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This paper provides the first analysis of the three-dimensional state of residual stress and
stretch in an artery wall consisting of three layers (intima, media and adventitia), modelled
as a circular cylindrical tube. The analysis is based on experimental results on human aortas
with non-atherosclerotic intimal thickening documented in a recent paper by Holzapfel et al.
(Holzapfel et al. 2007 Ann. Biomed. Eng. 35, 530–545 (doi:10.1007/s10439-006-9252-z)).
The intima is included in the analysis because it has significant thickness and load-bearing
capacity, unlike in a young, healthy human aorta. The mathematical model takes account of
bending and stretching in both the circumferential and axial directions in each layer of the
wall. Previous analysis of residual stress was essentially based on a simple application of the
opening-angle method, which cannot accommodate the three-dimensional residual stretch
and stress states observed in experiments. The geometry and nonlinear kinematics of the
intima, media and adventitia are derived and the associated stress components determined
explicitly using the nonlinear theory of elasticity. The theoretical results are then combined
with the mean numerical values of the geometrical parameters and material constants from
the experiments to illustrate the three-dimensional distributions of the stretches and stresses
throughout the wall. The results highlight the compressive nature of the circumferential
stress in the intima, which may be associated with buckling of the intima and its delamination
from the media, and show that the qualitative features of the stretch and stress distributions in
the media and adventitia are unaffected by the presence or absence of the intima. The circum-
ferential residual stress in the intima increases significantly as the associated residual
deformation in the intima increases while the corresponding stress in the media (which is com-
pressive at its inner boundary and tensile at its outer boundary) is only slightly affected. The
theoretical framework developed herein enables the state of residual stress to be calculated
directly, serves to improve insight into the mechanical response of an unloaded artery wall
and can be extended to accommodate more general geometries, kinematics and states of
residual stress as well as more general constitutive models.

Keywords: residual stress; residual deformation; artery layers; arterial wall
mechanics; finite elasticity
1. INTRODUCTION

In the last few years, the important influence of residual
stresses, even with small magnitude, in arteries on the
transmural stress distributions in the physiological
state has been well documented (e.g. Holzapfel et al.
2000; Humphrey 2002, ch. 7; 2003). Mathematical
models that embody the residual stress are needed to
better predict, for example, biomechanical responses
such as changes in wall stress during the cardiac
cycle, and mechanobiological responses such as
orrespondence (rwo@maths.gla.ac.uk).
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growth, remodelling, adaptation and repair. Such
models must be based on anatomical data (geometry)
and a comprehensive set of experimental data. Follow-
ing Chuong & Fung (1986), calculations of residual
stresses, however, have typically been based on math-
ematical and/or computational formulations of
boundary-value problems associated with the opening
of an artery ring without accounting for the effect of
the axial direction (e.g. Rachev 1997; Rachev & Hayashi
1999; Holzapfel et al. 2000; Humphrey 2002, ch. 7;
Raghavan et al. 2004; Ohayon et al. 2007). Similar com-
ments apply to the work of Olsson et al. (2006), who
This journal is q 2009 The Royal Society
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considered a single homogeneous layer of neo-Hookean
material, although they did determine the dependence
of the axial stress on the radius. There are also many
experimental papers that examine the opening angle
of an arterial ring, which provides essentially two-
dimensional information, but we have not referred to
these since they are not relevant to the three-
dimensional analysis we are concerned with here. The
interested reader is referred to Humphrey (2002) for
discussion of the opening-angle experiment.

In a previous study, we have obtained novel
experimental results on human aortas with non-
atherosclerotic intimal thickening that demonstrate
distinct layer-specific three-dimensional residual defor-
mations (Holzapfel et al. 2007). These results indicate
that the above-mentioned opening angle method,
which is essentially two dimensional, is unable to cap-
ture the three-dimensional residual stress distributions,
as both bending and stretching in the axial and the
circumferential directions have a strong influence.
Indeed, before this study, essentially the only results
available concerning residual deformations were those
based on the opening angle of an unseparated ring
sector, which, although simple, just provides qualitative
information of the two-dimensional residual deformation
state of a sector cross section (Vossoughi 1992). Also,
little quantitative information about the axial in situ
stretches of human arteries has been reported in the
literature. However, there are some data on the axial in
situ stretch, as exemplified in work concerning aged
human iliac arteries (e.g. Schulze-Bauer et al. 2003).
Qualitative and quantitative data on the residual
deformation in the axial direction are scarce, although
a systematic study has been published in Holzapfel
et al. (2007).

The study by Holzapfel et al. (2007) documents
measurements of kinematical quantities characterizing
the layer-specific three-dimensional residual defor-
mations of arteries, and focuses on human tissue.
Therein it was shown that the inner layer of the artery
(the intima) has a significant thickness when compared
with the other two layers (the media and adventitia).
Residual deformations (stretching and bending) were
determined for circumferential and axial strips from
intact aortic tissue, and the corresponding deformations
were recorded for the three separate layers in both the
circumferential and axial directions and quantified
using image analysis. It is important to include the
three-dimensional residual deformations in human aged
arteries within a model that incorporates the properties
of the three individual layers of the arterial wall.

The purpose of the present paper is to develop a
mathematical model of arterial wall tissue that encom-
passes the three-dimensional residual deformation data
documented in Holzapfel et al. (2007), and which can be
used to predict (i) the layer-specific residual stresses in
human arterial walls, especially aortas, and (ii) the
mechanical response of arteries under a variety of load-
ing conditions. While based on the data from aortas,
the model can in principle be used for other arteries
when suitable data become available. Such data can
be obtained using the approach described in, for
example, Holzapfel et al. (2007).
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In §2, we begin by reviewing some recent experimental
data on residual deformations obtained from human
aortas, which motivates the subsequent mechanical
model and the associated numerical computations,
while §3 details the geometry and kinematics of the
separated arterial layers and the intact cylindrical tube
which they constitute in the unloaded configuration.
Stress analysis based on the kinematics and the neo-
Hookean constitutive model is then described in §4,
wherein explicit expressions for the radial, circumferen-
tial and axial stress components are derived for the
individual layers. In §5, we summarize the material and
geometrical data used for the representative numerical
examples, outline the solution procedure and illustrate
and discuss the results obtained for the residual stretch
and stress distributions. Finally, in §6, we summarize
the key features of the paper and the advantages and
possible extensions of the approach adopted.
2. BACKGROUND ON THREE-
DIMENSIONAL RESIDUAL
DEFORMATIONS

2.1. Materials and methods

In Holzapfel et al. (2007), a detailed description of the
experimental method is provided. As an important
background to the modelling, we now review briefly
the key features of the experimental protocol.

The study was based on specimens taken from 11
human abdominal aortas that were free from atherosclero-
tic plaques. The in situ and ex situ lengths of the aortas
were measured, and the axial in situ stretch was then
determined. A ring was cut from each aorta, and an
axial strip was cut from the anterior site of each aorta
(a schematic illustration of the protocol of specimen
preparation is provided in figure 1). The specimens were
then placed in a temperature-controlled tissue bath of
calcium-free physiological saline solution at 378C. After
equilibration of 30 min, each ring was glued pointwise
with adhesive on to a cylindrical plastic tube so as to pro-
vide load-free suspension of the specimen. For each ring
(referred to as a circumferential strip), a radial cut
through the wall was made, thereby releasing residual
stresses. After 16 h, digital images were taken of each
specimen in order to determine the change in geometry
from which the residual deformations were deduced.
Next, the intima, media and adventitia layers were separ-
ated, and six strips obtained, two for each layer from each
orientation. The strips were glued on cylindrical plastic
tubes, and images were taken after 6 h. The axial strips
were treated similarly. The final geometries of the separ-
ated layer-specific strips so obtained were then assumed
to be stress free.

Vessel parameters such as diameter, thickness,
length and curvature were obtained using image proces-
sing. NURBS (non-uniform rational B-splines) were
used for the accurate computation of the geometrical
parameters required. The mean curvatures for each
specimen were then computed. Mean values of the
diameter, length, pre-stretch and curvature of each
specimen were determined by averaging the values for
the inner and outer boundaries, and a set of vessel
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Figure 1. Schematic of the procedure for specimen preparation showing: ring and axial strip specimens from the aorta, after
30 min of equilibration and immediately after preparation; circumferential and axial strips after 16 h of equilibrium; circumfer-
ential and axial strips from the separated intima, media and adventitia after 6 h of equilibrium. Each specimen was glued to a
plastic tube. The various configurations are shown to the correct scale. Scale bar: 10 mm. Adapted from fig. 2 of Holzapfel et al.
(2007) with kind permission of Springer Science and Business Media.
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parameters (diameter, length, pre-stretch and curva-
ture) was obtained by computing the mean values for
all the specimens based on the corresponding mean
values for the inner and outer boundaries of each speci-
men. Together with the thickness, this set provides the
definitive parameters for purposes of modelling.
2.2. Results

Typical specimen dimensions were 15 � 5 mm
(diameter � height) for the rings and 20 � 5 mm
(length � width) for the axial strips. After 30 min of
equilibration, the mean inner and outer diameters of
the aortic ring segments were determined to be
11.22+ 2.18 and 14.09+ 1.92 mm (mean+ s.d.),
respectively. The mean ratio of the wall thickness of
J. R. Soc. Interface (2010)
the ring to its outer diameter for all specimens was
0.106+ 0.034 (mean+ s.d.). Figure 2 shows column
plots of the thickness values of the rings, the strips
and the separated layers (A, M and I) oriented in the
circumferential and axial directions. The thickness
ratios adventitia : media : intima oriented in the circum-
ferential direction were calculated as 32 : 46 : 22, and for
the axial direction 33 : 48 : 19. The axial in situ stretch
was found to be 1.196+ 0.084 (mean+ s.d.).

In figure 3, the curvatures of the individual speci-
mens are shown as column plots. The adventitia strips
are relatively flat in both directions, while strips from
the media have negative curvatures in both directions.
For the intima, the circumferential strips have signifi-
cant positive curvatures, whereas the axial strips are
almost flat.
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Figure 2. Column plots (mean values and s.d.) of aortic wall thicknesses and of the separated layer thicknesses (A, adventitia; M,
media; I, intima) from (a) the circumferential and (b) the axial directions. The error bars indicate s.d. Adapted from fig. 9 of
Holzapfel et al. (2007) with kind permission of Springer Science and Business Media.
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Figure 3. Column plots (mean values and s.d.) of the curvature of the aortic ring, the circumferential strips and
the separated layers (A, adventitia; M, media; I, intima) oriented in the (a) circumferential direction; the axial strip and the sep-
arated layers (A, M, I) oriented in the (b) axial direction. The error bars represent s.d. Adapted from fig. 12 of Holzapfel et al.
(2007) with kind permission of Springer Science and Business Media.
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3. DEFORMATION OF THE SEPARATED
ARTERIAL LAYERS INTO A CIRCULAR
CYLINDRICAL TUBE

For purposes of modelling, we consider the intact arterial
wall to be a circular cylindrical tube consisting of three
layers of uniform thickness, the intima, media and
adventitia, with relevant geometrical and material par-
ameters distinguished by the superscripts (I), (M) and
(A), respectively. The material in each layer is assumed
to be incompressible. For the relevant background and
notation of nonlinear continuum kinematics, see, for
example, Ogden (1997) and Holzapfel (2000).
3.1. Intimal layer

For the intima, the axial strip essentially remains straight
and the ring opens up by an angle which we denote by
2a(I). The geometry of the reference configuration can
J. R. Soc. Interface (2010)
therefore be taken as the opened sector of a circular
cylindrical tube, as depicted in figure 4a. With reference
to cylindrical polar coordinates R, Q and Z in this
configuration, the geometry is defined by

AðIÞ � R � BðIÞ; aðIÞ � Q � 2p� aðIÞ

and � LðIÞ � Z � LðIÞ;

9=
; ð3:1Þ

where A(I) and B(I) are the internal and external radii of
the intimal tube, respectively, and 2L(I) is the length
of the tube.

The corresponding intact cylindrical geometry,
depicted in figure 4b, is defined by cylindrical polar
coordinates r, u and z, so that

aðIÞ � r � bðIÞ; 0 � u � 2p and � l � z � l; ð3:2Þ

where l refers to half the height of a circumferential ring.



Figure 4. Coordinate systems and related geometries of intimal, medial and adventitial layers in their (a,c,e) unstressed reference
configurations, respectively, and (b,d,f ) intact unloaded configurations, respectively.
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Since the material is assumed to be incompressible,
the deformation is isochoric and defined by
the equations

r2 � aðIÞ
2 ¼ R2 � AðIÞ

2

kðIÞlðIÞz

;

u ¼ kðIÞðQ�aðIÞÞ and z ¼ lðIÞz Z ;

9>>=
>>; ð3:3Þ
J. R. Soc. Interface (2010)
where

kðIÞ ¼ p

p� aðI Þ
and lðIÞz ¼

l
LðIÞ

ð3:4Þ

and lz
(I) is uniform.

The cylindrical polar axes are principal axes of the
deformation, and the matrix of components of
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the deformation gradient is diagonal with entries

lðIÞr ¼
R

rkðIÞlðIÞz

; l
ðIÞ
u ¼

kðIÞr
R

and lðIÞz : ð3:5Þ

These are the principal stretches that satisfy the incom-
pressibility constraint lr

(I) lu
(I) lz

(I) ¼ 1 and which
correspond to the radial, circumferential and axial
directions, respectively. An expression for the matrix
of components of the deformation gradient in cylindri-
cal polar coordinates may be found in, for example,
Humphrey (2002) or Taber (2004).
3.2. Medial layer

The overall mechanical behaviour of the medial layer is
very similar to that of the unseparated specimen, as can
be appreciated from figure 1. Although the circumferen-
tial specimen has some curvature, for simplicity, we
assume that the circumferential specimen is straight
in order to enable a tractable analysis. This simplifica-
tion, together with the assumption that the intact
wall is a circular cylindrical tube, leads to axial stress
components that depend on the radius, which therefore
generate axial loads on the ends of the tube. The
implications of this will be discussed in §4.2.

The reference and unloaded geometries of the medial
layer are depicted in figure 4c,d, respectively. With
reference to cylindrical polar coordinates R, Q and Z
in the reference configuration the geometry is defined by

AðMÞ � R � BðMÞ; �LðMÞ � Z � LðMÞ

and aðMÞ � Q � 2p� aðMÞ:

9=
; ð3:6Þ

The corresponding intact cylindrical geometry in the
unloaded configuration is defined by cylindrical polar
coordinates r, u and z according to

aðMÞ � r � bðMÞ; �p � u � p

and � lðMÞ � z � lðMÞ;

9=
; ð3:7Þ

where l(M) is half the length of an axial medial strip in
the deformed configuration, as shown in figure 4d.
Note that C(M) ¼ (p 2 a(M))R is half the correspond-
ing (curved) sector length in the reference
configuration, as shown in figure 4c. Because of
the incompressibility condition, the deformation can
be described by the equations

r2 � bðMÞ
2 ¼ �p

b

LðMÞ

lðMÞkðMÞ
ðR2 � AðMÞ

2Þ;

u ¼ b

LðMÞ
Z and z ¼ �lðMÞkðMÞ

p�Q

p
;

9>>>=
>>>;

ð3:8Þ

where

kðMÞ ¼ p

p� aðMÞ
: ð3:9Þ

Note, in particular, that r depends on R, but u depends
on Z and z depends on Q; see figure 4c,d for the related
geometry. In addition, note that b(a(M) þ b(M)) defines
the width of the axial medial strip in the current con-
figuration (figure 4d). We emphasize that the inner
J. R. Soc. Interface (2010)
surface of this configuration becomes the outer surface
of the deformed configuration, which explains the
minus sign in equation (3.8)1.

Let x ¼ rer þ zez denote the position vector of a
point in the deformed configuration of the media
referred to cylindrical polar axes. We can calculate the
deformation gradient F ¼ Grad x using

Gradð�Þ ¼ @ð�Þ
@R

ER þ
1
R
@ð�Þ
@Q

EQ þ
@ð�Þ
@Z

EZ ; ð3:10Þ

with

@x
@R
¼ r 0er ;

@x
@Q
¼ lðMÞkðMÞ

p
ez

and
@x
@Z
¼ rb

LðMÞ
eu;

9>>=
>>; ð3:11Þ

where r0 ¼ dr/dR and ER, EQ and EZ and er, eu and ez

are unit basis vectors associated with R, Q and Z and
r, u and z, respectively. This yields

F¼ r 0er �ERþ
lðMÞkðMÞ

Rp
ez �EQþ

rb
LðMÞ

eu�EZ ; ð3:12Þ

and hence

B¼ r 02er�erþ
r2b2

LðMÞ2
eu�euþ

lðMÞ
2
kðMÞ

2

p2R2 ez�ez ; ð3:13Þ

where B ¼ FFT denotes the left Cauchy–Green tensor.
The principal directions are again the r, u and z direc-
tions, and the corresponding principal stretches are
then seen to be

lðMÞr ¼ �r 0; l
ðMÞ
u ¼ rb

LðMÞ

and lðMÞz ¼ lðMÞkðMÞ

pR
;

9>>=
>>; ð3:14Þ

with

lðMÞr l
ðMÞ
u lðMÞz ¼ � r 0rkðMÞlðMÞ

RLðMÞ
b

p
¼ 1: ð3:15Þ

Note that lu
(M) is the ratio of the curved width of the

axial strip in the deformed configuration to its width
in the corresponding reference configuration, while
lz

(M) ¼ l(M)/C(M) is the ratio of the deformed axial length
of the medial strip to the length of the corresponding
curved sector in the reference configuration.
3.3. Adventitial layer

For the adventitia, the axial strip remains straight
and the ring deforms into a plane sheet. We therefore
define the reference geometry in terms of rectangular
Cartesian coordinates by

� LðAÞ1 � X1 � LðAÞ1 ; �LðAÞ2 � X2 � LðAÞ2

and � LðAÞ3 � X3 � LðAÞ3 ;

9=
; ð3:16Þ

and the cylindrical geometry in the deformed configur-
ation is again expressed in terms of cylindrical polar
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coordinates r, u and z, similar to the intima but with

aðAÞ � r � bðAÞ; �p � u � p and � l � z � l:

ð3:17Þ

The unstressed reference and the unloaded intact
cylindrical configurations are shown in figure 4e,f,
respectively.

The deformation is then defined by the expressions

r2 � aðAÞ
2 ¼ 2LðAÞ2 ðL

ðAÞ
1 þ X1Þ

plðAÞz

; u ¼ pX2

LðAÞ2

and z ¼ lðAÞz X3;

9>>=
>>; ð3:18Þ

where the incompressibility condition was again
used. The cylindrical polar axes are principal axes
corresponding to the principal stretches

lðAÞr ¼ LðAÞ2

prlðAÞz

; l
ðAÞ
u ¼ pr

LðAÞ2

; lðAÞz ¼ l

LðAÞ3

; ð3:19Þ

lz
(A) being uniform and lr

(A) lu
(A) lz

(A) ¼ 1.

3.4. Interface radii matching

The overall objective is to calculate the residual stress
distribution in the complete intact wall, which requires
that the geometries of the three layers are compatible,
i.e. the lengths of the individual layers are the same,
the inner radius of the adventitia matches the outer
radius of the media and the inner radius of the media
matches the outer radius of the intima.

From equation (3.3)1 we have the connection

bðIÞ
2� aðIÞ

2 ¼ BðIÞ
2�AðIÞ

2

kðIÞlðIÞz

; ð3:20Þ

where lz
(I) is given by equation (3.4)2.

Similarly, from equation (3.8)1, we have

bðMÞ
2� aðMÞ

2 ¼ p

b

LðMÞ

lðMÞkðMÞ
ðBðMÞ2�AðMÞ

2Þ: ð3:21Þ

Finally, for the adventitia, from equation (3.18)1, we
obtain

bðAÞ
2� aðAÞ

2 ¼ 4LðAÞ1 LðAÞ2

plðAÞz

; ð3:22Þ

where lz
(A) is given by equation (3.19)3.

In the deformed configuration, the three cylindrical
tubes are fitted together, which means that the
following connections between the radii must hold:

bðIÞ ¼ aðMÞ and bðMÞ ¼ aðAÞ: ð3:23Þ
3.5. Geometrical parameters

In total, there are 16 geometrical parameters that need
to be determined. These are, for the intima, the radii
A(I), B(I), the (half) length L(I) and the angle a(I);
for the media, A(M), B(M), L(M) and a(M); and for the
adventitia L1

(A), L2
(A) and L3

(A) and two of a(I), b(I),
a(M), b(M), a(A) and b(A). If two of the latter six are
J. R. Soc. Interface (2010)
known, then the others are determined in terms of
them and the remaining constants by equations (3.20)
and (3.22). In addition, the half height l of the intact
circumferential ring is needed, together with the two
parameters b and l(M) relating to the axial media strip
in the intact configuration. These are determined
indirectly, as shown later in §5.2. Note that the product
bl(M) is obtained from equation (3.21) when a(M) and
b(M) are found.

By enforcing the continuity of traction (i.e. of the
radial stress) between the intima and media and the
media and the adventitia, and by using zero traction
conditions on the inner and outer layers, we obtain
four conditions with one arbitrary constant coming
from the differential equation for each layer. This pro-
vides an additional connection that enables b and l(M)

to be determined when k(M) is known.
4. STRESS ANALYSIS

In this section, we provide the relevant constitutive and
equilibrium equations, together with their application
to the neo-Hookean material model for each of the
three layers. The details of the appropriate stress analy-
sis and elasticity theory may be found in the books by
Ogden (1997) and Holzapfel (2000).
4.1. Constitutive law for an incompressible
isotropic elastic material

We assume that the material is elastic and character-
ized by a strain–energy function C (F), which
depends on the deformation gradient F. Since we are
considering the material to be incompressible the
associated Cauchy stress tensor s is given by

s ¼ F
@C

@F
� pI; ð4:1Þ

where p is the Lagrange multiplier associated with the
incompressibility constraint det F ¼ 1, and I is the
identity tensor.

As a first step and in order to illustrate the approach,
we consider the material to be isotropic. This is
certainly appropriate when the range of deformations
and stresses is not too large, in which case the load is
carried primarily by the non-collagenous matrix
material (Roach & Burton 1957). For larger defor-
mations and stresses, it would in general be necessary
to consider an anisotropic model that accounts for the
collagen fibre orientations, but the associated analysis
would be much more complicated and could only be
conducted numerically. Thus, here we restrict attention
to an incompressible isotropic material model for which
C depends on F only through the two principal
invariants of C. These are defined by

I1 ¼ trC and I2 ¼ trðC�1Þ; ð4:2Þ

or in terms of the principal stretches as

I1 ¼ l2
r þ l2

u þ l2
z and I2 ¼ l�2

r þ l�2
u þ l�2

z : ð4:3Þ
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In this case the Cauchy stress tensor becomes

s ¼ 2c1B� 2c2B
�1 � pI; ð4:4Þ

where the abbreviations c1 ¼ @C/@I1 and c2 ¼ @C/@I2

have been introduced.

4.2. Equilibrium equations

For each arterial layer, the principal directions of the
Cauchy stress coincide with the principal directions of
the left Cauchy–Green tensor, i.e. the cylindrical
polar coordinate directions, since the material is isotro-
pic. Then the normal components of s are suu, szz and
srr, and the shear components are zero. Moreover, the
deformation depends only on r, and the equilibrium
equation, therefore, reduces to the radial equation

dsrr

dr
þ 1

r
ðsrr � suuÞ ¼ 0: ð4:5Þ

The mean axial stress, denoted by �szz and calculated
from szz

(i), i ¼ I, M, A, is given by

�szz ¼
1

bðAÞ � aðIÞ
X

i¼I;M;A

ðbðiÞ

aðiÞ
sðiÞzz dr; ð4:6Þ

which is non-zero under the considered assumptions.
Therefore, we adjust the axial stress to force the mean to
vanish so that the resulting axial load on the ends of the
artery vanishes. The adjusted axial stress components
are thensðiÞzz � �szz ; i ¼ I;M;A.This gives an approximate
measure of the residual axial stress in each layer.

4.3. Application to the neo-Hookean material

For purposes of illustration, we consider a simple iso-
tropic model. Specifically, we use the neo-Hookean
material model, for which C is given by

C ¼ 1
2
mðI1 � 3Þ; ð4:7Þ

wherem is the shear modulus of a material in the reference
configuration, and the Cauchy stress tensor s simplifies to

s ¼ mB� pI: ð4:8Þ

For this model, the radial equilibrium equation (4.5)
reduces to

dsrr

dr
¼ m

r
ðl2

u � l2
rÞ; ð4:9Þ

which holds throughout the layers. The radial stress is
subject to the traction continuity conditions

sðIÞrr ¼ 0 on r ¼ aðIÞ and sðIÞrr ¼ sðMÞrr

on r ¼ aðMÞ ¼ bðIÞ;

9=
; ð4:10Þ

and

sðMÞrr ¼ sðAÞrr on r ¼ aðAÞ ¼ bðMÞ

and sðAÞrr ¼ 0 on r ¼ bðAÞ;

9=
; ð4:11Þ

where here and henceforth the superscripts (I), (M) and
(A) attached to the stress components refer to the
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intima, media and adventitia, respectively. This con-
vention will also be applied to m. Once srr is
calculated from equation (4.9) in each layer, we can
obtain

suu ¼ srr þ mðl2
u � l2

rÞ

and szz ¼ srr þ mðl2
z � l2

rÞ � �szz ;

)
ð4:12Þ

also for each layer, where szz is adjusted for the mean,
as indicated above, using equation (4.6).

The constitutive law involves just one parameter, m,
which is different for each layer. The values of m for the
different layers are obtained from experimental data.

4.3.1. Intimal layer. For the intima, the principal
stretches lr

(I) and lu
(I) are given by equation (3.5)1,2.

By using equation (3.3)1, we may write

lðIÞr
2 ¼ AðIÞ

2þkðIÞlðIÞz ðr2 � aðIÞ
2Þ

r2 kðIÞ2 lðIÞz
2

and l
ðIÞ
u

2
¼ kðIÞ

2
r2

AðIÞ2þkðIÞlðIÞz ðr2 � aðIÞ2Þ
;

9>>>>>=
>>>>>;

ð4:13Þ

while lz
(I) ¼ (lr

(I) lu
(I))21. The equilibrium equation (4.9)

together with boundary condition (4.10)1 leads to

sðIÞrr ¼ mðIÞ
kðIÞ

lðIÞz

log
lðIÞr rkðIÞlðIÞz

AðIÞ

� �
� 1

kðIÞlðIÞz

log
r

aðIÞ

� �"

þ 1
2

lðIÞ
2

r � 1

kðIÞlðIÞz

 !
aðIÞ

2 � r2

aðIÞ
2

#
; sðIÞrr ðrÞ:

ð4:14Þ
4.3.2. Medial layer. For the media, the principal
stretches lr

(M) and lu
(M) follow from equation (3.14)1,2.

By using equation (3.8)1, we arrive at

lðMÞ
2

r ¼ LðMÞp
rkðMÞlðMÞb

� �2

AðMÞ
2þblðMÞkðMÞ

pLðMÞ
ðbðMÞ2�r2Þ

� �

and l
ðMÞ
u ¼ rb

LðMÞ
; ð4:15Þ

while lz
(M) ¼ (lr

(M) lu
(M))21. The equilibrium equation

(4.9) yields the solution for srr
(M) given by

sðMÞrr ¼ sðMÞrr ðaðMÞÞ þ mðMÞ
1
2

b2

LðMÞ
2 ðr2 � aðMÞ

2

Þ
�

þ pLðMÞ

blðMÞkðMÞ
log

r
aðMÞ

� �
þ 1

2
pLðMÞ

blðMÞkðMÞ

� �2

� AðMÞ
2

þ bbðMÞ
2
lðMÞkðMÞ

pLðMÞ

 !
1
r2 �

1

aðMÞ
2

� �#

; sðMÞrr ðrÞ: ð4:16Þ

Continuity of the radial stress srr requires

sðIÞrr ðbðIÞÞ ¼ sðMÞrr ðaðMÞÞ; ð4:17Þ

with a(M) ¼ b(I), which determines srr
(M)(a(M)).



Table 1. Material and geometrical data for the intima, media and adventitia of human aortas required for the model: except
for the values of m the data are obtained directly from Holzapfel et al. (2007) or calculated using data from the same study,
from which we also obtained l ¼ 2.48 mm. The values of m are from Holzapfel (2006).

intima media adventitia
shear modulus m(I) ¼ 39.8 kPa m(M) ¼ 31.4 kPa m(A) ¼ 17.3 kPa

reference geometry A(I) ¼ 7.504 mm A(M) ¼ 8.406 mm —
B(I) ¼ 7.764 mm B(M) ¼ 8.986 mm —
L(I) ¼ 2.5805 mm L(M) ¼ 2.52 mm L1

(A) ¼ 0.205 mm
k(I) ¼ 1.191 k(M) ¼ 2.785 L2

(A) ¼ 18.3465 mm
L3

(A) ¼ 2.288 mm

deformed geometry a(I) ¼ 5.61 mm — b(A) ¼ 7.045 mm
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4.3.3. Adventitial layer. The principal stretches lr
(A),

lu
(A) and lz

(A) for the adventitia are given via equation
(3.19). The equilibrium equation (4.9) together with
boundary condition (4.11)2 gives

sðAÞrr ¼
1
2
mðAÞ lðAÞr

2�l
ðAÞ
u

2 bðAÞ
2

r2

 !
1� r2

bðAÞ2

� �

; sðAÞrr ðrÞ; ð4:18Þ

with srr
(A)(b(A)) ¼ 0. Continuity of the radial stress srr

requires

sðAÞrr ðaðAÞÞ ¼ sðMÞrr ðbðMÞÞ; ð4:19Þ

with b(M) ¼ a(A).
5. NUMERICAL ANALYSIS

In this section, we illustrate the potential of the model
proposed above by calculating residual stretches and
stresses using measured data. We begin by summarizing
the relevant material and geometric data, continue by
describing the solution procedure and finally document
a selection of numerical results.

5.1. Summary of available material and
geometric data

We use the geometrical parameters described in §3.5
together with the material constants whose values are
summarized in table 1. As far as layer-specific data of
aortic tissues are concerned, we have used values of
the shear modulus m for each layer of a single specimen
of an abdominal aorta from a human cadaver (female
80 years) documented in Holzapfel (2006). These
values are summarized in the first row of table 1. As
far as we know, there are no other data available for
each of the intima, media and adventitia of human
aortas. However, some layer-specific data are available
for other types of arteries, including coronary arteries
based on systematic studies with multiple specimens
(Holzapfel et al. 2005). Such data are inappropriate
for the present study, because they are obtained from
a different type of artery.

Rows 2–6 of table 1 list the geometrical data for the
reference configurations of the three layers that are
required for the model. The second and third rows
give values of the inner and outer radii A and B,
respectively, for the intima and media. These values
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are computed from the mean radius in each case,
which are obtained from mean values of the curvatures
given in figure 3 coupled with the mean thicknesses
from figure 2. In rows 4–6, Li

(I), Li
(M) and Li

(A), i ¼
1, 2, 3, are mean values obtained from the specimens
tested in Holzapfel et al. (2007), while k(I) and k(M)

are computed from equations (3.4)1 and (3.9) using
the opening angles a(I) and a(M) computed from data
documented in Holzapfel et al. (2007). The final row
of table 1 provides mean value data for the deformed
inner radius a(I) of the intima and outer radius b(A) of
the adventitia, which were given in Holzapfel et al.
(2007). The value of the half height of the ring is
obtained similarly as l ¼ 2.48 mm.

5.2. Solution procedure

To obtain the remaining dimensions, we make use of
equations (3.4)2, (3.19)3 and (3.23), which enable
b(I) ¼ a(M) to be calculated from equation (3.20) and
b(M) ¼ a(A) from equation (3.22). The stretches in the
intima and adventitia then follow from equations
(4.13) and (3.19), respectively, and hence the corre-
sponding radial stresses are obtained from equations
(4.14) and (4.18) using the boundary conditions
srr

(A)(b(A)) ¼ srr
(I)(a(I)) ¼ 0. The stretch and stress distri-

butions in the media require values of b and l(M). First,
the product bl(M) is obtained from equation (3.21)
explicitly and then the value of b (and hence l(M)) is
determined by using the traction continuity conditions
(4.17) and (4.19) on the interfaces r ¼ a(M) and r ¼ b(M)

together with expressions (4.14), (4.16) and (4.18) for
the radial stresses. Numerical values of b and l(M) are
easily obtained. This allows the radial stress distri-
bution through the media layer to be computed. The
azimuthal stresses are then given by equation (4.12)1

using the appropriate values of srr and the stretches
for each layer. Similarly to the azimuthal stress, the
axial stress distribution is obtained from equation
(4.12)2, and we emphasize that this is adjusted to
yield a zero mean distribution through the wall thick-
ness by means of equation (4.6).

5.3. Numerical results and discussion

In this section, we present the three-dimensional
residual stretch and stress distributions through
the arterial wall based on the data displayed in
table 1 using the software package MATHEMATICA
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Figure 5. Residual stretch and stress distributions through the intima, media and adventitia of the artery wall as functions of the
radial coordinate r based on the data from table 1. The solid, long-dashed and short-dashed curves correspond to the circumfer-
ential, axial and radial quantities, respectively: (a) principal stretches lr, lu and lz; (b) radial stress srr; (c) circumferential stress
suu; (d) axial stress szz. The interface between the intima and media is at r ¼ 5.911 and between the media and adventitia at r ¼
6.724. The units of the stresses are in kilopascals.

Figure 6. Part of a ring of a fresh human iliac artery showing
local delamination and buckling of the intimal layer from the
media. This indicates that in the unloaded configuration the
ring bears compressive circumferential stress in the inner
part of the wall.
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(Wolfram 2009). We shall also examine the effect of the
absence of the intimal layer on the residual stretches
and stresses in the media and adventitia. Finally, the
influence of the opening angle a(I) on the circumferen-
tial stress at the inner boundary of the intima, the
interface between the intima and media (where there
is a discontinuity) and the outer boundary of the
media is investigated.

Figure 5a shows the distribution of the principal
stretches lr, lu and lz for each of the layers in the
intact configuration as functions of the radius r through
the thickness. We note that the circumferential
stretches in the media and adventitia are tensile and
also linear in r, while that in the intima is compressive,
but it is not strictly linear, although the curve looks
like a straight line. The axial stretch is constant in
both the intima and adventitia and varies slowly
through the medial layer. The value of the radial stretch
in each layer is dictated by the incompressibility
condition.

Figure 5b–d exhibit the corresponding stresses srr,
suu and szz through the wall thickness. It is interesting
to note that, although small, srr is compressive
throughout and continuous, while the circumferential
stress is compressive in the intima and the inner part
of the media and tensile in the adventitia and the
outer part of the media and is discontinuous across
the interfaces. The sign change of suu through the
wall thickness had been found in the calculations of
Chuong & Fung (1986), who seem to have been the
J. R. Soc. Interface (2010)
first to compute residual stresses using a constitutive
model. Their analysis, however, was based on the two-
dimensional opening-angle geometry using a single-
layer ring of an artery, and the magnitudes of the
residual stresses they found were significantly smaller
than determined in the present work. The recent work
by Alford et al. (2008), based on a two-layer model,
found residual circumferential stresses of the same
order as documented herein. The compressive circum-
ferential stress in the inner part of the wall is
responsible for the buckling and delamination of the
intima from the media, as can be seen in experiments
(see figure 6; although this sample is from a human
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expressed through the parameter k(I) ¼ p/(p 2 a(I)) on the
residual circumferential stress suu (kPa) at the inner and
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1.191 is the mean value identified in table 1, which was used
in the plots shown in figures 5 and 7. Mi, inner boundary of
media; Mo, outer boundary of media; Ii, inner boundary of
intima; Io, outer boundary of intima.
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iliac artery, rather than an aorta, the phenomenon can
easily be appreciated). We recall that the mean axial
stress s̄ zz, here calculated as 233.27 kPa, has been sub-
tracted from the axial stress values in each layer in order
to ensure that the axial load on the ends of the artery is
zero. From table 1, we see that the deformed wall thick-
ness is b(A) 2 a(I) ¼ 1.435 mm. The separate
thicknesses of the intima, media and adventitia are
0.301, 0.813, 0.321 mm, respectively, which are
obtained from equations (3.20) and (3.22).

Our calculations show that the qualitative features of
the plots are essentially unchanged when the value of
m(M) is changed over quite a range of values except
that, as the value of m(M) is decreased to a certain
level, the sign of szz in the intima switches from positive
to negative. Another observation is that the gradient of
suu in the media layer increases with the value of m(M).
For small values of m(M), the gradient decreases and in
the limit m(M)! 0 becomes zero (as it should since the
material then bears no stress).

The aortas under consideration were aged human
aortas with non-atherosclerotic intimal thickening
with relatively stiff intimas. By contrast, the intimas
in young healthy arteries are insignificant from the
solid mechanics point of view, and it is therefore of
interest to evaluate the residual stretch and stress
distributions in the wall when the intima is neglected.
Calculations on this basis are illustrated in figure 7.
We have again used the values of the shear modulus
for the media and adventitia given in table 1. For the
geometrical parameters we have assumed that
the media and adventitia have the same thicknesses
in the intact configuration, as in the previous example.
The radius of the deformed interface is again calculated
as r ¼ 6.724 mm.

Note that the circumferential stretch lu is linear.
Figure 7a shows that it is under extension throughout
the wall, while the axial stretch lz is under compression
in the media and under small constant extension in the
adventitia. The radial stretch lr, which is determined
by the incompressibility condition, is under extension
in the media and compression in the adventitia. The
pattern here is very similar to that in the media and
adventitia shown in figure 5a except that the numerical
values of the stretches in the media are somewhat differ-
ent. In particular, the values of lu and lr are larger.
J. R. Soc. Interface (2010)
With reference to figure 7b we see that these differences
are reflected in the significant increase in the compres-
sive circumferential stress suu on the inner boundary
due to the absence of the intima. The gradient of suu

through the media is also increased. In this case, the
mean axial stress is 257.42 kPa, which has been sub-
tracted from the actual axial stress, and leads to the
high axial stress in the adventitia.

Returning to the example with three layers, we now
illustrate in figure 8 the influence of the opening angle
a(I), through the parameter k(I) � 1 given in equation
(3.4)1, on the circumferential stress suu at four key
points: the inner and outer boundaries of each of the
intima and media. Note that k(I) ¼ 1 corresponds to
zero opening angle. We have not considered k , 1
here, which is possible and would correspond to self
overlapping of the intima since this was rarely observed
in the experiments. The value k(I) ¼ 1.191 given in
table 1 is the mean value determined from 16 specimens
(see Holzapfel et al. 2007 for further details). It can be
seen that the difference between the values of suu at
the inner and outer boundaries of the intima is very
small. When there is no opening angle suu is compres-
sive and its value is relatively large, but as the
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opening angle increases from zero, suu increases mono-
tonically and nonlinearly and changes sign from
negative to positive. Positive values would seem to be
unrealistic and therefore suggest that the opening
angle, and hence k(I), is confined to relatively small
values, which is what has indeed been observed. The
change in suu with k(I) is very slight. It does not
change sign for the considered range of parameters
and is compressive (tensile) at the inner (outer) bound-
aries of the media.

A similar analysis conducted by varying k(M) is not
so straightforward since in the expressions for the stres-
ses k(M) always appears in the product k(M)l(M), which is
determined from the combination of equations (3.20)–
(3.22) in terms of k(I) and the other geometrical
parameters. Thus, k(M) and k(I) are intimately related
through the geometry and also the prevailing residual
stresses in the unloaded configuration.
6. SUMMARY AND CONCLUSIONS

In the present work, within the framework of nonlinear
elasticity theory, we have conducted the first analysis of
the three-dimensional state of residual stress and stretch
in a layered artery wall, taking account of bending and
stretching in both the axial and circumferential direc-
tions for the separate layers. This contrasts with the
essentially two-dimensional analysis in previous work.
Our analysis was motivated by the detailed experimen-
tal data in Holzapfel et al. (2007), which documents
three-dimensional residual deformations for intact
strips and their separate layers from human abdominal
aortas in their passive state. These data make it clear
that the opening-angle method, as used previously, is
far from adequate for determining the three-dimensional
state of residual stress.

Based on the mean values of the geometries in their
unstressed configurations, we have derived the defor-
mations and associated stretches required to
reconstruct the original intact three-layer arterial seg-
ment from the separate intimal, medial and
adventitial layers. This involved matching the radii at
the interfaces in the intact configuration and imposing
continuity of the radial stress across the interfaces in
order to force the intact configuration to be circular
cylindrical. The analysis was made tractable by the sim-
plifying assumption that the medial layer cut from the
circumferential specimen was straight after separation,
which is an approximation justified by noting that the
mean curvature of the opened media ring is very small
(figure 3a). This approach leaves just a single com-
ponent of the equilibrium equation, the radial
component. Using the neo-Hookean material model,
this equation has been solved explicitly for each layer
to obtain closed-form expressions for the radial, circum-
ferential and axial stress components. The solution
procedure outlined in §5.2 is straightforward to
implement and enables the stress and stretch values in
the radial, circumferential and axial directions for
each layer to be determined and exhibited in the figures
provided. Their characteristics have been highlighted
in §5.3.
J. R. Soc. Interface (2010)
A merit of the present approach is that it leads to
analytical expressions that are general in the sense
that any vessel wall can be studied provided the geo-
metrical properties and material parameters are given,
as in table 1. Hence, this framework allows direct
prediction of the state of residual stress, which contrib-
utes to improved insight into the structure of residual
stresses. In addition, it provides a basis for understand-
ing the influences of certain parameters on the overall
mechanical response, including the stiffnesses of indi-
vidual layers. This approach can also help to guide
finite element studies of boundary-value problems
involving more complicated geometries. Another point
to make is that the approach is not restricted to the
neo-Hookean model or indeed to isotropy, and the
neo-Hookean model can be replaced by, for example, a
structural model that embodies fibre directions,
although in such cases the stresses would have to be
calculated numerically.

The proposed framework can be adapted to allow for
shear stresses and strains, which would require use of
one or two more components of the equilibrium
equation. In this case, the intact artery cannot be circu-
lar cylindrical in its unloaded configuration, but the
zero axial stress boundary conditions on the ends of
the wall can be met. Then, however, it will certainly
not be possible to have the advantage of analytical
expressions for either the deformation or the stresses.
Of course, the very existence of residual stresses begs
the question of how they arise. This is not within the
scope of the paper but we do mention here the recent
works by Azeloglu et al. (2008) and Cardamone et al.
(in press) and references therein which suggest
mechanisms of residual stress development.

Financial support for this research was partly provided
through an International Joint Project grant from the
Royal Society of London. This support is gratefully
acknowledged.
REFERENCES

Alford, P. W., Humphrey, J. D. & Taber, L. A. 2008 Growth
and remodeling in a thick-walled artery model: effects of
spatial variations in wall constituents. Biomech. Model.
Mechanobiol. 7, 245–262. (doi:10.1007/s10237-007-
0101-2)

Azeloglu, E. U., Albro, M. B., Thimmappa, V. A., Ateshian,
G. A. & Costa, K. D. 2008 Heterogeneous transmural pro-
teoglycan distribution provides a mechanism for regulating
residual stresses in the aorta. Am. J. Physiol. Heart
Circ. Physiol. 294, H1197–H1205. (doi:10.1152/ajpheart.
01027.2007)

Cardamone, L., Valentı́n, A., Eberth, J. F. & Humphrey, J. D.
In press. Origin of axial prestretch and residual stress in
arteries. Biomech. Model. Mechanobiol. (doi:10.1007/
s10237-008-0146-x)

Chuong, C. J. & Fung, Y. C. 1986 On residual stress in
arteries. J. Biomech. Eng. 108, 189–192. (doi:10.1115/1.
3138600)

Holzapfel, G. A. 2000 Nonlinear solid mechanics. A conti-
nuum approach for engineering. Chichester, UK: Wiley.

Holzapfel, G. A. 2006 Determination of material models for
arterial walls from uniaxial extension tests and histological

http://dx.doi.org/doi:10.1007/s10237-007-0101-2
http://dx.doi.org/doi:10.1007/s10237-007-0101-2
http://dx.doi.org/doi:10.1152/ajpheart.01027.2007
http://dx.doi.org/doi:10.1152/ajpheart.01027.2007
http://dx.doi.org/doi:10.1007/s10237-008-0146-x
http://dx.doi.org/doi:10.1007/s10237-008-0146-x
http://dx.doi.org/doi:10.1115/1.3138600
http://dx.doi.org/doi:10.1115/1.3138600


Three-dimensional residual stresses G. A. Holzapfel and R. W. Ogden 799
structure. J. Theor. Biol. 238, 290–302. (doi:10.1016/j.
jtbi.2005.05.006)

Holzapfel, G. A., Gasser, T. C. & Ogden, R. W. 2000 A new
constitutive framework for arterial wall mechanics and
a comparative study of material models. J. Elasticity 61,
1–48. (doi:10.1023/A:1010835316564)

Holzapfel, G. A., Sommer, G., Gasser, T. C. & Regitnig, P.
2005 Determination of the layer-specific mechanical
properties of human coronary arteries with non-
atherosclerotic intimal thickening, and related constitutive
modelling. Am. J. Physiol. Heart Circ. Physiol. 289,
H2048–H2058. (doi:10.1152/ajpheart.00934.2004)

Holzapfel, G. A., Sommer, G., Auer, M., Regitnig, P. &
Ogden, R. W. 2007 Layer-specific three-dimensional
residual deformations of human aortas with non-
atherosclerotic intimal thickening. Ann. Biomed. Eng.
35, 530–545. (doi:10.1007/s10439-006-9252-z)

Humphrey, J. D. 2002 Cardiovascular solid mechanics. Cells,
tissues, and organs. New York, NY: Springer.

Humphrey, J. D. 2003 Native properties of cardio-
vascular tissues: guidelines of functional tissue
engineering. In Functional tissue engineering (eds F.
Guilak, D. L. Butler, St A. Goldstein & D. J.
Mooney), pp. 35–45. New York, NY: Springer.

Ogden, R. W. 1997 Non-linear elastic deformations.
New York, NY: Dover Publications.

Ohayon, J., Dubreuil, O., Tracqui, P., Le Floc’h, S., Rioufol,
G., Chalabreysse, L., Thivolet, F., Pettigrew, R. I. &
Finet, G. 2007 Influence of residual stress/strain on the
biomechanical stability of vulnerable coronary plaques:
potential impact for evaluating the risk of plaque rupture.
J. R. Soc. Interface (2010)
Am. J. Physiol. Heart Circ. Physiol. 293, H1987–H1996.
(doi:10.1152/ajpheart.00018.2007)
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