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Abstract
Recently published studies in multiple sclerosis (MS) and experimental autoimmune
encephalomyelitis (EAE) have demonstrated an association between the development of
demyelinating plaques and the accumulation of Th17 cells in the central nervous system and
periphery. However, a causal relationship has been difficult to establish. In fact, in reports published
thus far, interleukin (IL)-17A deficiency or neutralization in vivo attenuates, but does not completely
abrogate, EAE. There is growing evidence that clinically similar forms of autoimmune demyelinating
disease can be driven by myelin-specific T cells of distinct lineages with different degrees of
dependence on IL-17A production to achieve their pathological effects. While such observations cast
doubts about the potential therapeutic efficacy of Th17 blocking agents in MS, the collective data
suggest that IL-17A expression in peripheral blood mononuclear cells could serve as a surrogate
biomarker of neuroinflammation and plaque formation and be a useful outcome measure for future
clinical trials.
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Th lineages and autoimmune demyelination: a historical perspective
Shortly following the recognition that CD4+ T cells could be categorized into functional
subsets based on their cytokine expression profile, multiple sclerosis (MS) and the animal
model, experimental autoimmune encephalomyelitis (EAE), were portrayed as Th1-mediated
disorders [1,2]. This characterization arose, to a large extent, from the observation that central
nervous system (CNS) inflammatory infiltrates in both the human and experimental diseases
are composed of activated, major histocompatibility complex class IIhi macrophages and
microglia, as well as CD4+ T cells, suggestive of an interferon (IFN)γ-driven immune response
[3]. Indeed, IFNγ-producing effector CD4+ T cells were found to be predominant in the CNS
and blood of rodents with EAE and individuals with MS when compared to specimens from
healthy subjects [4–9]. Myelin-specific, CD4+ Th1 cells transferred EAE to naive
immunocompetent hosts, whereas Th2 cells of the same antigenic specificity were unable to
do so [10,11]. Finally, intravenous administration of recombinant IFNγ triggered an acute
worsening of neurological deficits in some subjects with MS [12].

Later, when the myeloid cell-derived cytokine, interleukin (IL)-12, was shown to be a potent
inducer of Th1 cell differentiation, associations were found between MS disease activity and
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levels of that monokine in peripheral blood mononuclear cells, cerebrospinal fluid, and CNS
specimens [13–17]. IL-12 is a heterodimeric molecule, composed of p40 and p35 chains, that
stimulates T cells and natural killer (NK) cells to produce IFNγ. Messenger RNA encoding
both subunits (p40 and p35) was detected at elevated levels in the brain and spinal cords of
mice during exacerbations of EAE and at reduced levels during remissions [18]. Furthermore,
recombinant IL-12 directly promoted the encephalitogenicity of myelin-reactive T cells in vitro
and precipitated relapses when administered in vivo [19–22]. Conversely, neutralization or
deficiency of the p40 subunit in vivo conferred complete resistance to EAE [23–25].

However, the causative relationship between antimyelin IFNγ responses and inflammatory
demyelination of the CNS was challenged by the observation that mice deficient in certain
molecules involved in the Th1 pathway were susceptible to EAE. Hence, mice deficient in
IFNγ, IFNγ receptor, the IL-12p35 subunit, or the IL-12 receptor β2 chain all experienced a
more severe form of EAE than their wild-type littermates [25–31]. To further complicate the
issue, genetic studies have yielded conflicting results regarding the association of IL-12 and
IL-12 receptor polymorphisms and risk of MS [32–35].

The above paradoxes appeared to be resolved by the discovery of IL-23. Similar to IL-12, IL-23
is a heterodimeric cytokine produced by myeloid cells that binds to a receptor expressed on
subsets of T cells and NK cells. It is composed of the IL-12p40 chain complexed to a unique
p19 chain [36]. Therefore, the resistance of IL-12p40 knockout mice and wild-type mice treated
with anti-IL-12p40 antibodies to EAE could be secondary to suppression of IL-23, rather than
IL-12, dependent pathways. Convincing evidence that this is indeed the case was provided by
the phenotype of IL-23 p19 knockout mice, which fail to succumb to EAE following active
immunization with myelin antigens [37]. Since IL-17A producing CD4+ T cells (referred to
as Th17 cells) do not accumulate in the lymphoid tissues or target organs of IL-23p19 knockout
mice following active immunization with self antigens, it was proposed that Th17 cells rather
than Th1 cells are critical autoimmune effectors of inflammatory demyelinating disease [38–
40]. This position was corroborated by the ability of recombinant IL-23 to promote
encephalogenicity and induce IL-17A production by myelin-specific T cells in concert [39,
41].

IL-17 in MS
Similar to earlier observations regarding IFNγ, IL-17A has been reported to be expressed at
relatively high levels in circulating leukocytes and cerebrospinal fluid mononuclear cells of
patients with MS, particularly during relapses [42,43]. In addition, monocyte-derived dendritic
cells from MS patients secreted greater quantities of IL-23 following stimulation with LPS
than dendritic cells from healthy controls [44]. Perhaps most striking, transcripts encoding
IL-17A were found to be elevated in MS plaques compared to brain tissues from control
subjects using a microarray approach [45]. This latter finding is consistent with
immunohistochemical studies demonstrating the presence of IL-17A-positive cells in active
areas of MS lesions [46]. Furthermore, in a recent case report and autopsy study of a patient
with aggressive relapsing remitting MS, transcripts encoding retinoic acid-related orphan
nuclear hormone receptor C (RORC; the transcription factor associated with human Th17
differentiation) were upregulated in an acute lesion compared to normal appearing white matter
[47].

The putative mechanism of action of IL-17 in EAE and MS
Despite a large body of literature that supports an association between Th17 cells and
autoimmune demyelinating disease, relatively little data have been generated regarding the
mechanism of action of IL-17A in that context. One of the best characterized functions of
IL-17A is to induce production of neutrophil attracting ELR+ CXC chemokines, such as
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CXCL1 and CXCL2, by a wide variety of cell types [48]. Astrocytes stereotypically upregulate
ELR+ CXC chemokines in response to “danger” signals, including inflammatory stimuli
[49]. Therefore, it comes as no surprise that CXCL1 and CXCL2 have been detected in
astrocytes within EAE and MS lesions [50,51].

We have previously shown that myelin-reactive Th17 cells, as opposed to Th1 cells, are
particularly adept at inducing CNS ELR+ CXC chemokines and recruiting neutrophils to the
CNS following adoptive transfer into naive hosts [41]. Neutrophils have been implicated in
enhancing cerebrovascular permeability in experimental models of stroke and encephalitis. In
a separate study, we found that interactions between ELR+ CXC chemokines and their receptor,
CXCR2, are critical for blood–brain barrier (BBB) breakdown, the development of
neuroinflammation, and manifestation of clinical EAE in myelinimmunized mice [52]. CXCR2
knockout mice that are ordinarily resistant to EAE were rendered susceptible by reconstitution
with wild-type neutrophils [52]. Such experiments suggest that activation of neutrophils with
ELR+ CXC chemokines triggers BBB breakdown immediately prior to the onset of clinical
EAE, which is requisite for the subsequent recruitment of large number of leukocytes to the
perivascular white matter. Kebir and colleagues recently reported that human Th17 cells can
also disrupt BBB tight junctions via direct effects of IL-17A and IL-22 on endothelial cells
[53]. Consequently, Th17 cells were able to migrate across a brain microvascular endothelial
monolayer more efficiently than Th1 cells or freshly isolated CD4+ lymphocytes.

In addition to effecting BBB breakdown, Th17 cells could promote EAE (and possibly MS)
by activating neutrophils within the bone marrow and, consequently driving the mobilization
of immature monocytes into the bloodstream. Granulocyte colony-stimulating factor (G-CSF)
is elevated in the serum of mice injected with myelin-specific Th17 cells [41]. Bone marrow
neutrophils, stimulated with G-CSF, secrete proteases that degrade chemokines (such as
CXCL12) and adhesion molecules (such as α4β1 integrin and vascular cell adhesion
molecule-1) that normally keep myeloid cells “anchored” within intramedullary niches [54].
Inflammatory monocytes with colony-forming unit potential expand in the circulation
immediately prior to EAE exacerbations and accumulate in the CNS where they differentiate
into myeloid dendritic cells [55]. CNS myeloid dendritic cells have potent antigen presenting
capacities and have been implicated in epitope spreading and local Th1/Th17 polarization
[21,56].

Yet another potential mechanism of action of IL-17A in EAE and MS is to stimulate production
of proinflammatory molecules, such as IL-1 and IL-6, in the CNS in a positive feedback loop.
IL-6-deficient mice and mice treated with IL-1 antagonists are protected from EAE induced
by immunization with myelin antigens [57,58]. Transfer of myelin-specific Th17 cells
increases serum IL-6 and IL-1 levels in wild-type mice [59]. The contention that IL-6 acts
downstream of IL-17 is supported by the fact that IL-6-deficient mice show partial suppression
of EAE induced by the transfer of myelin-specific Th17 cells [59]. It was recently reported
that IL-9 is produced by Th17 cells and that IL-9 neutralization delays the onset of EAE, thereby
expanding the repertoire of cytokines that participate in autoimmune pathogenesis [60].
Furthermore, IL-9 receptor-deficient mice develop a delayed and milder form of EAE with
decreased numbers of IL-17A+ CD4 T cells and IL-6+ macrophages in the CNS by comparison
to wild-type mice [60].
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The importance of IL-17 production in the immunopathogenesis of
autoimmune demyelinating disease: contributing factor versus
epiphenomenon

Numerous studies cited earlier in this article have shown that myelin-specific Th17 cells are
capable of inducing EAE and that Th17 cells preferentially accumulate in EAE and MS lesions.
However, IL-17A is not, in and of itself, universally required for the clinical manifestation of
EAE. In virtually every relevant study published thus far, treatment of myelinimmunized mice
with anti-IL17A neutralizing antibodies attenuated the severity and/or delayed the onset of
EAE but did not completely prevent it [39,41]. Mice deficient in IL-17A are fully susceptible
to EAE, even when treated with neutralizing antibodies specific for IL-17F, a homologous
cytokine to IL-17A with overlapping functions [61]. Conversely, overexpression of IL-17A in
murine T cells by genetic engineering had no impact on the incidence, severity, or kinetics of
clinical EAE.

The fact that IL-17A deficiency/neutralization only partially suppresses EAE could be
explained by Th17 secretion of other proinflammatory mediators, such as IL-9, IL-22, and
granulocyte macrophage colony-stimulating factor (GM-CSF) that ordinarily contribute to the
pathogenic process in parallel to, or in synergy with, IL-17. An alternative, though not mutually
exclusive, explanation is that myelin-specific T cells of non-Th17 lineages are able to
compensate. Along those lines, we formerly reported that IL-12-polarized Th1 cells and IL-23-
polarized Th17 cells derived from the same donor mice are equally efficient at inducing EAE
by adoptive transfer [41]. The recipients of each cell type undergo a similar clinical course,
based on day of onset, rate of progression, and peak severity. However, detailed analysis reveals
that the two forms of EAE differ with regard to pathological features. Th1 infiltrates are
enriched in highly activated macrophages and are confined to the subpial white matter, while
Th17 infiltrates are enriched in neutrophils and extend into the deep parenchymal white matter.
Th1-driven disease is characterized by relatively high expression of CXCL9 and CXCL10 in
the inflamed spinal cord, while Th17-driven disease leads to upregulation of CXCL1 and
CXCL2. Importantly, the two forms of EAE responded differently to specific
immunomodulatory interventions. As expected, administration of anti-IL17 antibodies
partially suppressed Th17-driven disease but had no impact on Th1 driven disease. Similarly,
anti-GM-CSF was only effective in Th17-driven disease. By contrast, anti-TNFα treatment
inhibited both forms of disease. This study provides a proof of concept that disparate
immunopathological pathways could give rise to a similar clinical outcome. By analogy, some
forms of multiple sclerosis are characterized by neutrophil-rich CNS infiltrates and elevated
levels of IL-8 (suggestive of a Th17-biased response) in the cerebrospinal fluid and others by
macrophage-rich infiltrates and high levels of CXCL10 (suggestive of a Th1-biased response)
[62–64]. In mice immunized with myelin antigens, as well as patients with MS, the Th
repertoire of autoreactive T cells is diverse. If the characteristics of the autoimmune cell
population are plastic, it is likely that, in the absence of IL-17, alternate Th pathways will
become predominant.

Neutralization of IL-23 as a therapeutic strategy in MS
As mentioned above, mice deficient in IL-23p19, by contrast to mice deficient in IL-12p35,
IFNγ, or IL-17A, are completely resistant to EAE [37]. Furthermore, administration of
monoclonal antibodies specific for IL-23p19, but not IL-17A or IL-17F, abrogates EAE [65].
Collectively, these data suggest that IL-23 is essential for the development of encephalitogenic
T cells by a mechanism distinct from the induction of IL-17. Alternatively, IL-23 could promote
autoimmune disease through parallel effects on non-T cells. Hence, IL-23 receptor has been

Segal Page 4

Semin Immunopathol. Author manuscript; available in PMC 2011 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



detected on activated microglia. Furthermore, IL-23 enhances IFNγ-induced STAT1
phosphorylation and CCL5 and CXCL-10 mRNA expression in microglia [66].

This discussion raises the possibility that IL-23-neutralizing agents might be more effective
than IL-17A/F-neutralizing agents in suppressing disease activity in patients with MS. To that
point, a phase 2, double-blind, placebo-controlled, randomized clinical trial of an antibody
specific for IL-12p40 (that neutralizes both IL-12 and IL-23) was recently conducted in
relapsing remitting MS [67]. Two hundred forty-nine subjects were randomized equally to five
groups that received placebo or four different doses of anti-IL12p40 over a 19-week period.
Anti-IL-12p40 treatment did not result in a significant reduction in the cumulative number of
new gadolinium-enhancing T1-weighted images on serial magnetic resonance imaging scans
(the primary outcome measure). Similar numbers of patients experienced objective clinical
relapses in the placebo and anti-IL-12p40 groups. One explanation for the negative outcome
of the trial is that the antibody did not penetrate across the blood–brain barrier and/or into the
CNS parenchyma in sufficient quantities to achieve a therapeutic effect at the site of disease
activity. Alternatively, stable, pathogenic Th1 and Th17 cell clones could have been established
in the CNS and/or periphery prior to antibody treatment, obviating the need for polarizing
factors to sustain autoimmune neuroinflammation. Finally, one must consider the possibility
that the role of the IL-23/IL-17 axis in EAE does not translate into MS.

Th17-related molecules as surrogate markers of disease activity in MS
Whether IL-17A production in MS actually contributes to tissue damage or simply represents
an epiphenomenon, a number of papers attest that its expression in peripheral blood
mononuclear cells (PBMC) correlates with clinical and/or radiological disease activity. For
example, in cross-sectional, flow cytometric analyses of patients with relapsing-remitting MS,
IL-17A levels were higher in circulating leukocytes of patients with active disease (defined as
individuals who have experienced a relapse within 10 days of phlebotomy) than in circulating
leukocytes of healthy volunteers or individuals with inactive disease (defined as patients who
have been clinically and radiological stable over 3 months prior to and 3 months following
phlebotomy) [42]. Furthermore, longitudinal studies showed that patients with active disease
experienced a selective reduction in the frequency of circulating Th17 cells in association with
clinical recovery and stabilization following the initiation of interferon β therapy. The authors
found that Th17-polarized CD4+ T cells preferentially express functional type I interferon
receptors and are more vulnerable to IFN β-induced apoptosis than Th1-polarized cells [42].
IFN β could also suppress Th17 differentiation in patients with MS in an indirect manner, by
suppressing IL-23 and enhancing IL-27 production by antigen-presenting cells [68–70].
Consistent with that hypothesis, mice deficient in type I interferon receptor mount enhanced
Th17 responses, express reduced IL-27 levels in the CNS, and develop severe EAE following
challenge with myelin antigens [71]. A reduction in the expression of Th17-related molecules
in PBMC of MS patients in response to immunomodulatory treatment might not be specific
for IFN β. The frequency of circulating Th17 cells and expression of transcripts encoding IL-17,
RORC, and IL-23 receptor fell significantly in PBMC of MS patients following treatment with
intravenous methylprednisolone for an acute relapse [72].

Conclusion
Based on the results of multiple studies, there is a clear association between expansion of Th17
cells in the periphery, their accumulation in the CNS, and the development of autoimmune
demyelinating disease. IL-17A is the signature cytokine produced by Th17 cells. However, its
role in the pathological process is likely to vary across different subsets of patients with MS
and related disorders. Experiments in the EAE model indicate that compensatory cytokine
pathways and alternative Th subsets of autoreactive T cells could compensate for the absence
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of IL-17A and Th17 cells during the evolution of autoimmune demyelination. While this
observation raises questions about the efficacy of IL-17 blocking agents in the treatment of
MS, assays that measure levels of Th17-related molecules in PBMC are promising surrogate
markers of clinical and radiological disease activity.
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