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INTRODUCTION
In the US, approximately 1.5 million surgical procedures are conducted annually to repair
damaged or fractured bone [1]. Conventional treatments involve the use of autogenous bone-
grafts or allogenic bone. However, the amount of donor tissue available and complications at
the donor site are limiting factors for autogenous bone grafting. In the case of allogenic bone-
grafts, cell-mediated immune responses and pathogen transfer can be problematic [2–4]. Tissue
engineering has the potential to resolve these areas of concern. It holds great promise for
providing improved patient care and decreased health care costs by reducing the number of
surgical procedures and recovery time associated with current medical practices.

Tissue engineering focuses on the use of cells and engineered materials to restore tissue as
opposed to making repairs using autografts, allografts, and prosthetics [5,6]. It has been
observed that isolated cells are unable to form mechanically and physiologically suitable
neotissues if growth is left unassisted [7]. Consequently, tissue engineering typically involves
the use of porous, bioresorbable scaffolds to serve as temporary, three-dimensional scaffolds
to guide cell attachment, differentiation, proliferation, and subsequent tissue regeneration.
Recent research strongly suggests that the choice of scaffold material and its internal porous
architecture significantly affect regenerate tissue type, structure, and function [8,9]. The effects
of mean pore size has been extensively studied [8,10–16], and Chang et al showed that the
direction of bone ingrowth was along the long axis of the porous channels [10]. In addition to
possessing the appropriate material composition and internal pore architecture for regenerating
a specific target tissue, scaffolds must also have mechanical properties appropriate to support
the newly formed tissue [17,18]. In the case of bone, failure to provide adequate mechanical
load-bearing function will cause a loss of function as the scaffold defines the ultimate shape
of the new bone [18].

Conventional methods for scaffold fabrication rely on a variety of techniques involving the
use of woven and non-woven fabrics, solvent casting and particulate leaching, solution casting
and gel casting with porogens, pressurized gas foaming, forging, injection molding, cold or
hot pressing, and electrospinning. However, these methods provide inadequate control over
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the porous architecture and require a separate mold for each exterior geometry [19]. An
alternate approach known as direct digital manufacturing (DDM) combines the use of
computer-aided design (CAD) and finite element analysis (FEA) techniques to design scaffolds
with interior porous architectures that achieve the desired effective mechanical properties, and
the use of solid freeform fabrication (SFF) methods to construct scaffolds that are reproducible,
cost-effective, and consistent with these designs. SFF methods build three-dimensional objects
layer-by-layer, depositing or consolidating materials in selected regions thereby enabling the
rapid investigation of a wide range of scaffold geometries with a high degree of dimensional
control and with fewer limitations on the scaffold exterior shape or the porous architecture.
Consequently, scaffold fabrication through SFF has received worldwide attention. Extensive
reviews on the emerging use of solid freeform fabrication and computer-aided design methods
in tissue engineering are available in the literature [7,18–29].

Selective Laser Sintering (SLS) is a laser-based SFF technique in which an object is built layer-
by-layer using powdered materials, radiant heaters, and a computer controlled laser [30]. In
SLS, the digital representation of an object is mathematically sliced into a number of thin layers.
The object is then created by scanning a laser beam and selectively fusing (melting or sintering)
patterns into sequentially deposited layers of a powder. Each patterned layer of powder is also
fused to its underlying layer and corresponds to a cross-section of the object as determined
from the mathematical slicing operation. This layered manufacturing method allows the
fabrication of scaffolds with a high degree of geometric complexity and enables the direct
conversion of a scaffold’s computer model into its physical realization—allowing patient-
specific and tissue-specific reconstruction strategies to be easily developed [22,31–37]. In order
to investigate the capabilities of a scaffold fabrication technique such as selective laser sintering
in making functional scaffolds for load-bearing tissues, it is crucially important to assess the
attainable mechanical properties both in bulk and in porous specimens, and to compare them
against published data. SLS of non-resorbable materials has been investigated by several
groups worldwide for biomedical applications such as tissue engineering and drug delivery
[38–46]. More recently, the SLS has been used to fabricate tissue engineering scaffolds from
bioresorbable polymeric biomaterials and their composites [47–58]. While these efforts have
shown promise by documenting the feasibility of fusing powder particles together by laser
sintering of such materials to form scaffold, they have not reported on the range of attainable
mechanical properties when the designed solid regions, i.e. the struts of the scaffold, are fully
or near-fully dense.

In a previous article [57], we demonstrated a bone tissue engineering approach using
polycaprolactone scaffolds fabricated by SLS. The porosity of these scaffolds was between 37
and 55%, the compressive modulus of such scaffolds was in the 52–68MPa range, and the
ultimate compressive strength was in the 2.0–3.2MPa range. Such scaffolds were shown to
have ompressive mechanical properties within the reported lower range of properties for human
trabecular bone. However, in that work, the scaffolds were shown to be incompletely dense in
the designed solid regions resulting in approximately 20% porosity where none was intended.
This porosity, termed manufacturing-induced porosity, results from the incomplete
coalescence of polymer particles during sintering, melting and resolidification. Furthermore,
the designed porosity composed of orthogonal porous channels, was not faithfully reproduced
according to design due to excess powder being sintered and bonded to the pore channel interior
surfaces, resulting in actual total porosity of the scaffold being less than the design porosity.
Both of these effects were attributed to the use of sub-optimal SLS processing parameters,
including the laser power, the scan speed, and the powder bed preheat temperature.
Subsequently, we conducted a thorough study to identify optimal SLS processing parameters
(Table 1) based on a design of experiments approach [58]. This study resulted in the
development of processing parameters that achieved densities in excess of 95% relative density
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in the designed solid regions of the scaffold while faithfully constructing the overall scaffold
and the pore geometry to within 3–8% of designed dimensions.

This article reports on the tensile and compressive mechanical property testing, finite element
analysis and microtomographic microstructure assessments carried out on PCL scaffolds
produced by SLS using the improved processing parameters. To the best of our knowledge,
this article represents the first effort to report both tensile and compressive mechanical
properties of SLS-processed, solid PCL and porous PCL specimens using the same
manufacturing technique, under identical conditions. The capability of producing anatomic
shaped scaffolds with complex designed porous architecture and the potential of SLS as a
versatile technique for fabricating functional bone tissue engineering scaffolds for load bearing
applications can then be considered a direct extension of this work [57,58].

MATERIALS AND METHODS
Polycaprolactone powder properties

Test specimens were fabricated using polycaprolactone (PCL) powder marketed by Solvay
Caprolactones (Warrington, UK) under the brand name CAPA® 6501 (Solvay Caprolactones
has since been acquired by Perstorp, Sweden). PCL is a semicrystalline (56%) aliphatic
thermoplastic having a melting point of 58–60°C and a glass transition temperature of
approximately −60°C [59]. Gel Permeation Chromatography (GPC) analysis (THF, 25°C) was
conducted to determine the molecular weight of CAPA® 6501 both before and after processing
(pre-processed PCL: Mn = 91,900 ± 7,700; post-processed PCL: Mn = 73,000 ± 6,300).
Mechanical test sieving conducted according to ISO 2591-1 standards confirmed that the
powder has an average particle size of 90µm and a distribution in which 98% of all particles
are less than 125µm in size (no particles > 150µm). The PCL powder was processed using a
Sinterstation® 2000 commercial SLS machine (3D Systems Inc., Valencia, CA). Preheated
and sequentially deposited powder layers were scanned using a low power continuous wave
CO2 laser (λ=10.6µm, power <10W) focused to a 450µm spot. Further details on SLS
processing and process parameter selection are reported elsewhere [58].

Scaffold Design and Fabrication
Mechanical tensile and compressive test specimens were designed with solid and porous gage
sections using UNIGRAPHICS™ software and exported to STL format. The solid tensile
specimens conformed to the ASTM D638-03 specimen geometry whereas the compressive test
specimens conformed to the ASTM D695-02a cylindrical geometry. Both tensile and
compressive porous test specimens incorporated a network of 2mm × 2mm square channels in
one, two and three-dimensions separated by 700µm struts yielding the corresponding 1-D, 2-
D and 3-D porous specimens (henceforth referred to as D638-1D, D638-2D and D638-3D for
the tensile specimens and D695-1D, D695-2D and D695-3D for the compressive specimens).
The designed porosities for the tensile specimens were 56.87%, 67.4% and 83.3%, respectively,
while the designed porosities for the compressive specimens were 51.1%, 68.5% and 80.90%.

The STL files were then used to fabricate the test specimens by SLS using CAPA® 6501 PCL
powder in a Sinterstation™ 2000 machine. Solid specimens were built with the length of the
specimens oriented either perpendicular or parallel to the build direction to investigate
anisotropy in bulk material properties as a function of build orientation. The porous specimens
were built with length oriented parallel to the build direction for the compressive specimens
and perpendicular to the build direction for the tensile specimens because the bulk yield strength
for the solid gage sections was highest in these manufacturing directions.
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Mechanical Testing
Tensile and compressive testing was conducted in accordance with ASTM standards D638
Type 3 and D695 Type 2a respectively. Mechanical testing was conducted on SLS-processed
PCL specimens both parallel and perpendicular to the SLS build direction (i.e. across and along
direction of layer stacking). The schematic in Figure 1 illustrates the test geometries,
dimensions, build orientations, and loading directions. Tensile specimens were tested using a
displacement controlled Instron 4206 tensile testing machine (Instron Corp., Canton, MA) at
a displacement rate of 50 mm/min. Each specimen was loaded to failure or until the maximum
allowable crosshead travel (433mm) was reached. Compressive specimens were mechanically
tested using a MTS Alliance RT30 test frame (MTS Systems Corp., Eden Prairie, MN).
Specimens were compressed to 50% strain between two steel plates at a rate of 1 mm/min after
an initial preload of 6.7 N (1.5 lb) was applied. The tensile and compressive properties reported
for specimens incorporating porous gage sections correspond to effective values of stress and
strain.

Finite Element Analysis
Stiffness constants for the porous scaffolds were calculated by using COMSOL Multiphysics
(COMSOL Group, Stockholm, Sweden) and compared to the results from mechanical testing.
The testing geometries in STL format were imported directly into the Structural Mechanics
Module in COMSOL. Tensile geometries were modified by placing symmetry conditions about
the y-z and z-x planes (z being the long axis of the scaffold) to reduce the number of elements.
The models were meshed using 14575, 33573 and 93919 tetrahedral elements for D638-1D,
D638-2D and D638-3D and 6818, 16510 and 46568 tetrahedral elements for D695-1D,
D695-2D and D695-3D. Material properties were assumed homogenous and isotropic based
on optical microscopy [58], mechanical testing (Table 2) and previous FEA on SLS processed
PCL [51,57]. The Young’s moduli (343.9MPa for tensile loading and 297.8MPa for
compressive loading) used in the analysis were determined experimentally from the solid gage
sections. The Poisson’s ratio was assumed to be 0.3. The solution was found using a stationary
solver at an axial strain of 0.01 in the z-direction.

Microstructural characterization by micro-computed tomography
One test specimen from each geometry type was scanned using a MS8X-130 Enhanced Vision
Systems micro-computed tomography (µ-CT) machine (GE Medical Systems, Toronto,
Canada) at a voxel resolution of 28.1µm. GEMS Microview software (GE Medical Systems,
Toronto, Canada) was then used to determine the total (designed) porosity and the level of
manufacturing induced porosity by selecting a region of interest (ROI) that encompassed the
entire scaffold and then segmenting the processed PCL from air using an autothresholding
procedure described previously [57].

RESULTS AND DISCUSSION
Scaffold Fabrication

SLS is a heat intensive manufacturing process and involves thermally induced densification
of powder particles by sintering and/or melting. For any given material, the choice of SLS
processing parameters will determine whether or not the material can be formed into
structurally strong and dimensionally accurate shapes that faithfully render the corresponding
digital design for that shape. Sub-optimal SLS processing parameters can lead to thermal
growth and bonding of surrounding powder to a part’s boundaries, dimensional inaccuracies
and manufacturing induced porosity in the designed solid regions of a part due to incomplete
densification of the powder particles, as was observed in our previous work [57]. In another
study [58], a two-level factorial design of experiments (DOE) was conducted to analyze the
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effects of five SLS processing parameters, namely, laser power, scan speed, scan spacing, part
bed temperature, and powder layer delay time on resulting PCL part quality. The study
demonstrated that parts fabricated at these settings were found to be easily removed from
surrounding support powder, dimensionally accurate (to within 3–8% of design dimensions
when measured using a Mitutoyo Digimatic Caliper with 0.01 mm resolution), and near-fully
dense (>95%) as determined by planar area-based void fraction analysis of cross-sectional
optical micrographs. The optimal parameters determined from that study were used to fabricate
tensile and compressive mechanical specimens (Figure 2) with the highest level of densification
in the designed solid regions while at the same time maximizing dimensional accuracy of the
formed porous architecture.

Mechanical Properties
While the bulk tensile mechanical properties of PCL have been reported in the literature by
manufacturers and researchers, we found no published data for the bulk compressive properties
of PCL from manufacturers and only limited data on the bulk compressive mechanical
properties of PCL from researchers. There does not appear to be one single comprehensive
literature source that reports tensile and compressive properties of polycaprolactone for bulk
or porous structures along with their relation to the molecular weight and manufacturing
technique.

The manufacturer, Perstorp [59], of the PCL powder used in this study reported a tensile
modulus of 430MPa at a strain rate of 10mm/min for injection molded CAPA 6500 (Mn=
47,500). Pitt et al. [60,61] extensively studied the degradation of PCL and reported a tensile
modulus of 264.8MPa for melt extruded PCL capsules (Mn=50,900). Wehrenberg [62] reported
a tensile strength of 19.3MPa and tensile modulus of 340MPa and Feng et al. [63] reported a
tensile strength of 21.6MPa for compression molded specimens (Mn=45,000). Engelberg and
Kohn [64] reported a tensile modulus of 400MPa and tensile strength of 16MPa for
compression molded PCL (Mn=42,500) and also noted that solvent casting of PCL was not
successful possibly due to its high crystallinity. Several other groups [65–68] have also reported
the tensile mechanical properties of bulk PCL processed by conventional methods, and the
values they reported can be found in Table 3.

The tensile mechanical property measurements for SLS-processed solid and porous PCL
specimens with their long axis oriented both parallel (across layers) and perpendicular (along
layers) to the build direction are listed in Table 2 along with manufacturer reported values for
injection molded solid specimens. Even though the mechanical properties of SLS processed
PCL exhibit slight dependence on the build orientation, they are comparable to those of PCL
processed via injection molding. For bulk PCL, we found the mean tensile strength to be
16.1MPa in the perpendicular build orientation, the mean Young’s modulus to be 343.9–
363.4MPa depending upon the build orientation and the mean 0.2% offset yield strength to be
8.2–10.1MPa depending upon build orientation. Further, the strain at break was in excess of
790% for the perpendicular build orientation. We found that both the tensile strength and
Young’s modulus fall in the lower range of values reported in the literature. For the porous
specimens, we found that the tensile strength and Young’s modulus undergo a significant
reduction relative to the bulk properties. For the D638-1D specimens, the mean tensile strength
was 4.5MPa and the mean Young’s modulus was 140.5MPa, indicating a reduction to
approximately 28% and 40% of the respective bulk values. For D638-2D and D638-3D, the
reduction in tensile properties was even more drastic, with the tensile strength and modulus of
D638-2D reduced to 7.5% and 12% of the respective bulk values while the tensile strength and
modulus of D638-3D were reduced to 7% and 10% respectively of the bulk values. It should
be noted that the reduction in D638-3D (80.9% designed porosity) relative to D638-2D (68.5%
designed porosity) was very small, as can be seen in Table 2 and Figure 3.
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Compressive mechanical properties of PCL scaffolds manufactured through SFF have been
previously reported in the literature by several groups. Zein et al. [69] have manufactured PCL
scaffolds (Mn=87000) using fused deposition modeling (FDM) and reported mechanical
properties ranging from a compressive modulus of 4MPa and a strength of 0.4MPa at 77%
porosity to a compressive modulus of 77MPa and strength of 3.6MPa at 48% porosity.
Recently, Shor et al. used precision extruding deposition (PED) to create PCL scaffolds with
a compressive modulus of 59MPa and a strength of 5.3MPa at 65% porosity and solid gage
specimens with a compressive modulus of 109MPa. Kim et al. [70], using a multi-headed
deposition system (MHDS), produced PCL scaffolds (Mn=65000) with a compressive modulus
of 21.4MPa and a strength of 1.3MPa at 69.6% porosity. Williams et al. [57] used an
unoptimized SLS process to manufacture porous PCL scaffolds (Mn=50,000) with designed
porosity between 37 and 55% with compressive moduli of 52–68MPa and compressive
strengths of 2.0–3.2MPa. Recently, Cahill et al. [51] reported a compressive modulus of 47MPa
for bulk PCL processed by SLS and 6MPa for PCL scaffolds at 55% porosity. Table 4 lists
some of the compressive properties reported in the literature of PCL scaffolds manufactured
through SFF.

The compressive mechanical properties of bulk and porous PCL specimens measured in this
study are reported in Table 2. Reported here, for bulk PCL, the mean compressive modulus
was 299–317.1MPa and the mean 0.2% offset yield strength was 10.3–12.5MPa depending on
the build orientation. It should be noted that the compressive modulus reported here is over
two times higher than that previously obtained using unoptimized SLS parameters [57]. As in
the case of the tensile porous specimens, there was a drastic reduction in the compressive
properties relative to the bulk. For D695-1D, yield strength and elastic modulus were reduced
to 37% and 43% of the bulk values respectively. For D695-2D, the elastic modulus and yield
strength were both reduced to approximately 4% of the respective bulk values; while for
D695-3D, these values were reduced to 3.7% and 4.8% of the respective bulk values. Similarly
to the tensile test specimens, the change in mechanical properties for D695-3D porous
specimens (83.1% designed porosity) relative to D695-2D specimens (67.4% designed
porosity) was very small.

To summarize, 1-D, 2-D and 3-D orthogonally porous PCL compressive specimens with 2mm
× 2mm square pore channels and 700µm struts were produced by SLS, having a mean
compressive modulus between 14.9 and 113.4MPa and an ultimate compressive strength
between 0.6 and 10.0MPa for porosities ranging from 44.8–76.5%. The compressive
mechanical properties presented here are the highest reported values for scaffolds produced by
SLS and among the highest reported for similar scaffolds produced through other layered
manufacturing techniques. The compressive modulus values of human trabecular bone range
from 1 to 5000MPa and the ultimate compressive strength ranges from 0.1 to 27.3MPa [71–
77] . Thus, the compressive mechanical properties of the porous PCL specimens reported in
this work fall within the lower range of values reported for human trabecular bone.

Finite Element Analysis
Compressive and tensile effective moduli for the scaffold geometries predicted by FEA were
in good agreement with the results from mechanical testing (Figure 3). The percent error for
the FEA averaged 30%. The computational moduli reported here had better correlation with
experimental moduli than was reported previously for SLS processed PCL by Williams et al.
[57] who had a degree of underprediction averaging 100% using an image-based FEA
technique, and recently by Cahill et al. [51] where the degree of overprediction was 67%. Since
the bulk modulus used in the FEA was determined experimentally from solid gage specimens
that have a higher average density than the scaffolds (Table 5), it was expected that the model
would tend to over-predict the effective modulus of the scaffolds in all cases. However, the
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FEA tended to underpredict the effective modulus of tensile specimens and overpredict the
effective modulus of the compressive specimens.

The von Mises stress distributions in the tensile (Figure 4) and compressive (Figure 5)
mechanical test specimens showed no elements above the respective bulk yield strengths at
1% strain. Observation of the stress distribution in both types of test specimens showed
relatively low stress concentrations in the design solid regions that were changed to void
regions in going from the 2-D to 3-D geometries, thus explaining the small change in
mechanical properties between the 2-D and 3-D geometries.

Microtomographic microstructure
Figure 6 illustrates a representative volume-rendered µ-CT image of a porous compressive test
specimen (D695-3D). Microstructural analysis of fully solid and porous cylindrical scaffolds
processed by SLS (Table 5) showed that for fully solid specimens, the density ranged from
99.1% to 99.7% of full density, while for scaffolds with designed porous architecture, the
density in the solid regions of the scaffold ranged from 92.7% to 98.6% of full density. While
it should be noted that the µ-CT microstructural analysis could not detect any voids smaller
than 28.1µm (the resolution of the µ-CT scanner), a majority of the manufacturing induced
pores were >100µm in diameter as determined by cross-sectional optical microscopy.

CONCLUSIONS
We have demonstrated the capability of designing scaffolds endowed with 1-D, 2-D and 3-D
orthogonally porous scaffolds for bone tissue engineering with desirable mechanical properties
and then directly manufacturing them in PCL using SLS, a layered manufacturing technique.
With the tensile and compressive mechanical properties of bulk PCL processed to near-full
density through SLS serving as baseline mechanical properties for FEA, and the ability to
process designed solid regions to near-full density in scaffolds while maintaining their
dimensions accurate to within 3–8% of design dimensions, the agreement between
experimentally measured and computationally modeled mechanical properties of our scaffold
designs was excellent. This result establishes the basis for successfully achieving, via SLS,
physical realizations of PCL scaffolds with targeted mechanical properties predicted through
a priori FEA of the corresponding three-dimensional scaffold designs. Despite differences in
exact composition and molecular weight, the tensile mechanical properties of solid PCL
specimens, measured by us, compare well with several sources reported in the literature. The
results of mechanical testing and FEA for both tensile and compressive properties showed a
steep decline in mechanical properties as the degree of porosity increased. However, there was
virtually no change in mechanical properties between 2-D to 3-D porous architectures. This is
attributed to low stress concentrations in the design solid regions that were changed to void
regions in going from the 2-D to 3-D design. The µ-CT image analysis of the PCL scaffolds
confirmed the optical microscopy work in our previous study showing that the density in the
designed solid regions was improved by the use of the new SLS processing parameters and
this increase in density was correlated with improved mechanical properties.
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Figure 1.
Mechanical test specimen geometries, dimensions, build orientations, and loading directions.
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Figure 2.
SLS processed PCL tensile (D638-1D, D638-2D, and D638-3D) specimens (post-fracture) and
compressive (D695-1D, D695-2D, and D695-3D) specimens with 1D, 2D and 3D orthogonal
porous channels (placed on a 2mm grid).
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Figure 3.
Experimental and computational effective moduli for (a) tensile and (b) compressive
specimens. Error bars denote standard devation (n=6).
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Figure 4.
Subdomain plots of von Mises stress distribution for porous tensile test specimens.

Eshraghi and Das Page 16

Acta Biomater. Author manuscript; available in PMC 2011 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Subdomain plots of von Mises stress distribution for porous compressive test specimens.
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Figure 6.
µ-CT volume-rendered compressive test specimen along with voxel intensity histogram
showing the threshold used to segment PCL (black) from air (grey).
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Table 1

Optimal SLS parameter settings for processing PCL as determined by Partee et al [58].

Parameter
Setting

Solid Scaffold

Laser
power

4.1 W 4.1 W

Scan speed 1079.5
mm/sec

1079.5
mm/sec

Scan spacing 152.4 µm 152.4 µm

Part bed
temperature

46°C 46°C

Powder
layer delay

0 sec 8 sec
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