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The recent banking crises have made it clear that increasingly complex strategies for mana-
ging risk in individual banks have not been matched by corresponding attention to overall
systemic risks. We explore some simple mathematical caricatures for ‘banking ecosystems’,
with emphasis on the interplay between the characteristics of individual banks (capital
reserves in relation to total assets, etc.) and the overall dynamical behaviour of the system.
The results are discussed in relation to potential regulations aimed at reducing systemic risk.
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1. INTRODUCTION

The past two decades have seen a super-exponential
expansion of work on complex dynamical systems
(Goldenfeld & Kadanoff 1999; Oltvai & Barabasi
2002; Various Authors 2009), with emphasis on the
way they can exhibit sharp transitions from seemingly
stable states to very different ones (variously called,
depending on the discipline, ‘tipping points’,
‘thresholds and breakpoints’ or ‘regime shifts’). In
particular, such phenomena—epitomized by the Wall
Street Crash of 1929 and the subsequent Great
Depression (Bernanke 1983)—would seem to be
relevant to the increasingly sophisticated, complex
and globally interlinked banking/financial system.

It is, however, only relatively recently that attention
has been focused on banking networks as complex
dynamical systems (May et al. 2008). The joint study
on New directions for understanding systemic risk
(National Research Council of the National Academies
2007), put together by the US National Academy of
Sciences and the Federal Reserve Bank of New York
(henceforth NASFRB), was motivated by the obser-
vation that, although much effort and sophisticated
analyses were increasingly directed to maximizing
returns with minimum risk for individual banks and
investment firms, essentially no attention was being
paid to studying the concomitant changing dynamics
of the entire system, that is, to study ‘systemic risk’.

Recent events have changed all this. The prescient
NASFRB study, begun in May 2006, brought together
some 100 ‘experts on systemic risk from 22 countries,
representing banks, regulators, investment firms, US
national laboratories, government agencies and univer-
sities’ with the aim of exploring parallels between
systemic risk in the financial sector and that in selected
domains of engineering, ecology and other fields of
science. As events have subsequently unfolded, there
are now questions as to what kinds of regulatory reforms
orrespondence (robert.may@zoo.ox.ac.uk).
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might be put in place with the aim of diminishing
systemic risk while preserving innovative initiatives
and appropriate degrees of risk-taking in individual
banks. A particularly insightful review of these ques-
tions is given by Haldane (2009) in his paper on
‘rethinking the financial network’: ‘this paper con-
siders the financial system as a complex adaptive
system. It applies some of the lessons from other net-
work disciplines—such as ecology, epidemiology,
biology and engineering—to the financial sphere. Peer-
ing through the network lens, it provides a rather
different account of the structural vulnerabilities that
built up in the financial system over the past decade
and suggests ways of improving robustness in the
period ahead’.

Inter alia, Haldane’s paper draws an analogy with
ecological theory in the 1960s, which saw ‘complexity’
(in the sense of more species and a richer web of inter-
actions among them) as broadly stabilizing (in the sense
of resistance to natural or human-created disturbance)
(Elton 1955; MacArthur 1955; Hutchinson 1959). To
the contrary, more analytic examination showed that,
as a generality, such complexity was destabilizing
(Gardner & Ashby 1970; May 1972, 2001; Sugihara &
Ye 2009). This redefined the research agenda towards
understanding the special strategies that ecological net-
works have evolved to reconcile complexity with
persistence in the face of environmental uncertainties.

As many have emphasized (e.g. Battison et al. 2009), it
is largely important that, before any major regulatory
changes in financial systems are attempted, we have a
clearer understanding of the dynamical behaviour of the
global banking network and of the causes of the current
systemic failures. Failing this, it is likely thatwell-intended
measures will have unintended adverse consequences
(as arguably the Basel Accords did in helping promote
homogeneity, which was good for individual banks and
firms, but arguably bad for the system). Such understand-
ing has many aspects, not least in its interaction with
political and other constraints.
This journal is q 2009 The Royal Society
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Figure 1. Schematic model for a ‘node’ in the IB network.

824 Systemic risk R. M. May and N. Arinaminpathy
In all this, deliberately oversimplified mathematical
models can make a useful contribution, just as they
demonstrably have over the past few decades in ecology
and epidemiology (Anderson & May 1991; Dunne et al.
2002). Such oversimplified models are at best rough car-
icatures of reality. They have both the merits and the
faults of caricature. They are also, of course, only part
of a larger canvas: no more, but no less.

The present paper builds on important earlier such
work on the propagation of shocks in model banking
networks. Essentially, all this earlier work is based on
numerical simulations. One distinctive element of the
present paper is the use of analytic approximations
(‘mean-field approximations’ for the network), which
can sharpen and generalize some insights.

The paper is organized as follows. In §2, following
previous authors, we define a class of deliberately over-
simplified models in which individual banks are the
nodes in a network; we also discuss possible choices
for the structure of, and parameter choices within,
such a network. Section 3 outlines how failure-causing
‘shocks’ can arise in the network, and how they may
be propagated within the interbank (IB) lending/bor-
rowing network and/or by liquidity effects (from asset
classes shared among banks, or more generally). The
stage thus set, in §4, we apply our mean-field approxi-
mation to the kinds of models studied by Nier et al.
(2007) (henceforth NYYA) and by Gai & Kapadia
(2007) (GK) to get some simple results that agree well
with their simulations and, as a consequence of the ana-
lytic approximations, some intuitive understanding of
the overall dynamics of the system. Sections 5 and 6
add liquidity effects in the broad brush way explored
by previous authors. In §7, we define more complex,
and arguably somewhat more realistic, classes of
‘strong liquidity shocks’ and ‘weak liquidity shocks’
(henceforth SLS and WLS) and explore their dynamical
consequences in some detail both with simulations and
in our mean-field approximation. Section 8 draws
together some tentative conclusions which emerge
from this work.
2. THE BASIC MODEL

In ecology, the nodes in basic models are simply
‘species’ that are linked to other species/nodes as
prey, predator, competitor or mutualist (May 2001;
Dunne et al. 2002). In epidemiological networks, the
nodes are susceptible, infected/infectious or recov-
ered/immune individuals (Anderson & May 1991;
Newman 2002). But in a minimally complicated bank-
ing network, the nodes, individual banks, have a more
complex structure. Following NYYA and GK, we
define such a node/bank as illustrated schematically
in figure 1.

Note that, in this deliberately oversimplified scheme,
the activities of any given bank are partitioned among
four categories. Two of the four categories represent
assets: IB lending (li) and external assets (ei). The
other two correspond to liabilities: IB borrowing (bi)
and deposits (di). Here the subscripts indicate the
specific bank, with i ¼ 1, 2, . . . , N, where N is the
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total number of banks (table 1). For any individual
bank, solvency requires that assets exceed liabilities

gi ; ðei þ liÞ � ðdi þ biÞ � 0: ð2:1Þ

As indicated in figure 1, gi is the ‘net worth’ or ‘capital
buffer’ of bank i. If ei, li, di and/or bi change in such a
way that gi becomes negative, then liabilities exceed
assets and the bank i is assumed to fail.

In the studies by NYYA, GK and others, these banks
are now interconnected in a random, Erdos–Renyi
network in which any one of the N banks is linked to
any other one, as lender or as borrower (or possibly
both), with probability p. In such a network, a bank’s
average number of incoming/borrowing or outgoing/
lending connections, z, will obviously be

z ¼ pðN � 1Þ: ð2:2Þ

Various assumptions about these parameters can
now be made. For a start, more or less by definition,
total assets equal total liabilities, as shown in figure 1
(Gai & Kapadia 2007; Nier et al. 2007).

Assumptions about total assets (ai), net worth (gi),
IB loans as a fraction of total assets (ui) and the average
size of any one given bank’s individual loans (wi) can
vary. For any given bank, the number of IB loans is
equal to the outgoing Erdos–Renyi links (zi

(out)), and
similarly for the number of incoming links (zi

(in)). Simu-
lations by different authors make various assumptions
about these parameters. Both NYYA and GK assume
that gi is a fixed fraction of ai. Both also assume
random, Erdos–Renyi networks. NYYA assume that
all banks share a common value for the average loan, w.
The total value of all assets in the system is fixed, as is
the overall system’s average value of the ratio of all
outgoing loans to all assets, u. From this, the average
value of w, which is assumed to be the value of each
and every individual loan, can be calculated as

w ¼ ua
z
: ð2:3Þ

Here a represents the value of the total assets of the aver-
age bank. Note that zi

(out) will vary, according to the
number of links a given bank has. The calculation of
both ai and ei(ai¼ ei þ zi

(out)w) is found by a process



Table 1. The model’s key parameters, variables and acronyms.

category definition symbol
default
value notes

number of banks N 25
balance sheet parameters

for individual banks
total assets of each bank a 1
IB loans l 0.2
lending ratio l/a u 0.2
external assets e 0.8 e ¼ 1 2 u

net worth or capital buffer g 0.04

IB lending network
parameters

average value of loan w 0.042 w ¼ u/z
probability of bank A lending to bank B

(Erdos–Renyi probability)
p 0.2

average number of IB loans (‘mean degree’ of
IB network)

Z 4.8 z ¼ p(N 2 1)

external asset class
parameters

mean number of external asset classes held
by each bank, of which c are shared each
with g other banks

n (c, g) 5 (5,5)

for a given asset, fraction of total asset value
held by failing banks

x variable

simple liquidity shock, caused by discounting
assets held by failing banks

LS a ¼ 2 asset values discounted
by a factor e –ax

more details on liquidity shocks (see text)
SLS SLS a ¼ 2 as above
WLS WLS b ¼ 0.5 discount factor e –bx

Systemic risk R. M. May and N. Arinaminpathy 825
described in NYYA, and thence ui ¼ zi w/ai. Thus, ui and
total assets ai, and thence net worth gi, will vary a bit
from bank to bank, depending on zi

(out).
GK normalize ai to unity for all banks (whence gi is

g, the same for all banks), and they also fix ui as a
common constant. This implies that wi varies among
banks, proportional to 1/zi

(out).
Although NYYA briefly explore a model with ‘Big

Banks & Small Banks’, most studies we are aware of
are confined to simulations assuming a random network.

NYYA’s simulations have the default assumptions
u ¼ 0.2, g ¼ 0.05, N ¼ 25, p ¼ 0.2; their system’s
total external assets are 105, from which it follows that
a ¼ 4000 and w ¼ 167 or w/a ¼ 0.0416. NYYA’s
simulations show numbers of banks defaulting as shocks
progress, allowing individual parameters to vary (specifi-
cally g, p, u and N each individually varying, while the
other parameters are held at the default values). GK
make similar choices, fixing u ¼ 0.2, a¼ 1, g ¼ 0.04 and
N ¼ 1000 and consider a range of z-values (see equation
(2.2)). GK also use a random network, but—as discussed
more fully in §5—their assumptions about the propagation
of IB shocks differ significantly from those of NYYA.

In the next section, we will compare the results of a
simple approximation, which permits analytic and gen-
eral results, with these numerical simulations. But first
it is worth emphasizing some potential extensions in the
direction of greater complexity. For one thing, studies of
real IB connectivity networks suggest they differ from
random in important ways. In particular, the topology
of the USA Fedwire system is highly non-random, in a
disassociative way: there are a few big banks, each con-
nected to many small banks; small banks are connected
to only a few others, mainly large (National Research
Council of the National Academies 2007; May et al.
2008). Associated with this is the observation that not
J. R. Soc. Interface (2010)
only are networks non-random, but there is a very signifi-
cant distribution in bank sizes. Furthermore, the ratio of
net worth/capital buffers to a bank’s total assets tends,
in fact, to be such that big banks have relatively smaller
capital reserves; preliminary studies suggest this is
perverse in respect to system stability. We will return
to these matters in the concluding section.
3. INITIATING AND PROPAGATING
SHOCKS

We follow NYYA, GK and others in studying the
consequences of a shock initially hitting any single
bank, with the shock taking the form of wiping out a
fraction, f, of its external assets. Since we will shortly
be resorting to our mean-field approximation, in
which all banks have the same values for g, u, w and z
(with total assets normalized as unity, as in GK,
whence e ¼ 1–u and b ¼ u), we define this phase I,
‘first phase’, shock as

sðIÞ ¼ f ð1� uÞ: ð3:1Þ

This shock term is now to be subtracted from the LHS
of equation (2.1), and thus this bank will fail if

sðIÞ . g: ð3:2Þ

We initially follow NYYA in assuming that this default
has no liquidity effects in the disposing of the failing
bank’s assets, nor on the value of other banks’ assets.
This implies a loss (s(I)–g) being distributed equally
among the defaulting bank’s creditor banks, provided
this quantity is smaller than the defaulting bank’s
total borrowing. If not, then each creditor bank simply
loses its total loan (and depositors, external to the IB
system, also suffer losses). That is to say the phase I
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default by a single bank results in each of its z creditor
banks experiencing a phase II shock of magnitude

sðIIÞ ¼ ½u; sðIÞ � g�MIN

z
: ð3:3Þ

Here we have, anticipating the mean-field approximation
to come, dropped the subscript i that labels the individ-
ual failing bank. The notation ‘[a, b]’MIN in equation
(3.3) simply means that we take the lesser of the two
quantities a and b.

We will now have a further, phase II, failure of the z
banks connected to the initially failing bank if

sðIIÞ . g: ð3:4Þ

This, in turn, may generate phase III failures when
these phase II failures of z banks are appropriately
distributed among the remaining solvent banks. As out-
lined below, as a consequence of the possibility of
multiple hits arising from the several phase II-failing
banks, the criteria for phase III (and subsequent)
failures become a bit trickier than equations (3.2) and
(3.3) with equation (3.4), even within our mean-field
approximation. And so on for phase IV and further.

We emphasize that time does not appear as an explicit
variable in the sequence of events, explored below, that
may follow as a result of the initial, phase I bank failure.
Rather, we simply explore the cascade of successive
events that can unfold—dominos falling, as it were—as
the initial failure causes phase II failures in banks directly
connected by lending or by sharing external assets, in
turn possibly causing phase III failures and so on.

Arguably, the most serious deficiency in such a study
is that we assume IB borrowing and lending relations
remain fixed as this cascade ripples through the
system. As emphasized to us by one of three very helpful
anonymous referees, a bank threatened with phase II fail-
ure as a result of a borrower’s default on a loan exceeding
g (i.e. equation (3.4)) could, in principle, simply itself
borrow to cover the deficit and thus avoid failing. The
problem here, in practice, is that, as the dominos show
signs of falling, credit dries up. Indeed, it can be
argued that, to quote the referee, recent problems were
‘on the liabilities side of the balance sheet, not the
asset side. The Bank of England style models [i.e. GK,
NYYA, the present paper] do not capture runs’.

This is a good point. We would argue, however, that
in such a scenario the cause of systemic collapse is
neither solely on the borrowing side (assets, as in our
model) nor solely on the lending side (liabilities), but
a combination of both. We nevertheless believe that it
is useful to have a clear understanding of the dynamics
of possible system collapse, assuming the web of IB
borrowing/lending remains static, before proceeding to
the much more complicated, although admittedly
more realistic, task of elucidating the fully integrated
dynamics of such a model system.
4. SHOCKS PROPAGATED BY
INTERBANK LOANS

Here we consider the possible knock-on effects of an
initial failure, under the rather extreme assumption
J. R. Soc. Interface (2010)
that the failing bank can dispose of its remaining
assets for their original value, and that such sales
have no effect on the value of assets held elsewhere in
the system. Although clearly artificial, this assumption,
following NYYA, sets a baseline for exploration of
liquidity effects in subsequent sections.

In addition, as foreshadowed earlier, we begin with a
mean-field approximation, replacing the random
Erdos–Renyi network by a uniform one in which each
bank is connected to exactly z other banks (see equation
(2.2)) as a lender and as a borrower. As will be seen, this
approximation permits general insights into the way
propagation of shocks depends on the system’s various
parameters, while at the same time agreeing remark-
ably well with the ensemble average of the numerical
simulations by NYYA. Added to the further assump-
tions that all banks have the same total assets
(normalized to unity) and that all loans have the
same value, w, we also have that the loan/asset ratio
u is common to all N banks (see equation (2.3)). With
all banks thus identically parameterized, the labelling
subscripts i can be dropped.

We now proceed to give simple, general formulae for
successive phases of failure. The criterion for phase I and
phase II failure involves only g, u and z. For subsequent
phases (III and beyond), we do, however, need to deal
with the components of z (p and N), to allow for ‘multiple
hits’, once the total number of banks failing in previous
phases reaches an appreciable fraction of N. Moreover,
in the present approximation scheme, it is easy to retain
the parameter f (the fraction of external assets lost
in the initiating failure) throughout.

4.1. Phase I failure

Equations (3.1) and (3.2) give this criterion, in terms of
f, u and g,

f ð1� uÞ � g . 0: ð4:1Þ

Figure 2a shows the range of values for u and g which
satisfy equation (4.1), for specified f.

4.2. Phase II failure

The corresponding criterion for the subsequent failure
of each of the z banks which are creditors of the initially
failing bank is given by equations (3.3) and (3.4), which
can now be written as

½u; f ð1� uÞ � g�MIN . zg: ð4:2Þ

It is helpful now to define uc ¼ ( f–g)/(1þf ). For
u , uc, equation (4.2) reduces to

u . zg: ð4:3Þ

Conversely, for u . uc, equation (4.2) becomes

u , 1� gð1þ zÞ
f

: ð4:4Þ

Again, these simple expressions for the values of g, u,
z and f which will result in phase II failure of z banks
are illustrated (showing g and u for specific z and f )
by the appropriately shaded region in figure 2a. One
particularly interesting result is that under the



Figure 2. Regions of IB lending (u) and net worth (g) which result in propagation of IB loan shocks. The triangle ‘1, 0, f ’ defines
the region where loss of a fraction f of a bank’s external assets will cause it to fail. In (a), the light-shaded area depicts the region
in which creditors of the initially failing bank will receive phase II shocks which cause them also to fail. In (b), the dark-shaded
area shows the region in which phase III shocks cause failure.
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assumptions of this model no phase II failure is possible
if the value of g—net worth as a fraction of total
assets—lies to the right of the point A in figure 2a;
this corresponds to the criterion

g .
f

1þ zð1þ f Þ : ð4:5Þ

4.3. Phase III failure

For phases I and II, the above expressions are exact
within the mean-field approximation: when phase I failure
occurs, it is transmitted to exactly z banks.

The only relevant parameters are g, u, f and z. But for
phase III and subsequent failures, we must consider the
probable distribution of the z ‘hits’, from each of the z
defaulting banks, among the remaining N2(z þ 1) ¼
(N–1)(1 2 p) banks. There are z2 hits in total, but
some could fall on the phase I or other (z 2 1) phase II
failing banks. So, unlike for phases I and II, we need to
consider the p and N components of z ¼ p(N 2 1).

These complications will arise only if z2 represents an
appreciable fraction of the total banks. For z2 ,, N,
corresponding to p2N ,, 1, we may simply assume
that z2 of the previously unaffected banks each experi-
ence a single hit. But, more generally, we need to note
that each of the (N 2 1)(1 2 p) unhit banks will experi-
ence k ¼ 0,1, 2, . . . , z hits from the z phase II defaulting
banks with probability

PðkÞ ¼ z!

ðz � kÞ!k!

� �
pkð1� pÞz�k : ð4:6Þ

Remember, z is not necessarily an integer, which does
not affect formal aspects of our analysis, although in
practice it is the simplest to approximate z by the near-
est integer. In this more general circumstance, define kc

to be the largest value of k such that (N 2 1)(1 2 p)p(kc)
is of order unity; that is, the largest k such that one or
more previously unhit banks are likely to be hit k times.

In phase III, each of the phase II defaulting banks will,
in a manner similar to that discussed for phase II,
J. R. Soc. Interface (2010)
distribute to each of their z creditor banks a shock of

sðIIIÞ ¼ fu; ½u; f ð1� uÞ � g�MIN=z � ggMIN

z
: ð4:7Þ

The first phase III failures will then occur when one or
more banks experience kc of these shocks, of magnitude
such that

kcsðIIIÞ . g: ð4:8Þ

Analysis along that for phase II, mutatis mutandis, now
reduces equation (4.8) to the default condition

u . gzð1þ z�Þ if u , uc ð4:9Þ

and

u , 1� gð1þ z þ zz�Þ
f

if u . uc: ð4:10Þ

Here, fornotational convenience,wehavedefined z*¼ z/kc.
As noted above, if N is very much bigger than z2,

we have kc � 1 and z* ¼ z. This would be a good
approximation if we had N ¼ 250 and p ¼ 0.02, for
z ¼ 4.98. NYYA’s simulations typically have N ¼ 25
and p ¼ 0.2, for z ¼ 4.8. However, although the z-
values are effectively identical (both approx. equal
to 5), the phase III behaviour differs. For the (250,
0.02) choice, the probable outcome is that one of the
previously unhit 244 banks will suffer two hits,
which—depending on equations (4.9) and (4.10) with
z* ¼ z/2—may cause the first phase III default; 23
other banks suffer a single hit (z* ¼ z), which may
also cause failures depending on the more stringent ver-
sion of equations (4.9) and (4.10) which ensue. In
contrast, for NYYA’s (25, 0.2) choice, the average
expectation is roughly that one of the 19 previously
unhit banks will be hit three times, four will be hit
twice, eight once and six not at all.

Thus the ‘k-values’ in equations (4.9) and (4.10) take
values of 3 for one bank, 2 for four, 1 for eight, for a
total of 13 (of 19) banks potentially affected in
phase III; that is, depending on the details, we could
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see one or five or 13 phase III failures. Figure 2b illustrates
the essentials, for the ‘easiest’ (k ¼ kc) phase III failure.

In analogy to equation (4.5) for phase II, note that
phase III failures cannot occur in this model, regardless
of the other parameters, if g exceeds the value indicated
by point B in figure 2b and given by equation (4.11)
(now interpreting z* ¼ z/k) for each of k ¼ 1, 2, . . . , z
banks hit in phase III

g .
f

1þ zð1þ f Þð1þ z�Þ : ð4:11Þ

4.4. Comparison with numerical results

It is interesting to compare these analytic results from
the mean-field approximation with NYYA’s more
exact study in which banks exhibit a statistical scatter
in numbers of links (according to the Erdos–Renyi
degree distribution). For one thing, in the former case,
the phase I! phase II transition, in which the initial
failure causes exactly z secondary failures, occurs as a
step function at some precise value of the relevant par-
ameters, whereas in the latter (NYYA) case there tends
to be a smooth, S-shaped transition. And, of course, the
same is true for later transitions, if any. For a given
value of a bank’s average number of links, z ¼ p(N 2 1),
note that the fluctuations about this average will be
relatively smaller—and the differences between the
mean-field approximation and exact simulations there-
fore also smaller—if this fixed value of z is obtained
by larger N values.

Figures 3 and 4 show that NYYA’s exact numerical
studies are in reassuring, some might say surprising,
agreement with the results obtained from the analytic
approximations derived above. The analytic approxi-
mation, moreover, helps provide sharper insight into
the causes of the observed dynamical behaviour.

Specifically, figure 3 shows numbers of defaults as a
function of g; the other parameters have NYYA’s default
values (u ¼ 0.20, N ¼ 25, p ¼ 0.20 (whence z ¼ 4.8) and
f ¼ 1). In the mean-field approximation, equation (4.1)
then gives the initial single bank failing for g , 0.80 (!),
and equations (4.3) and (4.4) give phase II failure of a
J. R. Soc. Interface (2010)
further 4.8 banks once g , 0.042. This agrees with the
midpoint of the S-shaped transition at around 0.035–
0.048 in NYYA’s simulation. For the phase III transition,
from equations (4.9) and (4.10), we expect the first failure,
of the one thrice-hit bank (kc � 3; see the discussion
above), at around g ¼ 0.016, with four subsequent
phase III failures of twice-hit banks around g ¼ 0.012
and eight failures of single-hit banks if g falls below
0.007. In NYYA’s simulations, the onset of this phase
III progression indeed begins around g ¼ 0.016. Of
course, both the exact simulations and the mean-field
approximation predict all banks fail once g is close to zero.

Figure 4 shows the number of defaults as a function of
the link parameter, p, with f, u and N having their default
values, and for two values of g ¼ 0.01, 0.03. Here the first
failure will always occur, and the mean-field approxi-
mation, equations (4.3) and (4.4), says there will be a
phase II failure of z ¼ 24p banks once p falls below u/
(N 2 1)g : for g ¼ 0.01 this corresponds to p , 0.83; for
g ¼ 0.03, p , 0.28. Again, these approximate numbers
agree well with NYYA’s numerical simulations of the
full Erdos–Renyi network. Note also that, once p is
below the threshold for phase II failure, the total
number of banks thus failing is z þ 1 ¼ p(N 2 1) þ 1,
whence for g ¼ 0.01 the linear decline from 21 failed
banks at the threshold p ¼ 5/6 toward the initially
assumed single bank failure at p ¼ 0. The ‘hump’ that
rises against this trend at lower p-values in NYYA’s simu-
lations—generating the ‘M-shaped curves’ which they
note–of course arises as phase III further failures occur
at lower p-values. Again we can estimate these phase III
transition points from our equations (4.9) and (4.10), to
get the first such failures at roughly p � 0.33 when g ¼

0.01, with lower values for larger g. As p declines towards
zero, however, the interlinkage becomes so weak that the
number of banks affected by any initial shock clearly
must decline to one (i.e. the initially shocked bank itself).

NYYA also give results for simulations of numbers of
banks failing as a function of f, u, and (in three dimen-
sions) of g and p, in each case with other parameters
having their default values. For these further results,
the mean-field approximation also gives agreement
similar to that seen in figures 3 and 4.
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5. LIQUIDITY RISK: ZERO RECOVERY

Up to this point, we have assumed that banks failing
had no effect on the assets of other banks, except for
the losses suffered by creditor banks. This is unrealis-
tic. There is a significant literature on ‘fire sales’ and
their general effect on liquidity; that is, their ten-
dency to depress the value of other institutions’
external assets (Pulvino 1998; Cifuentes et al. 2005;
Kaufman 2005; Coval & Stafford 2007; Mitchell
et al. 2007).

As a first step, it is useful to consider such effects on
the disposal of assets of a failed bank, ignoring for the
moment the indirect effects elsewhere in the system.
This, in effect, is what GK do with their ‘zero recovery’
(henceforth ZR) assumption for shocks otherwise
propagating solely by IB loans. In §§3 and 4, we studied
what can happen when an initial bank loses a fraction of
its external assets which exceed its capital buffer,
as given in equation (4.1). The assumption was that
the failing bank, and all subsequently failing banks,
could dispose of remaining external assets at the
ex ante price.

To the contrary, GK assume that once a bank fails
(i.e. equation (4.1) applies), then ALL its external
assets are lost (hence ZR). This is sensibly justified as
a liquidity effect. Although an extreme assumption, it
is arguably no less realistic than the opposite extreme
of assuming no effects whatsoever.

Be this as it may, the immediate consequence of the
ZR assumption is that all creditors of the initially fail-
ing bank lose their loans, wj. In GK’s model, with u

and g fixed, wj ¼ u/zj, where zj is the number of credi-
tors of the failing bank j. This will, in turn, cause all
the zj creditor banks to fail if, and only if,

u

zj
. g: ð5:1Þ

In turn, all these banks will have ZR, with the kth
such bank transmitting further shocks of magnitude
u/zk to each of its zk creditors and so on. The system’s
dynamical behaviour in many ways resembles trans-
mission of an infectious disease when an infected
individual is introduced into a susceptible population,
with the contact network being Erdos–Renyi. GK
give a very clear and elegant exposition of this system,
with its threshold phenomena and ‘robust yet fragile’
properties.

A mean-field approximation for propagation of
shocks under GK’s ZR assumption immediately shows
there will be no consequences of an initial failure if
z . u/g. Conversely, for z , u/g, the initially failing
bank causes all its z creditors to fail, and they in turn
will cause failures. In sharp contrast with §4, ZR implies
that there is no attenuation of the shock as it progresses
through the system. Once N is reasonably large, essen-
tially all the banks in such a ‘uniform’ network will
thus fail, once z is below this threshold value. Of
course if z is below unity, the system effectively has
no interconnections, and for that simple reason there
will be no propagation of the initial shock. Thus, the
mean-field approximation is again in qualitative agree-
ment with GK’s illuminating results. The lower limit
J. R. Soc. Interface (2010)
on z has a direct parallel with epidemiological studies
(the ‘R0 . 1’ rule; Anderson & May 1991), but the
upper limit at around z � u/g has no such parallel; it
is as if ‘superspreaders’ were rendered uninfectious as
a result of their excessive activity.
6. LIQUIDITY SHOCKS: GENERAL

A more general approach to liquidity shocks recognizes
that the effects of fire sales and liquidity problems are
likely to be felt throughout the banking system. There
will usually be limits to the capacity of financial markets
to absorb an influx of illiquid external assets from a failing
bank.

Several studies include the ensuing depression of
asset prices by assuming that the value of such illiquid
external assets is decreased by a factor (for further
discussion, see GK)

q ¼ expð�axÞ: ð6:1Þ

Here x is essentially the number of failed banks as a frac-
tion of the overall total N. The parameter a, in effect,
measures the market’s sensitivity to such failures:
both GK and NYYA put a � 1, corresponding roughly
to (GK) ‘the asset price falls by 10 per cent when
one-tenth of the system assets have been sold’.

Unlike the earlier studies of the consequences of the
initial bank failures, in which shocks are transmitted
specifically and only to their z creditor banks, the
effects of liquidity risk (modelled in this simplest
way) are felt by every bank in the system. That is, if
the failure of the first bank in our foregoing system
reduces all the other banks’ external assets by the
factor given in equation (6.1), this amounts to a
phase II shock, s*(II), experienced by every one of the
remaining N 2 1 solvent banks (and distinguished
from the phase II shock, s(II) of equation (3.2), which
is experienced only by the failing banks’ z creditors).
We may write

s�ðIIÞ ¼ b1ð1� uÞ: ð6:2Þ

Here (1 2 u) is the value of the average bank’s external
assets (with total assets normalized to 1) and b1 ¼

1–exp(2ax), with x ¼ 1/N.
From equation (3.3), which now reads s*(II) . g, we

see that this shock could, in principle, cause the entire
banking system to crash if

b1ð1� uÞ . g: ð6:3Þ

This is illustrated by the shaded area in figure 5a.
Notice, from equation (6.3), that all banks may thus
fail, provided that u is small enough, if b1 . g.

More generally, if g . b1, the conditions for the
initially failing bank to cause z phase II failures is
given by adding the s*(II) of equation (6.2) to the
LHS of inequality equation (3.4). The appropriate
extension of equation (4.2), including the effects of
liquidity risk, then leads to the criterion for phase II
failure of z banks

b1ð1� uÞ þ ½u; f ð1� uÞ � g�MIN

z
. g: ð6:4Þ
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With uc as previously defined ( just below equation
(4.2)), equation (6.4) gives the criteria for phase II
failure of z banks as

u .
zðg� b1Þ
1� b1z

if u , uc ð6:5Þ

and

u , 1� gð1þ zÞ
f þ b1z

if u . uc: ð6:6Þ

This is illustrated by the dark-shaded area in figure 5a.
As in figure 2 and equation (4.5), there is a g value

above which phase II failures cannot occur. This is indi-
cated by point D in figure 5a. The explicit criterion,
expressed in terms of b1, f and z, is

g .
ð f þ b1zÞ

1þ z½1þ f � b1�
: ð6:7Þ

Figure 5a also illustrates the obvious fact that phase II
failures are easier once the effects of liquidity risk are
taken into account, as they usually should be
(in figure 5a, point A is as in figure 2, corresponding
to D in the absence of liquidity risk, a ¼ 0).

For completeness, we now set out the corresponding cri-
teria for phase III failure. Here each of the (N 2 1)(1 2 p)
remaining banks experiences a liquidity risk shock of
magnitude

s�ðIIIÞ ¼ b2E
N

: ð6:8Þ

Here b2 ¼ 1–exp(2ax2), with x2 ¼ (1þ z)/N. The cri-
terion corresponding to equation (6.2) for total failure of
the system, following the phase II failure of the initially
failing bank’s creditors, is thus

1� g

b2
. u: ð6:9Þ

This cannot happen if g . b2, but otherwise can if u is
sufficiently small (figure 5b).
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Phase III failures among the creditors of the z phase
II failing banks can be estimated along the lines which
earlier gave us equations (4.9) and (4.10). Adding the
appropriate term b2(1 2 u) to the s(III) shock of
equation (4.7), we get the criteria for phase III failure,
including liquidity risk, as

u .
z½gð1þ z�Þ � b1 � z�b2�
½1� zb1 � zz�b2�

if u , uc ð6:10Þ

and

u , 1� gð1þ z þ zz�Þ
f þ zb1 þ zz�b2

if u . uc: ð6:11Þ

Here b1 and b2 are as defined above, and z* ¼ z/k
is as discussed in deriving equations (4.19) and (4.10).
This is illustrated in figure 5b. Note how liquidity
shocks, once they get going, can bring the whole
system down, even for g values that would effectively
protect the system against IB loan shocks (compare
figures 2 and 5).

So long as the total number of failed banks is signifi-
cantly less than N, the above analyses can be extended
to phase IV and subsequent failures (in a routine but
tedious way).
7. STRONG AND WEAK LIQUIDITY
SHOCKS

The previous two sections have introduced liquidity risk
in a rather broad-brush fashion. We now present some
new ideas, which take account of liquidity risks in a
way which—while still no more than crude carica-
ture—take some steps in the direction of greater
realism.

Suppose each of our N banks has its external assets
(ei ¼ [1 2 ui] ai or e ¼ [1 2 u] under our usual assumption
that all banks are of the same size, normalized to unity,
and that all have the samevalue of u) made up ofn distinct
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‘asset classes’, each of equal value (namely [1 2 u]/n).
Suppose further that c of these n are shared (n � c � 0),
each among a total of g other banks (N � g � 1). Note,
incidentally, that this implies the total number of distinct
asset classes is N[n 2 c(g 2 1)/g]: in the limit when all
banks share all assets, n ¼ c and g ¼ N, then we have a
total of n distinct classes; in the opposite limit when
none are shared, the total is Nn.

We now adopt a somewhat more detailed approach
to accounting for discounting assets or liquidity risks.
Following earlier studies (NYYA, GK, etc.), we start
things off with the artificially extreme assumption
that the initial bank failure is caused by one asset of
one bank having its value go to zero (i.e. f ¼ 1/n).
More realistically, all that is required is that the value
of this asset decreases by an amount in excess of the
capital buffer, g; our extreme assumption has the
virtue of keeping things simple, without significant
loss of generality. We now discount all assets in
that specific class held by other banks by a factor
exp(2a/g). This corresponds to the earlier equation
(6.2), and represents an SLS, of magnitude

SLS ¼ ½1� expð�a=gÞ�ð1� uÞ
n

: ð7:1Þ

As such SLS propagate, causing or contributing to the
failure of other banks; the strong shock to this asset
class becomes more severe, corresponding to a discount
factor exp(2ak/g), where k represents the total number
of failed banks holding such assets.

So much for liquidity problems resulting from the
particular asset class that precipitates events by causing
the initial bank failure. But what of other asset classes
held by this initial bank? These are likely also to experi-
ence depreciation, as a result of the initially failing
bank’s ‘fire sale’ and/or a non-specific (emotional?)
loss of market confidence in such other assets held by
a failed bank.

We believe that it is useful to explore the dynami-
cal behaviour of banking systems in which a
distinction is drawn between liquidity shocks caused
by the explicit failure of a specific asset class, and
the more general ‘loss of confidence/trust’ that this
can provoke throughout the system. To this end, we
define WLS as resulting from the discounting of all
other asset classes held by the initially failing bank.
Following this initial bank failure, the relevant dis-
count factor is exp(2b/g), experienced by each of
the (g 2 1) banks which share any one of this
bank’s asset classes.

In later phases, a single bank could suffer multiple
hits from k failing banks, each holding a particular pre-
viously unhit asset class, in which case the WLS
discount factor is exp(2bk/g).

We now explore a range of assumptions about the
relative severity of SLS and WLS, as characterized by
the relative value of the discount parameters a and b

(a � b � 0).
When SLS, WLS and IB shocks, singularly or in

combination, cause further bank failures, we addition-
ally assume that any weakly shocked asset class held
by any such subsequently failing bank is transformed
J. R. Soc. Interface (2010)
into a SLS to that asset class as held by other banks
still in the system. Figure 6 hopes to illustrate this
SLS/WLS scheme. Such a scheme, where both SLS
and WLS grow as more banks fail, serves as a crude
half-way house between a general equilibrium asset-pri-
cing model (itself not free from problems) and the
simple approach outlined in §6 (which is arguably too
simple).

We now present and discuss a series of numerical simu-
lations—all of whose main features can be understood (in
some numerical detail) by the mean-field approxi-
mation—illustrating the effects of such combinations of
SLS and WLS along with IB loan shocks.

Figures 7–9 show the number of failures in a 25-bank
system as a function of the capital reserve, g. The
other parameters have the usual default values: a ¼ 1,
u ¼ 0.2, p ¼ 0.2 (whence z ¼ 4.8). In these simulations,
each bank’s external assets are divided equally among
five asset classes, each of which is shared among five
banks (i.e. n ¼ c ¼ g ¼ 5). Initially, a single bank
loses the entire value of one asset class (s(I) ¼ 0.16),
and if this bank consequently fails, this particular
asset class, which is held by four other banks, will
experience an SLS with discount parameter a ¼ 2 (see
equation (6.1)). The initially failing bank will also pro-
pagate WLS to four other banks holding each one of its
four other asset classes (for a total of 16 WLS, some of
which are likely to be multiple hits on other banks).
These WLS are characterized by discount parameters
b ¼ 0, 0.01, 0.5 for figures 7–9, respectively.

In figure 7, b ¼ 0 and so there are no WLS. The solid
curve shows the number of banks failing as an average
over 103 simulations, assuming the banks to be con-
nected by a random, Erdos–Renyi network of IB
lending along with shared asset classes, as defined
above. We do not show the statistical spread of the
simulations, as done earlier in figures 3 and 4, because
the present figures are arguably cluttered enough!

Considerable insight into figure 7, and the sub-
sequent ones, is provided by the mean-field
approximation, as follows. The initial shock has magni-
tude s(I) ¼ 0.16; hence, the initial failure occurs once
g , 0.16. From equation (6.1) with a ¼ 2, this will pro-
pagate an SLS of magnitude 0.053 to the four other
banks that share this particular asset class. In addition,
the initial failure will, from equation (3.3), result in a
phase II shock of magnitude s(II) ¼ (0.16 2 g)/z to
the bank’s z creditors; with z ¼ 4.8 in this mean-field
approximation, this becomes s(II) ¼ (0.033 2 g/4.8).
The distribution of these two different shocks among
the initially remaining 24 banks is such that the prob-
ability of one of the four banks experiencing the SLS
also receiving an IB loan shock is roughly unity;
such a bank will fail if 0.053 þ (0.033 2 g/4.8) . g or
g , 0.071. Allowing for the ‘statistical smudging’ intro-
duced by the fact that the simulated network is
random, not uniform, these observations are explained
in figure 7: after the initial failure, the overall prob-
ability of phase II failure arising does indeed begin
around g ¼ 0.07 and saturates to all four SLS banks
having failed at around g ¼ 0.05. Furthermore, once
any one of the four banks experiencing SLS fails, the
discount factor of equation (6.1) strengthens to
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exp(22a/5), resulting in SLS of 0.088 to the remaining
three, which immediately fail. Figure 7c illustrates this:
in the range 0.07 � g � 0.05, any one g value corre-
sponds to simulations in which either only the first
bank has failed or else all five have, in proportions
that increase as g decreases.

Beyond the first five failures in this figure, there
are no more liquidity shocks. Subsequent failures
occur as g decreases, caused by IB loans propagating
shocks (which are attenuated in each subsequent
phase), as discussed earlier and illustrated in
figure 2. Figure 7b shows that there is, as would be
expected, a more Gaussian distribution of failures
resulting from statistical scatter in this region, as
the system’s average behaviour moves to failure of
all banks as g! 0. Finally, note that the dashed
curves in figure 7 support the discussion above,
indicating roughly the proportional contributions of
SLS and IB shocks to the number of failures, as a
function of g.
J. R. Soc. Interface (2010)
Figure 8 gives the corresponding results for the case
where all parameters are the same, except that there
are now very WLS, with the discount factor being
b ¼ 0.01 (in contrast with the SLS a ¼ 2). The system’s
behaviour is, however, radically different. This results
from our assumption that unaffected assets of a failing
bank transmit only WLS, but if a bank possessing one
(or more) weakly shocked assets fails, then other
banks sharing this asset (or assets) experience such fail-
ure as an SLS. Going back to figure 7, we recall that the
initial failure will begin to cause phase II failures, result-
ing from a combination of SLS and IB shocks, at around
g � 0.07. But once a single such phase II failure occurs,
the chance of that bank also receiving a WLS from one
of the other four assets owned by the initially failing
bank is 1 2 (1 – 4/24)4 ¼ 0.48. So there is a roughly
50 per cent chance that the initial phase II failure will
not only strengthen the original SLS, but more signifi-
cantly will propagate new SLS to the three other
banks sharing its WLS. And so on. Even for the tiniest
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value of the WLS parameter b, a cascade of SLS failures
is likely to ensue in the fairly tightly interlinked (n ¼
c ¼ g ¼ 5) system under study. This is seen in
figure 8, where the dashed curves indicate that, until
g is small, most of the failures are caused by liquidity
shocks, not unlike the simplistic treatment of liquidity
shocks in §6. Figure 8b,c amplify this: as the cascade
J. R. Soc. Interface (2010)
of failures begins (figure 8c), very few simulations
have any failure other than the initiating one, but the
few simulations that do show failures bring the entire
system down, and thus have disproportionate effects
on the average number of failures; quite small further
decreases in g result in a much higher proportion of
all banks having failed (figure 8b).
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Figure 9 shows what happens when b has more sub-
stantial values. Not only do we have the cascades of
figure 8 induced as WLS are transformed into SLS, but
the WLS are themselves of significant magnitude: [1 2

exp(2b/5)] (0.16) ¼ 0.015 for b ¼ 0.5. Along the lines
indicated above, we can estimate that the probability of
any one of the four banks receiving an SLS from the
J. R. Soc. Interface (2010)
initial failure also receiving from it a WLS and an IB
loan shock is around 10 per cent, corresponding roughly
to an overall 40 per cent chance of such an event. Such
a triple shock will cause failure once g . 0.084. This
explains the earlier onset of the cascade in figure 9.

In contrast with figures 7–9, figure 10 summarizes
parallel results for n ¼ c ¼ g ¼ 2, a ¼ 2 and b ¼ 0,
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0.01, 0.5. The external assets of the banks in this system
are substantially less interlinked, although the magni-
tude of any one asset class held by a bank is
corresponding larger. Here s(I) ¼ 0.40, corresponding
to the initial bank failing for g , 0.40. The SLS from
this failure affects only one other bank, producing
s(II) ¼ 0.252, and failure for g , 0.252. So the first two
failures have occurred for g off the scale in figure 10.
Given the low degree of interactivity in this system, for
a tiny value of b (0 or 0.01), subsequent failures will be
caused by IB shocks. These will first arise if any one of
the other 23 banks incurs an IB shock from both failing
banks. A somewhat more complicated mean-field calcu-
lation than those above shows that this first happens at
g ¼ 0.078; the probability of such a double hit is 4 per
cent for any one bank, amounting to an expectation of
one such bank failure at this g value. Failures caused
by single IB hits abound once g , 0.042, and the curve
rises—with essentially no difference between b ¼ 0 and
0.01—to total system failure at very low g values. Con-
versely, for appreciable values of b, the next failure
after the first two is likely to arise from a combination
of an IB shock (from the initially failing bank) and a
WLS (of magnitude 0.088 from either bank) below g ¼

0.130; this event has average probability roughly 61 per
cent. Below this g value, the curve climbs steeply.
Again, this mean-field calculation agrees with the
simulations shown in figure 10.

The contrast between figures 7–9, where interactions
through shared asset classes are relatively strong, and the
corresponding figure 10, where they are not, should be
noted. The differences show up both in the main figures
(part (a)) for failures versus g and, perhaps more inter-
estingly, in the insets to the right margin (parts (b) and
(c)) which further illuminate the simulation results.

As emphasized above for systems with a substantial
degree of interlinkage via shared asset classes, the
major effects exerted by WLS with tiny discount factors
(very small b) derive from the assumption that such
WLS are propagated as SLS when a bank holding
them fails. Figure 11 contrasts this assumption about
J. R. Soc. Interface (2010)
accelerating discounting of assets held by failing
banks with the opposite extreme of having a failing
bank’s WLS transmitted unchanged to other banks
holding this asset, as unaugmented WLS. In
figure 11a, where WLS!WLS, such shocks are essen-
tially irrelevant once the characteristic discount
parameter b is less than 0.01 or so. In figure 11b,
where WLS! SLS, we find catastrophic collapse for
arbitrarily small b, unless of course b is strictly zero
(corresponding to no WLS at all).

The ‘three-dimensional’ figure 12a,b extend figures 7
and 8, respectively, to show numbers of failing banks in
terms of both b and z, the average number of links
between nodes in the Erdos–Renyi network (z ¼ p
[N 2 1]). While the onset of precipitous collapse
occurs later when b ¼ 0 than for b ¼ 0.01, the basic fea-
tures for arbitrary z-values are similar to those seen for
the particular value z ¼ 4.8 in figures 7 and 8. That is,
the ‘degree distribution’ or connectivity of the IB loan
network has relatively little effect on the dynamics of
the system here. This, in turn, is a consequence of the
fact—implicit in the assumption about SLS and WLS,
along with the parametrization of the models—that
shocks here are propagated in an unattenuated, even
amplified, way by liquidity effects.

Last but not least, figure 13 contrasts numbers of
failing banks as a function of g for the parameter
values used in figures 7 and 8 (a ¼ 1, u ¼ 0.2, n ¼ c ¼
g ¼ 5, a ¼ 2, b ¼ 0 or 0.01, p ¼ 0.2 and N ¼ 25, i.e.
z ¼ 4.8) with the system’s dynamics for the same par-
ameter values except that N ¼ 500 and p ¼ 0.02, so
that z ¼ 10. The latter system is clearly less interwoven
than the former; although the average bank has more
connections (10 versus 4.8), as a proportion of all poss-
ible connections they are much smaller (2 versus 20%).
Clearly, the less interlinked system is more robust.
8. DISCUSSION

As emphasized at the beginning, the model studied in
this paper as a mathematical metaphor for financial,
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particularly banking, networks is a deliberate and
extreme oversimplification. Its essential assumptions
are, however, based on earlier work, which has arguably
produced interesting and potentially important
insights.

Before proceeding to sketch ‘lessons learned’, we
re-emphasize a couple of new and distinctive elements
in the present work. One is the use of mean-field
approximations to give general analytic insight into
the dynamical behaviour of randomly connected net-
works of banks. The approximations are consistently
compared with the corresponding results from numeri-
cal simulations by others and by ourselves (for
particular parameter values), and they agree well, per-
haps surprisingly well. Another is the introduction of
a distinction between SLS and WLS to banks’ external
assets, following bank failures elsewhere in the system.

More generally, we study models that are a network of
networks. In some ways, the simplest, and the most amen-
able to comparison with real banking systems, is the
J. R. Soc. Interface (2010)
explicit network of IB borrowing and lending. There are,
however, also many less directly evident interconnections
among banks, deriving from particular subsets of banks
sharing external assets of different kinds. In our oversim-
plified terms, these can be thought of as a multitude of
separate networks, pertaining to different categories of
variously shared classes of external assets.

When a bank fails, the consequences for creditors
whose loans cannot be paid are direct. The effects of loss
of a particular asset class by a particular bank—often
treated bysome overall average ‘liquidity loss’—is trickier,
ranging from specific failure of some class of such assets
(e.g. subprime mortgages) through reappraisal of the ten-
dentious worth of some asset class whose original value
was assigned carelessly or incompetently (e.g. bundles of
credit default swaps) (Bolton et al. 2009) to the intangible
psychological effects of ‘loss of confidence’. We have
introduced the notion of SLS and WLS with the
hope of capturing some of the complexity of liquidity
shocks, while at the same time recognizing that this is
only a beginning (one step beyond the conventional
equation (6.1)).

Given that our models are at best metaphors, and
not intended as 1 : 1 maps of reality, it did not seem sen-
sible to complicate things unduly. We cannot, however,
resist noting some extensions to the present work which
could be useful.

Our model system consists of N banks, all of the same
size, and with interconnections at random (specifically
Erdos–Renyi networks of given degree, or approxi-
mated as uniform). It is clear that real banking
systems are far from randomly connected, typically
being ‘longtailed’, and with banks varying greatly in
size (e.g. National Research Council of the National
Academies 2007). Moreover, within these long-tailed
networks, the connections are not ‘proportional’, but
often seem more typically to be ‘disassortative’: rela-
tively few big banks are superspreaders, connected
predominantly to small banks, while the more numer-
ous small banks are connected predominantly to big
ones (National Research Council of the National Acade-
mies 2007). Recent work on real ecosystems and their
dynamical behaviour suggests that such overdispersed
and disassortative systems tend to be more resistant
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to certain kinds of perturbation (Bascompte et al. 2006;
May 2006; May et al. 2008; Sugihara & Ye 2009). Con-
versely, epidemiological studies suggest disassortative
networks are more effective in spreading infection
than are assortative ones (which tend to spread faster
but ‘burn out’) or proportionately mixed ones (Gupta
et al. 1989). In short, we need to know more both
about interconnections among real banks and about
the properties of non-random interactions among big
banks and little banks.

It would also be useful to extend our distinction
between SLS and WLS, with their characteristic dis-
count parameters a and b, to a more nuanced
distribution of categories of liquidity shocks, described
by some distribution {ai} of a values.

Despite its artificial simplicity, the present paper
does tend to support some thoughts circulating about
‘what needs to be done’, as follows.

First, note that shocks propagated by defaults on IB
loans tend to attenuate, by a factor of order z, in each
successive phase. For example, if each bank is on aver-
age connected to five other banks in a many-bank
system (N� 1), by phase IV the initial shock tends
to be attenuated by roughly two orders of magnitude
(1/53 ¼ 1/125); for smaller N, multiple hits can compli-
cate things, weakening such attenuation factors.
Furthermore, high degrees of concentration or connec-
tivity, which are a worry with respect to spreading ill-
effects (resulting in R0� 1 for infectious diseases),
mean that such IB loan shocks are attenuated corre-
spondingly rapidly (it is almost as if superspreaders
become less infectious by virtue of their high activity
level). By contrast, liquidity shocks—both strong and
weak in our scheme—do not experience attenuation;
to the contrary, for a given asset class, they tend to
grow as more and more banks hold the failing asset
(see figure 5b or recall the amplification from
exp(2a/g) to exp(2ak/g) following equation (6.1),
where k is the number of failing banks). Among other
things, this emphasizes, not that it should be needed,
the importance of placing a careful and accurate value
upon an asset class in the first place. Failure to do so
can create rapidly expanding liquidity shocks.

Second, figures 2 and 5 and the accompanying
equations and text make it plain that the zone of instabil-
ity with respect to IB loan shocks is maximized by having
u not too big or small, corresponding to a rough balance
of IB loans and external assets. In some ways, this relates
to the disadvantage of homogeneity within the system, as
discussed below. In a very rough sense, intermediate
values of u correspond to substantial blending of invest-
ment banking and retail banking; Glass–Steagall was
perhaps good for system stability.

Third, it is trivially obvious that having large buffers,
g, will make for greater robustness both of individual
banks and of the system as a whole. But there is the cor-
responding non-trivial cost of potential working capital
lying idle. Both naive intuition and empirical evidence
suggest that banks tend to move g to lower levels in
boom times, when things seem good and opportunities
abound. To the contrary, the UK Financial Services
Authority (Strachan 2009) and HSBC’s Stephen Green
(Financial Times 2009) have suggested that boom
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times provoke riskier behaviour and bust times conserva-
tism, which suggests that g should be relatively larger in
the former times (and relatively lower in the latter, to free
up capital for sound loans). But you do not need math-
ematical models to see this! Less transparent is the
question of whether all banks should—from a systematic
risk perspective—have the same ratio of capital reserves,
g, to total assets, a, or whether big banks should have
larger, or alternatively smaller, such ratios than small
banks. The present paper is silent on this issue, having
confined attention to same-size banks. Preliminary
work, however, tends tentatively to support the case for
big banks holding relatively higher capital reserve
ratios than small banks (which is contrary to existing
trends; Haldane 2009).

Fourth, there is a question about the relationship
between systemic risk and homogeneity within the bank-
ing system. N. Beale & D. Rand (2009, personal
communication) and N. Beale et al. (2009, personal
communication) have brought this issue into sharp
focus with a model whose essence can be illustrated as
follows. Suppose we have N banks, and in the notation
of §7 also have n ¼ N distinct asset classes. Suppose
further that each asset class has some very small prob-
ability, e, of having its value decline to the extent that
a bank holding solely that asset would fail; these asset
classes are furthermore completely uncorrelated. In situ-
ation A, each of the N banks holds one asset class, in its
entirety. Clearly, the probability for any one bank to fail
is e, while the probability for the whole system to fail is
eN. In situation B, every individual bank holds a fraction
1/N of every one of the N asset classes; all banks are
identical. It is easy to show that, for sufficiently small
e (specifically, e , 1/N), the probability for any one
bank to fail is now (e N)N/N!, which for large N is
approximately (ee)N(2pN)21

2, with e ¼ 2.718. For small
e, this quantity is much smaller than e (essentially as
a consequence of the central limit theorem, from aver-
aging over the N different asset-class risks). But all
banks are identical in situation B, which implies this
expression—which is of the general order of eNeN—is
much bigger than eN. In short, in this illustrative
example of Beale and Rand’s more general analysis, situ-
ation A puts each individual bank at much greater risk
than situation B, but conversely the entire banking
system is at much greater risk in situation B than in
situation A. The interest of individual banks is to move
to the homogenizing limit of B (and arguably the Basel
Accords prompted and/or facilitated this), but systemic
risk is thereby greatly increased, to the detriment of the
wider community. We have, in effect, what evolutionary
biologists would call the Prisoner’s Dilemma or ecologists
the Tragedy of the Commons.

Our discussion of WLS and SLS, under various
assumptions about the degree to which asset classes are
shared among banks, can be seen as illustrating this
general message, albeit in a modest way. Figures 7–9 rep-
resent a banking system with comparatively greater
homogeneity (n ¼ c ¼ g ¼ 5; all banks hold five asset
classes, all shared, each with four other banks) than
that of figure 10 (n ¼ c ¼ g ¼ 2; all banks hold two
asset classes, both shared, each with one other bank).
For WLS with small b, the relatively less homogeneous
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system of figure 10 can be seen to collapse at lower g

values than the relatively more homogeneous system of
figure 8; that is, the former is less fragile than the
latter. This is true despite the fact that the shock which
causes the initiating bank failure is bigger in figure 10
than in figure 8 (s(I) ¼ 0.40 for figure 10, 0.16 for
figure 8). In figure 3, asset liquidity effects are omitted.
In effect, this represents the limiting case where banks
are totally inhomogeneous (akin to situation A above),
with shocks propagated solely by defaults on IB loans.
The domain of systemic collapse in figure 3 is smaller
than that shown in any of the effectively less inhomo-
geneous systems illustrated in figures 7–12 (although in
particular limiting circumstances they can coincide).
As acknowledged earlier, our treatment of liquidity
shocks was partly prompted by Beale and Rand’s work,
which we sought to embed in a more conventional frame-
work. Be this as it may, §7 does illustrate the destabilizing
effects of homogeneity upon the systems as a whole,
although not as clearly as the ‘thought experiment’
in the previous paragraph. In conclusion, this fourth
message is an important one.

We are indebted to Tony Atkinson, Nicholas Beale, Karen
Croxson, Andrew Haldane, Sujit Kapadia, Mervyn King,
Jeremy Large and David Rand, for helpful suggestions and
discussion. N.A. gratefully acknowledges funding from the
James Martin Twenty-First Century School at the University
of Oxford.
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