonstrate two
important in vivo characteristics of MSCs: MSCs migrate toward tumors, but this migration is
non-specific [1,13]. The migratory tropism toward tumors has been observed when MSCs are
administered by intravenous [14], intraarterial [15], or peritumoral routes [16]. The mechanism
of migration is poorly understood, but has been shown to be dependent upon the cytokine/
receptor pairs SDF-1/CXCR4 [15,17,18], SCF-c-Kit [19,20], HGF/c-Met [21], VEGF/VEGFR
[22], PDGF/PDGFr [15], MCP-1/CCR2 [23], and HMGB1/RAGE [24,25], as well as cellular
adhesion molecules [18,26,27]. Migration to tumors, however, is non-specific as exogenously
administered MSCs have also been shown to localize to the lung [14,28–32], bone marrow
[29,30,33,34], and lymphoid organs [35,36]; and prior whole body irradiation tends to expand
the distribution of MSCs in the body to multiple organs [28,30]. Additionally, MSCs appear
to migrate to sites of localized chronic inflammation [35,37], which may in part explain the
observation that MSCs are recruited in the process of wound repair [38–42]. Although MSCs
have been shown to enhance metastatic potential in an animal model of breast carcinoma
[43], there have been no reports of tumor seeding by MSCs in normal, non-cancerous tissue.
These interactions between MSCs and normal, noncancerous tissue, however, are probably
very different from the interactions of MSCs with abnormal, neoplastic tissue. These
interactions between MSCs and cancerous tissue have been researched more thoroughly, and
are addressed in subsequent sections of this review.

IMMUNOSUPPRESSION BY MESENCHYMAL STEM CELLS MAY FAVOR
TUMOR GROWTH

In several animal tumor models, including melanoma [44,45], colon adenocarcinoma [46],
multiple myeloma [47], lung cancer [48], and glioblastoma [48], the presence of exogenous
MSCs was shown to enhance tumor formation. Such studies provide indirect evidence that
there may be a cancer-promoting interaction between MSCs and tumors. One potential
mechanism underlying these observations is immunosuppression. MSCs exert an
immunosuppressive effect by interacting with almost all cells of the innate and adaptive
immune systems, and these interactions may enhance the ability of some tumors to evade
immune surveillance [13].

In the adaptive immune system, MSCs interact with both T-cells and B-cells. The effects of
MSCs upon T cells are two-fold. First, MSCs tend to support the survival of T cells that are in
a quiescent state. T cells that are exposed to MSCs are arrested at the G1 phase of the cell cycle,
in a state that resembles division arrest anergy [49]. This process may be dependent on
inhibition of cyclin D2 and the upregulation of CDKN1B [49]. Furthermore, MSCs protect
unstimulated T cells from activation induced cell death through downregulation of the Fas
ligand and receptor [50].

Second, MSCs suppress proliferation of T-cells that are in an activated state. This T cell
suppression occurs by one of three mechanisms. The first mechanism involves the concerted
action of IFN γ with one of 3 pro-inflammatory cytokines: TNF α, IL-1α, or IL-1β [51]. IFN
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γ causes T cells to produce the enzyme indoleamine 2–3 dioxygenase (IDO) [51–53]. IDO is
important because it depletes the essential amino acid tryptophan, which is required for
lymphocyte proliferation. The pro-inflammatory cytokines TNF α, IL-1α, and IL-1, cause
MSCs to secrete iNOS and the chemokines CXCL-9 and CXCL-10 [51]. The elevated
expression of iNOS results in high local levels of nitric oxide, which inhibits T lymphocytes
in part by suppressing STAT-5 phosphorylation [54]. The chemokines attract T cells into
proximity with MSCs [51]. These T lymphocytes which have migrated to a microenvironment
that includes high levels of IDO and nitric oxide, then become suppressed. Therefore, MSCs
suppress the function of T cells via IFN γ and pro-inflammatory cytokines. The second
mechanism of T cell suppression by MSCs involves the non-classical human leukocyte antigen
(HLA) class I molecule HLA-G5, which has been shown to suppress T-cell proliferation and
increase production of T regulatory cells [55–57]. When MSCs make physical contact with
stimulated lymphocytes, they are capable of secreting HLA-G5 in an IL-10-dependent manner
[56]. Finally, T cells are indirectly suppressed by the actions of MSCs on dendritic cells (DCs),
which are described below. When T cells are suppressed by MSCs, they shift to an anti-
inflammatory state. This anti-inflammatory state is characterized by decreased IFN γ
production by TH1 cells [57], decreased production of IL-4 production by TH2 cells [57], and
diminished production of TNF α [35]. Therefore, MSCs suppress T cells through the actions
of IFN γ, HLA-G5, or the suppression of DCs, causing a shift to an anti-inflammatory state.

Direct suppression of B cells by MSCs may occur to a limited extent [58]. As with T cell
suppression, a mechanism involving arrest at the G0/G1 phase appears to be involved in B cell
suppression, which impairs production of IgM, IgG, and IgA [59]. Cell surface interactions,
including the engagement of PD-1 receptor, are also necessary for this effect [60]. Direct
suppression of B cells by MSCs remains controversial, as other studies have demonstrated
conflicting results [52]. Most likely, the dominant mechanism for the suppression of B cells is
indirectly through suppression of T-cells.

MSCs suppress the innate immune system primarily through their effects on dendritic cells
(DCs). Dendritic cells process antigenic material, mature, and then function as antigen
presenting cells to naive T lymphocytes. MSCs inhibit three critical functions of dendritic cells:
maturation, antigen presentation, and secretion of pro-inflammatory compounds. MSCs inhibit
the maturation of DCs, or more specifically, the commitment of CD 34+ cell-derived [61] and
monocyte-derived precursors [61–64] to differentiate into DCs. This inhibition occurs by
blocking DC precursors from entering the G1 cell cycle phase, and through the downregulation
of cyclin D2 [62]. Furthermore, activation of the Notch signaling pathway appears to be
involved, as the administration of inhibitors of Notch signaling to cocultures of MSCs and DC
precursors reverses the effects of MSCs on DC cell maturation [65]. MSCs also inhibit antigen
presenting functions by DCs [62]. Co-culture of MSCs with DCs or DC precursors results in
diminished levels of cell surface molecules associated with antigen presentation, including
MHC class II, CD1a, CD40, and CD 86 [63,64]. Finally, MSCs suppress DC cell function by
inhibiting their secretion of the pro-inflammatory compounds TNF α and IL-10 [57]. Therefore
MSCs interact with dendritic cells to inhibit their maturation, antigen presentation, and
secretion of pro-inflammatory compounds.

MSCs further suppress the innate immune system by acting on NK cells and neutrophils. The
interactions between MSCs and NK cells represent an example of reciprocal inhibition. The
activation of NK cells is highly dependent on cell surface receptors. These cell surface receptors
allow NK cells to recognize target cells and are required for NK cell-mediated lysis to occur.
The cell surface receptors NKp30, NKG2D, DNAM-1, and LFA1, which are present on the
surface of NK cells, are activated by ligands that are present on the surface of MSCs: ULBP,
PVR, Nectin-2, and ICAM-1, respectively [66,67]. Through their interactions with these cell
surface receptors, activated NK cells are able to lyse autologous and allogeneic MSCs [66,
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68]. However, MSCs exert an opposing effect by down-regulating the expression of NKp30
and NKG2D, ultimately inhibiting the cytotoxic activity of NK cells, cytokine production, and
proliferation [68,69]. Furthermore, the HLA-G5 and IDO systems discussed previously also
appear to inhibit NK cells [56,69]. MSCs act on both resting and activated neutrophils by
dampening the respiratory burst [70]. However, MSCs also inhibit apoptosis of neutrophils
through the IL-6 induced upregulation of STAT-3, and do not impair phagocytosis, or
expression of adhesion molecules on neutrophils.[70] These effects on the immune system may
contribute in part to tumor-enhancing properties of MSCs. However, a second factor—the
interaction between MSCs and tumor stroma—likely plays a siginificant role. These
interactions are discussed next.

MALIGNANT TRANSFORMATION FROM INTERACTIONS WITH TUMOR
STROMA

A second mechanism that accounts for enhancement of tumor formation by MSCs is a possible
transforming effect exerted by tumor stromal cells upon mesenchymal stem cells [71]. Tumors
are comprised of a heterotypic array of malignant cells in communication with stromal cells.
This tumor stroma is composed of endothelial cells, immune cells, and fibroblasts, which are
thought to support the neoplastic properties of cancer cells [72–77]. Several studies suggest
that MSCs could be a source of one type of stromal cell in breast cancer—the carcinoma-
associated fibroblast (CAF), as shown in Fig. (2b) [71,74,78]. CAFs are a mixed population
of myofibroblasts and activated fibroblasts which have been found to support growth of cells
and angiogenesis in breast cancer [79]. Notably MSCs can assume a CAF-like phenotype after
prolonged exposure to tumor-conditioned media [78]. These CAF-like MSCs possess a
phenotype similar to CAFs, enhance tumor growth both in vivo and in vitro, and demonstrate
sustained expression of the stromal-derived factor-1 (SDF-1) and the myofibroblast marker
α-smooth muscle actin (α-SMA) [78,79]. Additionally, MSCs have also been shown to adopt
a myofibroblast phenotype in response to transforming growth factor-β (TGF-β) [78,80]. Taken
together, these observations have led some authors to believe that MSCs exposed to the local
environment of a tumor could differentiate into CAFs and may therefore enhance tumor growth
or spread [71].

Further understanding of such interactions between MSCs and tumor stromal cells will require
more refined animal models than are currently available [81]. Standard xenograft models are
of limited use in studying the interactions between MSCs and tumor stroma because they fail
to fully capture the complexity of the tumor stroma as it occurs in patients [82,83]. Most animal
tumor models are created by first culturing human cancer cells or cancer stem cells in vitro and
engrafting the cells into an animal. During the in vitro culturing phase, cells lines adapt to and
proliferate in culture conditions independent of contact with stromal and epithelial cells, and
this process may eventually result in cells with a phenotype that differs markedly from that
found in patients [82]. Once these cells are engrafted into an animal, the stroma that forms is
derived from the animal’s own cells, resulting in a chimeric tumor that does not precisely
represent the human condition. Because human cellular signaling pathways differ from those
of mice [84] and other animals, these chimeric tumors most likely do not reproduce the
interactions that would occur between human MSCs and human tumor stroma. Animal models
that more accurately recapitulate the tumor stromal characteristics observed in patients, and
that are capable of engrafting human cell types that comprise the tumor stroma, are therefore
required for definitive studies on the interactions of MSCs with tumor cells, and in particular,
the stromal component. The new generations of immunocompromised mice, such as the NOG
(NOD/Shi-scid/IL-2Rγnull) mouse, which accept heterologous cell populations more readily
than wildtype animals, represent one new advancement in this direction [85].
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MIGRATION AND TUMOR FORMATION: PARALLELS WITH THE BRAIN
TUMOR STEM CELL HYPOTHESIS

The notion that stem cells can migrate toward a tumor, develop into a malignant phenotype,
and subsequently contribute to the tumor mass, parallels a broader line of reasoning which has
been proposed to explain the origins of brain cancer. This line of reasoning is termed the brain
tumor stem cell (BTSC) hypothesis [86–89]. The BTSC hypothesis proposes that oncogenic
alterations in neural stem cells (NSCs), or NSC-like cells, may give rise to brain tumors [90].
Therefore, brain cancers represent clonally-derived tissues that arise from a single abnormal
stem cell. The BTSC hypothesis arose from observations that normal, non-cancerous
neurogenesis continues to take place in the adult brain [90–96]. These mechanisms of
neurogenesis in the adult brain rely on NSCs which reside in 3 different niches—the
subventricular zone of the lateral ventricles (SVZ), the subgranular layer of the hippocampal
dentate gyrus, and the olfactory bulbs [97–99]. From these niches, NSCs most likely migrate
into the brain parenchyma [100], and serve as precursors for new neurons, oligodendrocytes,
and astrocytes. The BTSC hypothesis proposes that these normal mechanisms of neural
development that stem from normal NSCs parallel the abnormal oncogenesis that results from
abnormal NSCs.

The BTSC further proposes that the development of a brain tumor parallels normal adult
neurogenesis by recruiting NSCs to the site of the tumor. In support of this claim is the
observation that NSCs show extensive migratory tropism to brain tumors, to the extent that
they can even be modified genetically to serve as gene delivery vehicles for the treatment of
cancer [1,101]. Furthermore, the proximity of brain tumors to germinal areas such as the SVZ
affects their clinical characteristics, suggesting that cells in these niches may affect the process
of tumor formation [102,103]. In a recent series, Lim et al. found that 56% of GBM tumors in
contact with the SVZ and cortex were multifocal, but tumors not in contact with the SVZ or
cortex were not multifocal [102]. Furthermore, patients with GBM tumors that are not in close
proximity to germinal zones survive 3 months longer from the time of diagnosis, than patients
with tumors in close proximity to germinal zones [103]. These findings support the hypothesis
that brain tumors recruit stem cells from germinal zones, such as the SVZ, which migrate to
the tumor, and contribute to tumor formation.

We speculate that there are several parallels that remain to be explored between NSC and MSC
migratory characteristics within the context of brain cancer. NSCs are recruited to a neural
niche in gliomas, where they contribute to tumor formation. Similarly, it is possible that MSCs
may be recruited to the stromal portion of tumors, which could serve as a mesenchymal niche,
and thus contribute to tumor formation. As previously discussed, this stromal portion could
favor malignant transdifferentiation of MSCs, which would in turn account for the oncogenic
properties of MSCs documented in some studies [44–48]. Additional research is necessary to
determine if any such parallels exist between the migratory characteristics of NSCs and MSCs.

MALIGNANT TRANSFORMATION FROM INCORPORATION OF
TRANSGENES

The observation that MSCs migrate toward tumors has prompted a new approach to treating
cancer in which genetically-modified MSCs serve as tumor-selective gene delivery vehicles
(Table 2). The basic approach, which has only been employed in animal models thus far, calls
for the harvest of MSCs, modification of the MSCs such that they secrete an anti-neoplastic
compound, and finally administration of the MSCs into an animal possessing a tumor. Stem
cells have already been genetically modified to secrete 11 different compounds with varying
success in prolonging survival and reducing tumor mass (reviewed in Aboody et al. [1]).
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Although this approach to treating cancer holds tremendous promise, the genetic modification
of MSCs—or any cell type which is to be administered to patients—may also be hazardous.

The possible dangers of transgenic cell therapy stem from one of two possibilities: that either
the transgene is tumorigenic, or that its insertion disrupts a genomic locus that is critical for
tumor suppression, as shown in Fig. (3). The tumorigenicity of a transgene is of concern within
the context of using genetic modification to immortalize stem cell lines. Incorporation of an
immortalizing transgene may be necessary for therapeutic application of MSCs because MSCs
have traditionally been derived from small tissue samples (usually bone marrow) that must be
expanded to billions of cells in order to reach therapeutic levels. Significant expansion of an
unmodified cell line, however, is difficult since MSCs become senescent after several passages
[104]. Therefore the incorporation of immortalizing genes has been explored as an approach
to maintain cell lines indefinitely [1]. Immortalizing transgenes include the proto-oncogene v-
myc [101,105–110], human telomerase reverse transcriptase (hTERT) [111–118], human
papillomavirus type 16 E6/E7 [119–122], Bmi-1 [123–129], and the N-terminal fragment of
SV40 large T-antigen [1,130–133]. Notably, the potential tumorigenic capacity of these
immortalized cells lines is not well-studied, and it is unknown whether loss of normal cell-
cycle checkpoint controls, karyotypic instability, or other undesired changes may occur after
transfection [1,134]. Although the proliferative characteristics of hTERT are well documented,
aberrant karyotypic structures can be detected at early passages [135,136]. Perhaps the best
hope for circumventing the uncertainties of immortalized cell lines is to harvest MSCs from
more plentiful sources of tissue, such as umbilical cord blood or adipose tissue, which, by
virtue of sheer volume at the time of harvest, can provide sufficient numbers of cells within a
few passages. Notably, adipose-derived MSCs are similar to those isolated from bone marrow
in terms of morphology, the success rate of isolating MSCs, expansion potential, differentiation
capacity, and immunophenotype [137,138], suggesting that they may be an ideal alternative
source of MSCs.

A second potentially harmful aspect of transgenic cell therapy is the possibility of insertional
mutagenesis. The term insertional mutagenesis refers to the insertion of an otherwise non-
cancerous transgene at a critical genetic locus, resulting in dysregulation of the normal
mechanisms of tumor suppression, and ultimately, oncogenic consequences [139,140]. The
dangers of insertional mutagenesis were highlighted in a French clinical trial for severe
combined immunodeficiency that employed uncloned autologous hematopoietic stem cells
transduced with a retrovirus encoding the IL2RG gene [141–143]. The exogenous nucleotide
sequences were found adjacent to loci encoding LMO2, LYL1, c-Jun, Bmi1, and CCND2,
upregulating the expression of these genes, which in turn transformed T cells [142,144]. Four
of the 10 patients in the trial developed a T-cell acute lymphoblastic leukemia-like disease
[144–148]. Such devastating outcomes suggest that in transgenic cell-based therapies, either
well-characterized cell lines must be used, or robust methods for characterizing the potential
insertion sites must be developed, to lower the potential for insertional mutagenesis. This
potential for insertional mutagenesis during the genetic modification of MSCs will be both
difficult and costly to overcome, and may very well remain one of the greatest limiting factors
in the translation of MSCs as gene-delivery vehicles.

LIMITATIONS OF EVIDENCE FROM CLINICAL TRIALS
Available results from clincial trials do not represent the optimal source of evidence on the
potential tumorigenic capacity of MSCs, as these trials rarely focused on parameters which are
relevant for assessing the development of new cancer. Twenty four clinical trials employing
MSCs have been published to date [149–162]. Most of these trials have evaluated the safety
and efficacy of MSCs within the context of non-cancerous conditions, such as myocardial
damage [152,157,162,163] and prevention of graft versus host disease [36,153,164–166].

Momin et al. Page 7

Curr Immunol Rev. Author manuscript; available in PMC 2010 May 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



There have been no reports of neither acute nor long-term adverse events thus far. This includes
no reports of carcinogenesis or major adverse events from allogeneic transplants. Although
these clinical trials represent the best source of evidence for the efficacy of MSCs in the
treatment of mostly non-cancerous disease, initial clinical trials of novel therapies, including
those using MSCs, are usually insufficient to detect the carcinogenic potential of the agent that
is being tested. The longest follow-up interval in published clinical trials employing MSCs is
about 3 years [149]. As carcinogenesis is often a prolonged process, more rigorous and long-
term follow-up will be required to adequately detect the formation (or prolongation) of cancer
in patients treated with MSCs. A second limitation of existing trials of MSCs is that they have
only been conducted in very ill patients with poor prognoses, which may obscure any possible
harmful effects of MSCs. Third, clinical trials to date have failed to employ imaging modalities
that are capable of detecting the presence of cancer in many locations in the body. Finally,
genetically-modified MSCs have rarely been used in published clinical trials [33]. Although
clinical trials to date have not revealed any evidence of carcinogenesis, their reliability in
determining carcinogenic potential is limited by the factors described above.

The gold standard for establishing carcinogenic potential of an agent is the triad of
epidemiological studies demonstrating association, animal studies demonstrating causality,
and experimental studies demonstrating mechanism [167]. Although considerable advances
have been made with regard to the potentially carcinogeneic mechanisms of MSCs, animal
studies require much more refined cancer models, and epidemiological studies will require
more refined clinical methods. As longer follow up intervals and patient enrollment are
achieved in clinical studies, in combination with animal tumor models that recapitulate the
stromal environment of human tumors, it may one day be possible to understand more
completely the risks of MSC-based therapies.

CONCLUSION: ARE MESENCHYMAL STEM CELLS SAFE TO ADMINISTER
TO PATIENTS?

To summarize, the overall impression that emerges from the published literature on MSCs is
that they hold tremendous promise for the treatment of cancer as well as many other diseases.
These claims of therapeutic efficacy have been substantiated in large part by the few clinical
trials that have been conducted to date using MSCs in the treatment of myocardial damage
[152,157,162,163] and graft versus host disease [36,153,164–166]. In addition, almost all
animal studies that have employed genetically-modified MSCs for the treatment of cancer
(Table 2) have demonstrated therapeutic—not harmful—effects. However, the oncogenic
potential of MSCs remains a poorly explored, although tremendously important, component
to realizing the full clinical potential of MSCs. This review summarized how MSCs may
undergo malignant transformation in vitro during production phases, by interactions with tumor
stroma in vivo, or through genetic modifications with transgenes. Furthermore, the limitations
of existing clinical trials, and in particular, the need for adequate follow-up protocols to screen
for the presence of developing cancers, were addressed. Rigorous evaluations of the oncogenic
risk of MSCs are currently needed, as well as more thorough elucidation of the molecular
mechanisms that underlie their documented biological properties. Both will help to define the
scope of limitations of MSC-based therapies, and will underlie the development of future
techniques that, it is hoped, can overcome these limitations and facilitate the translation of
MSCs to clinical use. The tremendous therapeutic potential of MSCs for the treatment of cancer
[1,14,16,31,168] heightens the urgency of such studies that can both define and overcome their
potential dangers.
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Figure 1.
Human mesenchymal stem cells at first passage display characteristic morphology: large nuclei
(black arrows), prominent round nucleoli (white arrow), and long thin processes (arrowheads).
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Figure 2.
Mechanisms by which mesenchymal stem cells may undergo carcinogenic transformation.
(A) Transformation may occur by the outgrowth of a sub-population of cells that proliferates
more favorably in culture conditions. (B) Interactions between tumor stroma and mesenchymal
stem cells may cause mesenchymal stem cells to differentiate into carcinoma-associated
fibroblasts.
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Figure 3.
Mechanisms by which mesenchymal stem cells may become oncogenic after incorporation of
a transgene. (A) Incorporation of an immortalizing transgene may result in the loss of normal
cell-cycle checkpoints, karyotypic instability, or other changes which cause uninhibited
proliferation of cells. (B) Insertional mutagenesis may disrupt a critical regulatory locus,
resulting in dysfunction of the normal mechanisms of tumor suppression.

Momin et al. Page 24

Curr Immunol Rev. Author manuscript; available in PMC 2010 May 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Momin et al. Page 25

Ta
bl

e 
1

In
 v

iv
o 

st
ud

ie
s o

f u
nm

od
ifi

ed
 m

es
en

ch
ym

al
 st

em
 c

el
l m

ig
ra

tio
n

A
dd

iti
on

al
 st

ud
ie

s o
n 

th
e 

m
ig

ra
tio

n 
of

 o
th

er
 c

el
l t

yp
es

, s
uc

h 
as

 n
eu

ra
l s

te
m

 c
el

ls
, a

re
 re

vi
ew

ed
 e

ls
ew

he
re

 [1
].

C
IT

A
T

IO
N

H
O

ST
SP

E
C

IE
S

PR
E

C
O

N
D

IT
IO

N
IN

G
O

R
 P

R
E

-E
X

IS
T

IN
G

C
O

N
D

IT
IO

N

IM
PL

A
N

T
E

D
C

A
N

C
E

R
 C

E
L

L
D

E
SC

R
IP

T
IO

N
IM

PL
A

N
T

E
D

 M
SC

D
E

SC
R

IP
T

IO
N

M
SC

IN
JE

C
T

IO
N

R
O

U
T

E
M

A
IN

 R
E

SU
L

T
S 

/ M
SC

 D
IS

T
R

IB
U

T
IO

N
PA

T
T

E
R

N
S

Pe
re

ira
 e

t a
l.

19
98

 [3
0]

M
ou

se
O

st
eo

ge
ne

si
s i

m
pe

rf
ec

ta
an

im
al

 m
od

el
; l

et
ha

l o
r

su
bl

et
ha

l i
rr

ad
ia

tio
n

N
on

e
M

ur
in

e 
B

M
-M

SC
IV

M
SC

s m
ig

ra
te

d 
pr

im
ar

ily
 b

on
e 

m
ar

ro
w

, c
ar

til
ag

e,
 lu

ng
,

bu
t a

ls
o 

in
 sp

le
en

,
br

ai
n,

 sk
in

.

M
ae

st
ro

ni
 e

t a
l.

19
99

 [1
69

]
M

ou
se

N
on

e
Le

w
is

 lu
ng

ca
rc

in
om

a,
 B

16
m

el
an

om
a

B
on

e 
m

ar
ro

w
 c

el
ls

, u
ns

pe
ci

fie
d

so
ur

ce
IM

In
hi

bi
tio

n 
of

 tu
m

or
 g

ro
w

th
 a

nd
 n

um
be

r o
f m

et
as

ta
se

s.

K
oç

 e
t a

l. 
20

00
[1

70
]

H
um

an

Pa
tie

nt
s u

nd
er

w
en

t
m

ye
lo

ab
la

tiv
e 

th
er

ap
y

an
d 

th
en

 re
ce

iv
ed

he
m

at
op

oi
et

ic
 st

em
 c

el
l

gr
af

t

Pr
e-

ex
is

tin
g

br
ea

st
 c

an
ce

r
H

um
an

 B
M

-M
SC

IV
M

SC
s d

et
ec

te
d 

in
 b

lo
od

 u
p 

to
 1

 h
ou

r a
fte

r i
nf

us
io

n.
R

ev
iv

ed
 n

eu
tro

ph
il 

an
d

pl
at

el
et

 c
ou

nt
 in

 8
 d

ay
s.

G
ao

 e
t a

l. 
20

01
 [2

9]
R

at
Ei

th
er

 so
di

um
N

itr
op

ru
ss

id
e

ad
m

in
is

tra
tio

n 
or

 n
on

e.
N

on
e

R
at

 B
M

-M
SC

IA
, I

V
, I

P
M

ig
ra

tio
n 

to
 lu

ng
s, 

liv
er

, b
on

e 
m

ar
ro

w
. W

ith
ni

tro
pr

us
si

de
, h

ig
h 

le
ve

ls
 in

 li
ve

r
an

d 
bo

ne
 m

ar
ro

w
.

Le
 B

la
nc

 e
t a

l.
20

04
 [3

6]
H

um
an

Pa
tie

nt
 h

ad
 g

ra
de

 IV
ac

ut
e 

gr
af

t-v
er

su
s-

ho
st

di
se

as
e

N
on

e
H

um
an

 B
M

-M
SC

IV
M

ig
ra

tio
n 

to
 co

lo
n 

an
d 

ly
m

ph
 n

od
e.

 R
ec

ov
er

y 
af

te
r 1

 y
ea

r.

H
ou

gh
to

n 
et

 a
l.

20
04

 [3
7]

M
ou

se
C

hr
on

ic
 g

as
tro

in
te

st
in

al
in

fla
m

m
at

io
n 

fr
om

H
el

ic
ob

ac
te

r i
nf

ec
tio

n
N

on
e

En
do

ge
no

us
 M

SC
s w

er
e 

st
ud

ie
d

N
/A

R
ep

op
ul

at
io

n 
of

 th
e 

st
om

ac
h 

w
ith

 M
SC

s, 
w

hi
ch

 p
ro

gr
es

s
th

ro
ug

h 
m

et
ap

la
si

a,
dy

sp
la

si
a,

 a
nd

 c
an

ce
r.

K
ha

ko
o 

et
 a

l.
20

06
 [1

71
]

ID
 M

ou
se

N
on

e
K

ap
os

i’s
 sa

rc
om

a
an

im
al

 m
od

el
H

um
an

 B
M

-M
SC

s
IV

In
hi

bi
tio

n 
of

 tu
m

or
 g

ro
w

th
.

Zh
u 

et
 a

l. 
20

06
[4

6]
ID

 M
ou

se
N

on
e

F6
 a

nd
 S

W
48

0
co

lo
n 

ca
nc

er
Fe

ta
l a

nd
 a

du
lt 

hu
m

an
B

M
-M

SC
SQ

H
ig

he
r t

um
or

 in
ci

de
nc

e 
in

 M
SC

-tr
ea

te
d 

gr
ou

ps
, w

ith
el

ev
at

ed
 p

ro
lif

er
at

io
n,

an
gi

og
en

es
is

, a
nd

 m
et

as
ta

tic
 a

bi
lit

y 
of

 c
an

ce
r c

el
ls

.

R
am

as
am

y 
et

 a
l.

20
07

[3
4]

N
O

D
/

SC
ID

M
ou

se
N

on
e

B
V

17
3 

ch
ro

ni
c

m
ye

lo
id

 le
uk

em
ia

H
um

an
 B

M
-M

SC
 c

o-
in

je
ct

ed
 w

ith
 tu

m
or

ce
lls

SQ
M

ig
ra

tio
n 

to
 b

on
e 

m
ar

ro
w

. H
ig

he
r i

nc
id

en
ce

 o
f t

um
or

fo
rm

at
io

n 
in

 M
SC

-
tre

at
ed

 g
ro

up
s. 

Lo
w

er
 ra

te
s o

f c
an

ce
r c

el
l a

po
pt

os
is

.

K
ar

no
ub

 e
t a

l.
20

07
 [4

3]
N

O
D

/
SC

ID
M

ou
se

N
on

e

M
C

F7
/R

as
,

M
D

A
-M

B
-2

31
,

M
D

A
-M

B
-4

35
,

an
d 

H
M

LE
R

br
ea

st
 c

an
ce

r

H
um

an
 B

M
-M

SC
 c

o-
in

je
ct

ed
 w

ith
 tu

m
or

ce
lls

SQ
En

ha
nc

ed
 m

ot
ili

ty
, i

nv
as

io
n,

 a
nd

 m
et

as
ta

si
s o

f c
an

ce
r

ce
lls

.

A
bb

re
vi

at
io

ns
:A

M
SC

 =
 A

di
po

se
 ti

ss
ue

-d
er

iv
ed

 m
es

en
ch

ym
al

 st
em

 c
el

l; 
BM

-M
SC

 =
 B

on
e 

m
ar

ro
w

-d
er

iv
ed

 m
es

en
ch

ym
al

 st
em

 c
el

l; 
CT

 =
 C

on
tra

la
te

ra
l t

o 
tu

m
or

; I
A 

= 
In

tra
-a

rte
ria

l; 
ID

 =
 Im

m
un

od
ef

ic
ie

nt
;

IF
N

 =
 In

te
rf

er
on

; I
L 

= 
In

te
rle

uk
in

; I
M

 =
 In

tra
m

us
cu

la
r; 

IP
 =

 In
tra

pe
rit

on
ea

l; 
IT

 =
 In

tra
tu

m
or

al
; I

V 
= 

In
tra

ve
no

us
; M

FP
 =

 M
am

m
ar

y f
at

 pa
d;

 M
SC

 =
 M

es
en

ch
ym

al
 st

em
 ce

ll;
 n

eo
R  

= 
N

eo
m

yc
in

 ph
os

ph
ot

ra
ns

fe
ra

se
ge

ne
; P

T 
= 

Pe
rit

um
or

al
; S

CI
D

 =
 S

ev
er

e 
co

m
bi

ne
d 

im
m

un
od

ef
ic

ie
nt

; S
Q

 =
 S

ub
cu

ta
ne

ou
s;

 T
RA

IL
 =

 T
um

or
 n

ec
ro

si
s f

ac
to

r-
re

la
te

d,
 a

po
pt

os
is

-in
du

ci
ng

 li
ga

nd
; t

sF
lk

-1
 =

 T
ru

nc
at

ed
 so

lu
bl

e 
va

sc
ul

ar
 e

nd
ot

he
lia

l
gr

ow
th

 fa
ct

or
 re

ce
pt

or
 g

en
e.

Curr Immunol Rev. Author manuscript; available in PMC 2010 May 19.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Momin et al. Page 26

Ta
bl

e 
2

In
 v

iv
o 

st
ud

ie
s o

f m
es

en
ch

ym
al

 st
em

 c
el

ls
 g

en
et

ic
al

ly
 m

od
ifi

ed
 b

y 
in

co
rp

or
at

io
n 

of
 a

 tr
an

sg
en

e

A
bb

re
vi

at
io

ns
 a

re
 th

e 
sa

m
e 

as
 fo

r T
ab

le
 1

.

C
IT

A
T

IO
N

H
O

ST
SP

E
C

IE
S

PR
E

C
O

N
D

IT
IO

N
IN

G
O

R
 P

R
E

-E
X

IS
T

IN
G

C
O

N
D

IT
IO

N

IM
PL

A
N

T
E

D
C

A
N

C
E

R
 C

E
L

L
D

E
SC

R
IP

T
IO

N
IM

PL
A

N
T

E
D

 M
SC

D
E

SC
R

IP
T

IO
N

M
SC

T
R

A
N

SG
E

N
E

M
SC

IN
JE

C
T

IO
N

R
O

U
T

E
M

A
IN

 R
E

SU
L

T
S 

/ M
SC

 D
IS

T
R

IB
U

T
IO

N
PA

T
T

E
R

N
S

St
ud

en
y 

et
 a

l.
20

02
 [1

72
]

ID
 M

ou
se

N
on

e
A

37
5S

M
m

el
an

om
a 

lu
ng

m
et

as
ta

si
s

H
um

an
 B

M
-M

SC
IF

N
 β

SQ
, I

V
Ex

te
nd

ed
 su

rv
iv

al
 in

 tu
m

or
 im

pl
an

te
d 

an
im

al
s

tre
at

ed
 w

ith
IV

 IF
N

 β
-s

ec
re

tin
g 

M
SC

s.

H
or

w
itz

 e
t a

l.
20

02
 [3

3]
H

um
an

Pr
io

r b
on

e 
m

ar
ro

w
tra

ns
pl

an
ta

tio
n

N
on

e
H

um
an

 B
M

-M
SC

ne
oR

IV
M

ig
ra

tio
n 

to
 b

on
e 

m
ar

ro
w

, b
on

e,
 sk

in
. A

cc
el

er
at

ed
gr

ow
th

ve
lo

ci
ty

 6
 m

on
th

s f
ol

lo
w

in
g 

M
SC

 tr
an

sp
la

nt
.

D
ev

in
e 

et
 a

l.
20

03
 [2

8]
B

ab
oo

n
Le

th
al

 ir
ra

di
at

io
n 

+
he

m
at

op
oi

et
ic

 st
em

 c
el

ls
;

or
 n

o 
co

nd
iti

on
in

g
N

on
e

B
ab

oo
n 

B
M

-M
SC

G
FP

IV

M
ig

ra
tio

n 
to

 g
as

tro
in

te
st

in
al

 tr
ac

t, 
ki

dn
ey

, l
un

g,
liv

er
,

th
ym

us
, a

nd
 sk

in
. N

on
co

nd
iti

on
ed

 a
ni

m
al

 h
ad

 le
ss

ab
un

da
nt

en
gr

af
tm

en
t.

St
ud

en
y 

et
 a

l.
20

04
 [1

73
]

SC
ID

 m
ou

se
N

on
e

M
D

A
23

1 
br

ea
st

ca
nc

er
, A

37
5S

M
pu

lm
on

ar
y

m
et

as
ta

si
s

H
um

an
 B

M
-M

SC
IF

N
 β

IV
Ex

te
nd

ed
 su

rv
iv

al
.

N
ak

am
ur

a 
et

 a
l.

20
04

 [1
74

]
R

at
N

on
e

9L
 g

lio
m

a
R

at
 B

M
-M

SC
Il-

2
C

T,
 IT

M
ig

ra
tio

n 
to

w
ar

d 
tu

m
or

. E
xt

en
de

d 
su

rv
iv

al
, t

um
or

vo
lu

m
e

re
du

ct
io

n.

N
ak

am
iz

o 
et

 a
l.

20
05

 [1
5]

ID
 M

ou
se

N
on

e
U

87
, U

25
1,

LN
22

9 
gl

io
m

a
im

pl
an

ta
tio

n
H

um
an

 B
M

-M
SC

IF
N

 β
IA

, I
T

M
ig

ra
tio

n 
to

w
ar

d 
tu

m
or

. E
xt

en
de

d 
su

rv
iv

al
 in

 U
87

im
pl

an
te

d 
an

im
al

s t
re

at
ed

 w
ith

 IF
N

 β
-s

ec
re

tin
g

M
SC

s.

Za
pp

ia
 e

t a
l.

20
05

 [3
5]

M
ou

se
A

ut
oi

m
m

un
e

en
ce

ph
al

om
ye

lit
is

 a
ni

m
al

m
od

el
N

on
e

M
ur

in
e 

B
M

-M
SC

En
ha

nc
ed

 G
FP

IV
M

ig
ra

tio
n 

to
 ly

m
ph

oi
d 

or
ga

ns
, s

ub
ar

ac
hn

oi
d 

sp
ac

e.
D

ec
re

as
ed

 in
fla

m
m

at
or

y 
in

fil
tra

te
s a

nd
de

m
ye

lin
at

io
n 

in
m

ic
e 

tre
at

ed
 w

ith
 M

SC
s.

El
za

ou
k 

et
 a

l.
20

06
 [1

75
]

M
ou

se
N

on
e

B
16

F1
0 

lo
ca

l
m

el
an

om
a,

 a
nd

m
el

an
om

a 
lu

ng
m

et
as

ta
si

s

H
um

an
 M

SC
s,

un
sp

ec
ifi

ed
 so

ur
ce

R
at

 IL
-1

2
IP

, I
M

, I
T

D
ec

re
as

ed
 tu

m
or

 v
ol

um
e 

an
d 

m
et

as
ta

si
s s

ee
di

ng
.

K
om

ar
ov

a 
et

 a
l.

20
06

 [1
76

]
SC

ID
 M

ou
se

N
on

e
SK

O
V

 3
 o

va
ria

n
ca

rc
in

om
a

H
um

an
 B

M
-M

SC
A

d5
/3

IP
En

ha
nc

ed
 su

rv
iv

al
.

D
jo

ua
d 

et
 a

l.
20

06
 [4

4]
M

ou
se

N
on

e

R
en

ca
ad

en
oc

ar
ci

no
m

a
pu

lm
on

ar
y

m
et

as
ta

si
s, 

B
16

m
el

an
om

a,
an

im
al

 m
od

el

M
ur

in
e 

M
SC

Lu
ci

fe
ra

se
IV

N
o 

ef
fe

ct
 o

n 
tu

m
or

 v
ol

um
e,

 b
ut

 e
ar

lie
r o

ns
et

 o
f

tu
m

or
s i

n
M

SC
 tr

ea
te

d 
gr

ou
ps

.

Curr Immunol Rev. Author manuscript; available in PMC 2010 May 19.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Momin et al. Page 27

C
IT

A
T

IO
N

H
O

ST
SP

E
C

IE
S

PR
E

C
O

N
D

IT
IO

N
IN

G
O

R
 P

R
E

-E
X

IS
T

IN
G

C
O

N
D

IT
IO

N

IM
PL

A
N

T
E

D
C

A
N

C
E

R
 C

E
L

L
D

E
SC

R
IP

T
IO

N
IM

PL
A

N
T

E
D

 M
SC

D
E

SC
R

IP
T

IO
N

M
SC

T
R

A
N

SG
E

N
E

M
SC

IN
JE

C
T

IO
N

R
O

U
T

E
M

A
IN

 R
E

SU
L

T
S 

/ M
SC

 D
IS

T
R

IB
U

T
IO

N
PA

T
T

E
R

N
S

K
yr

ia
ko

u 
et

 a
l.

20
06

 [1
77

]
ID

 M
ou

se
N

on
e

R
aj

i B
ur

ki
tt

ly
m

ph
om

a
H

um
an

 B
M

-M
SC

ts
Fl

k-
1

SQ
In

hi
bi

tio
n 

of
 tu

m
or

 g
ro

w
th

K
uc

er
ov

a 
et

 a
l.

20
07

 [3
2]

ID
 M

ou
se

N
on

e
H

T-
29

 c
ol

on
ad

en
oc

ar
ci

no
m

a
H

um
an

 A
M

SC
C

yt
os

in
e

de
am

in
as

e
SQ

, I
V

M
ig

ra
tio

n 
to

 lu
ng

s a
nd

 li
ve

r, 
bu

t c
le

ar
ed

 a
t 2

0 
da

ys
.

In
hi

bi
tio

n 
of

 tu
m

or
 g

ro
w

th
.

M
ile

tic
 e

t a
l.

20
07

 [1
78

]
R

at
N

on
e

9L
 g

lio
m

a
R

at
 B

M
-M

SC
Th

ym
id

in
e

ki
na

se
, e

G
FP

IT
Ex

te
nd

ed
 su

rv
iv

al
.

H
on

g 
et

 a
l. 

20
09

[1
6]

M
ou

se
N

on
e

A
st

11
.9

-2
 g

lio
m

a
M

ur
in

e 
B

M
-M

SC
M

ur
in

e 
IL

-1
2

PT
M

ig
ra

tio
n 

to
w

ar
d 

tu
m

or
. E

xt
en

de
d 

su
rv

iv
al

.

D
ua

n 
et

 a
l. 

20
09

[3
1]

M
ou

se
N

on
e

TC
71

 E
w

in
g

sa
rc

om
a 

tu
m

or
s

M
ur

in
e 

B
M

-M
SC

IL
-1

2
IV

M
ig

ra
tio

n 
to

w
ar

d 
tu

m
or

, l
un

g,
 li

ve
r, 

an
d 

sp
le

en
.

In
hi

bi
tio

n
of

 tu
m

or
 g

ro
w

th
.

Y
an

g 
et

 a
l. 

20
09

[1
4]

ID
 M

ou
se

N
on

e
U

87
 g

lio
m

a
H

um
an

 B
M

-M
SC

TR
A

IL
IV

M
ig

ra
tio

n 
to

 tu
m

or
 a

nd
 k

id
ne

y,
 w

ith
 lo

w
er

 le
ve

ls
 in

liv
er

,
lu

ng
, s

pl
ee

n.
 E

xt
en

de
d 

su
rv

iv
al

 in
 M

SC
-T

R
A

IL
gr

ou
ps

.

Sa
sp

or
ta

s e
t a

l.
20

09
 [1

68
]

ID
 M

ou
se

N
on

e
G

B
M

8 
C

D
13

3+
hu

m
an

 g
lio

m
a

H
um

an
 B

M
-M

SC
TR

A
IL

,
lu

ci
fe

ra
se

PT
M

ig
ra

tio
n 

to
w

ar
d 

tu
m

or
. E

xt
en

de
d 

su
rv

iv
al

 in
 M

SC
-

TR
A

IL
gr

ou
ps

.

Curr Immunol Rev. Author manuscript; available in PMC 2010 May 19.


