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ple. When there are no missing observations, several dif-
ferent family-based approaches have been previously dis-
cussed to utilize the multivariate data efficiently to test 
for genetic association [1, 2].

For many phenotypes, especially those related to com-
plex disease, measurements are often difficult to obtain 
and record. In practice, we can expect some subjects to 
have missing data. Many statistical methods for missing 
data analysis have been reviewed by Little and Rubin [3]. 
The simplest method to deal with missing data is to use 
the complete data subset, which means we only use sub-
jects with all phenotypes available and discard all the 
subjects with any missing observation. Another intuitive 
method is to modify the existing tests to utilize all the 
information available. In other words, the original test 
statistics are appropriately adapted so that they can ac-
commodate a subject’s observed phenotypes even when 
the rest are missing. A third commonly used method is 
to impute the missing phenotypes in the dataset.

In this paper, we show that some FBAT approaches can 
be easily extended to accommodate subjects with par-
tially missing phenotypes and remain valid tests. We pro-
pose two imputation techniques based on E-M algorithm 
and the conditional mean model respectively. With simu-
lation studies, we check the false positive rate of these 
methods and compare their power to the complete data 
analysis and the mean-imputation technique. Our new 
imputation techniques are found to be unbiased and gen-
erally more powerful than complete case analysis or sim-
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Abstract

Several family-based approaches have been previously pro-
posed to enhance the power for testing genetic association 
when the traits are measured longitudinally or repeatedly. In 
this paper, we show that some of these FBAT approaches can 
be easily extended to accommodate incomplete data and 
remain unbiased tests. We also show that because of the na-
ture of FBAT approaches, we can impute the missing pheno-
types without biasing our tests and achieve higher power. 
We propose two imputation techniques based on E-M algo-
rithm and the conditional mean model, respectively. Through 
simulation studies, these two imputation techniques are 
shown to have correct false positive rate and generally 
achieve higher power than complete case analysis or simple 
mean-imputation. Application of these approaches for test-
ing an association between Body Mass Index and a previ-
ously reported candidate SNP confirms our results.

Copyright © 2009 S. Karger AG, Basel

Introduction

For many family-based studies of complex disease, 
multiple disease-related phenotypes are often measured 
longitudinally or repeatedly for each subject in the sam-
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ple mean imputation. Applications of these methods for 
handling missingness to the Framingham Heart Study 
data confirm our results.

Review of Methods for the Complete Data Setting

Suppose there are N families. For simplicity, assume we have 
parents with one offspring (trios); the results can be easily gener-
alized to other family structures [4]. We denote the vector con-
taining all m phenotypic observations for each offspring by Ỹi = 
(Yi1, ..., Yim)T, where Yij is the j-th phenotype for the i-th offspring. 
The standard biometric model [5] describing a single phenotype 
as a function of the genotype can be extended as

E(Ỹi � Xi = xi) = �̃ + �̃ ! xi, (1)
Var(Ỹi � Xi = xi) = VP, (2)

where �̃  = (�1, ..., �m)T is the intercept vector, �̃ = (�1, ..., �m)T is 
the vector of genetic effects, Xi denotes the coding of the marker 
genotype of the i-th offspring, and VP is the phenotypic residual 
variance-covariance matrix. The vector containing all traits for 
each offspring can be expressed as T̃i = (Ti1, ..., Tim)T, where Tij is 
the j-th trait for the i-th offspring. Here Tij is a function of the 
phenotype Yij, for example, Tij = Yij – �Y.j or Yij adjusted for covari-
ates [6].

For the j-th measurement, the univariate family-based asso-
ciation test (FBAT) statistic [4] can be written as

1
,

N

j ij i i i
i

S T X E X |P  (3)

where E(Xi � Pi) and Var(Xi � Pi) (shown in equation 4 below) de-
note the expectation and variance of the marker score computed 
under the null hypothesis (no genetic association), conditional on 
the parental genotypes Pi. With large samples, the vector contain-
ing all univariate test statistics S̃  = (S1, S2, ..., Sm)T asymptotically 
follows a multivariate normal distribution N(0̃m, �0) under H0 [7]. 
Here 0̃m is an m-dimensional vector of zeroes and �0 is the vari-
ance-covariance matrix of those univariate test statistics,
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1
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i
Var S|H TT Var X |P                                      (4)

Several approaches have been introduced to utilize the multi-
variate data efficiently to test for genetic association in family-
based studies. Lange et al. developed the FBAT-PC approach [1], 
which is an expansion of the univariate FBAT for traits that are 
measured longitudinally or repeatedly over time. Based on gen-
eralized principle component analysis, FBAT-PC amplifies the 
genetic effect of each measurement by constructing an overall 
phenotype with maximal locus-specific heritability. Ding [2] in-
troduced FBAT-PCM as a modification to FBAT-PC with higher 
power, along with two other approaches, FBAT-LC and FBAT-
LCC, which have more power in some circumstances.

All three of these statistics can be expressed as a weighted 
combination of those univariate tests Sj, with different approach-
es used to compute the weights,
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.q
SE
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If no missing observation exists, FBAT-LC has the highest power 
when the genetic effects are same for all measurement points. 
When the genetic effect sizes differ, FBAT-LC is more powerful 
when the phenotypic correlation is low, while FBAT-PCM achieves 
the highest power when the correlation is high [2].

To avoid biasing the significance level of any subsequent tests, 
Lange et al. [8, 9] proposed the Conditional Mean Model (CMM) 
to estimate the unknown variables in these FBAT statistics. In 
equation (1), we replace the observed marker score xi by the ex-
pected marker score E(Xi � Pi), and estimate �j separately by ordi-
nary least square estimation,

E(Yij) = �j + �j ! E(Xi � Pi).                                                         (8)

Methods

There can be various reasons for missing phenotypic informa-
tion. For example, a participant may drop out of the study or fail 
to appear on a follow-up visit, or part of the data may be lost dur-
ing the data transfer process. For simplicity, we assume offspring 
are not missing the genotypic data, i.e., all Xi are observed.

When missing observations occur, the phenotypes for the i-th 
subject can be rewritten as

1, , ,
obs

T i
i i im miss

i

Y
Y y y

Y
                                                         (9)

where Ỹi
obs = IiỸi  is the vector of observed phenotypes, Ỹi

miss = JiỸi 
is the vector of missing phenotypes. Here Ii is obtained from an 
identity matrix Im ! m by removing the rows corresponding to the 
missing observations, and Ji is made up of those removed rows. It 
is useful to classify the missing-data mechanism in order to un-
derstand the performance of different approaches, under differ-
ent condition [3, 10]. In our setting, when the probability of the 
missing phenotype Yij is independent of either Ỹi

obs, Ỹi
miss or the 

genotype Xi, the outcomes are called to be missing completely at 
random (MCAR). We say our phenotypes are missing at random 
(MAR), if the missingness is independent of Ỹi

miss conditional on 
Ỹi

obs and Xi. Furthermore, if the missing probability depends 
upon Ỹi

miss given Ỹi
obs and Xi, the missing-data mechanism is non-

ignorable.
We consider several simple, easily implemented and common-

ly used strategies to deal with the missing data problem. The sim-
plest strategy, known as complete case analysis, is to remove all 
the subjects with any missing value and only analyze the complete 
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data subset. In other words, all Ỹi
obs will be discarded if Ii 0 Im ! m.

Assuming N* out of the N subjects do have all the observations, 
the analysis will be applied to the data subset with sample size 
equal to N*. Alternatively, we can apply the analysis to all the ob-
served data Ỹi

obs, i = 1, ..., N, called all available case analysis. A 
third strategy is to replace missing phenotypes Ỹi

miss with some 
appropriate values, which is also known as imputation analysis 
[3].

Note that all the FBAT statistics in equations (5)–(7) are cal-
culated conditional on all the phenotypic information and only 
Xi are considered as random variables. Therefore, with each of 
these three strategies to deal with missing phenotypes, the valid-
ity of these FBAT approaches always holds for both MCAR and 
MAR, provided that the imputation is independent of the off-
spring’s genotypes, Xi, and the missingness is also independent of 
Xi. In general, this will be a reasonable assumption. Even when 
the missingness does depend upon the offspring’s genotype, our 
simulations show that the FBAT approaches can still be valid if 
the traits are mean-centered, which is generally true in practice. 
Furthermore, the power of FBAT approaches might be affected by 
both the underlying missing mechanism and the strategy chosen 
to handle missingness.

Extending FBAT-LC and LCC to Use All Available Data
Theoretically, FBAT-PCM (as well as FBAT-PC) can be ex-

tended to analyze incomplete data [1]. Since the overall pheno-
types have to be constructed separately for subjects with different 
missing patterns, the computation is complex and the interpreta-
tion is no longer straightforward. Therefore we do not discuss the 
extension of FBAT-PCM here. On the contrary, test statistics of 
FBAT-LC and FBAT-LCC in equation (5) and (6) can easily be ex-
tended to use all available phenotypic information.

For the j-th measurement, assume only nj out of the N pheno-
types (Y1j, ..., YNj) are actually observed, the rest of them are miss-
ing. Letting the set Oj = (i1, i2, ..., inj) denote the indexes of the nj 
subjects whose j-th phenotype is available, the univariate FBAT 
based on all observed data can be written as

,
j

j lj l l l
l O

S T X E X |P*                                                        (10)

where Tij, i DOj are nj traits corresponding to those observed phe-
notypes Yij, i DOj at the j-th measurement time.

Similar to the case when there is no missing [Lange et al., 
2003b], under the null hypothesis (no association between Yij and 
Xi), we have E(S*j) = 0 and

, .
j j

j j lj lj l l
l O O

Cov S S T T Var X |P* *
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Note that this is true under H0 regardless of the missing-data 
mechanism, provided the missingness of phenotype is indepen-
dent of the offspring’s genotype.

For i D(1, ..., N), j D(1, ..., m), we define

, if  i.e.,  is observed,
0, if  i.e.,  is missing.  

ij j ijc
ij

j ij

T i O Y
T

i O Y
                           (11)

Via simple algebra, it is easy to show that equation (10) can be re-
written as
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,
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N
c
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             (12)

and the variance-covariance matrix for vector S̃* = (S*1, ..., Sm*)T 
can be written as

0
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* *                          (13)

In addition, the conditional mean model in equation (8) can 
easily be extended to incomplete data as

E(Ylj) = �j + �j ! E(Xl � Pl), where l DOj.                                (14)

Letting

,q
SE

�

�
*

where �̂  is obtained via equation (14), FBAT-LC and FBATLCC 
statistics based on the observed data can be rewritten as
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Imputing the Missing Values
With imputation techniques, we estimate the unobserved phe-

notypes Ỹi
miss by Ŷi

miss, and then apply FBAT approaches to the 
imputed complete data

,
obs

i
i miss

i

Y
Y

Ŷ

i = 1, ..., N. Since the univariate FBAT statistic in equation (3) is 
conditional on not only the parental genotypes, but also the off-
spring’s phenotypes, all the FBAT tests shown in equation (5)–(7) 
are conditional on Y̂, i = 1, ..., N. Therefore, all the FBAT ap-
proaches based on the carefully imputed data will not be biased 
under the null hypothesis of no genetic association, provided the 
imputation of Ŷi

miss does not depend on Xi and the traits are cho-
sen to be mean-centered.

The easiest way to estimate the missing phenotypes is to re-
place them by the mean of all observed phenotypes. In other 
words, if the j-th phenotype for the i-th subject Yij is missing, we 
can estimate it by the average of all observed phenotypes at the 
j-th measurement, i.e., Ŷij = Y.j.

Furthermore, we can apply the E-M algorithm to the incom-
plete data [10] to improve our imputation technique by consider-
ing the correlation among different measurements for the same 
subject. Suppose Ỹi � MV N(�̃, �), similar as [3] we get solution 
of �̃  and � at the M-step; while at the E-step, we impute the miss-
ing part of Ỹi based on its observed part and the current estimates 
of �̃, �. Iteratively, we can keep updating the imputed values of 
missing phenotypes iteratively until reaching convergence.

Alternatively, based on conditional mean model, we assume 
that

11 121

21 222
, , ,

obs
i

i miss
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Y V Vm
Y MV N m V MV N

V VmY
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where m̃ = �̃  + �̃  ! Ei, m̃1 = Iim̃, m̃2 = Jim̃, and Ei = E(Xi � Pi). Con-
ditional on the observed phenotypes, the missing part follows 
multivariate normal distribution

Ỹi
miss�Ỹi

obs � MV N(m̃2 + V21V11
–1 (Ỹi

obs – m̃1), V22 – V21V11
–1V12). (18)

Therefore after we obtain the estimates of �̃, �̃, and V, we can 
impute the missing values by

1
21 11 .  

miss obs
i i i i i i i iY J J E V V Y I I E� � � �      (19)

We can use the N* subjects who have complete m observations 
to get the ordinary least square estimates (OLS) for
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By putting these LSEs into equation (19), we can get an imputed 
complete dataset, to which we then apply the FBAT approaches 
for testing.

Note that both the imputation technique based on condition-
al mean model and the imputation technique based on E-M algo-
rithm impute the missing values without using any genotypic in-
formation of the offspring. Therefore when using all the FBAT 
approaches based on the imputed data we do not need to adjust 
their p values for using the genotypic data first to impute, then to 
test.

Simulation
In our simulations, the marker of interest is a bi-allelic locus. 

Assuming an additive genetic model, the parental genotypes P1 
and P2 are independently generated by drawing from a binomial 
distribution B(2,p) where p is the minor allele frequency (MAF) 
of the target allele in the population. The genotype X of the off-
spring is obtained by simulated Mendelian transmission based on 
the parental genotypes P1 and P2. For each offspring, the same 
type of phenotype is measured 6 times. The 6-dimensional phe-
notypic vector is a random sample from a multivariate normal 
distribution

Ỹi = (yi1, …, yi6)T � MV N(�̃  + (�1, ..., �6)T Xi, VP),             (23)

where VP is the phenotypic variance-covariance matrix, �̃  = 
25 ! 1 6 is the phenotypic mean and �1, ..., �6 are the genetic ef-
fects for measurement 1 to 6, respectively.

The simulation is repeated 5,000 times, in each replicate, 400 
trios are generated for analysis. The power of each approach is 
estimated by the proportion of the number of times when the test 
statistic is significant at � level = 0.05. We only report results for 
MAF p = 0.2, as results for other values are very similar. Since the 
power of a statistical test heavily depends upon the true underly-
ing model, we perform our simulations under several different 
models for the genetic effects �1, ..., �6. In all the models, the vari-
ances at each measurement are set to � 

2
i = 1, i = 1, ..., 6, while the 

correlation matrix CP is chosen to compound symmetry with var-
ious correlation values. In other words,

1
1

,

1

pC

� �

� �

� �

where � is the correlation among different measurements for the 
same subject. Therefore, we have

1 1

2 2

6 6

0 0 1 0 0
0 1 0

.0 0
0 0 1 0 0

pV

� � � �

� � � �

� � � �

Model 1: No genetic effect at any measurement point
Under the null hypothesis, there is no genetic association at all 

(i.e. the genetic effect is zero for any of the six measurement 
points), so the phenotypes are generated from �i = 0, i = 1, ..., 6.

Model 2: Same genetic effects across all measurement points
In this model, we assume that �i = �h, i = 1, ..., 6, where �h is the 

genetic effect size that corresponds to the heritability h2 [5], i.e.,
2

22 1 1h
h

p p h
�

for an additive genetic model. h2 is always set to be 0.01 in model 
2 and model 3.

Model 3: Arbitrary effects for different measurement points
Here the values of �1, ..., 6 are given by

�j � U(0, 2�h),                                                                             (24)

where U is the uniform distribution on the interval. Since the 
mean of the uniform distribution is �h, the average genetic effect 
here is also �h, with average univariate heritability equals to 0.01.

Generate Missingness
After the complete dataset is simulated, we consider two dif-

ferent mechanisms to generate the possible missingness. Under 
MCAR, every phenotype Yij is set to be missing with a fixed prob-
ability Pmiss, i.e., each phenotype has a Pmiss chance to be removed 
from the observed dataset. In addition, we consider both high 
missing rate (Pmiss = 20%) and low missing rate (Pmiss = 5%).

The other mechanism we considered is missing at random 
(MAR). For this situation, we assume that the pattern of missing 
phenotypes depends upon the number of target allele at the mark-
er locus, as well as the previous phenotypic observation. For sim-
plicity, we assume that the first measurement is observed for all 
subjects, and each following phenotype for the i-th subject Yij, j = 
2, ..., 6 has a probability Pi

miss to be missing. Here Pi
miss is modeled 

by

logit (Pi
miss) = a + b ! Yi1 + c ! Xi, (25)

where a = –0.65626, b = –0.0655 and c = 0.39969 are obtained via 
logistic regression fitted for missing measurements of body mass 
index in the Framingham Heart Study.
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Results

For various values of the correlation �, we examine the 
type-I error rates of FBAT-PCM, FBAT-LC, FBAT-LCC, 
as well as ordinary Bonferroni correction [11] under the 
null hypothesis of no genetic association (model 1). Re-
gardless of the missing mechanism (MCAR or MAR) and 
the missing rate (Pmiss = 5% or Pmiss = 20%), the type-I er-
ror rates are all well maintained for each method dis-
cussed in the Methods section. As previously mentioned, 

this is due to the fact that all the FBAT tests are condi-
tional on the phenotypes and the traits are set to be mean-
centered.

For MCAR and Pmiss = 20%, the estimated power 
curves of FBAT approaches with different methods to 
handle missingness are shown in figure 1 and 2, under 
model 2 and 3, respectively. In figure 1, we see that the 
complete data analysis suffers a substantial loss of power, 
compared to any other method. We also find that impu-
tation technique based on the E-M algorithm has a con-
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  Fig. 1.  Estimated power of FBAT approaches, when genetic effects are same and the missing rate is high 
(MCAR). 
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siderable higher power than other ways of handling miss-
ingness when FBAT-LC approach is used, which is the 
most powerful test under model 2.

Furthermore, as shown in figure 2, the complete data 
analysis also loses substantial power under model 3. Oth-
er methods have almost identical power when the pheno-
typic correlation is low. On the other hand, when the cor-
relation is high, the imputation technique based on CMM 
or E-M has substantially higher power than the mean-

imputation technique or FBAT-LC/LCC based on all 
available data.

When the missing rate is relatively low (Pmiss = 5%), the 
results are quite similar to figure 1 and 2. Discarding all 
the subjects with any missing observation can still cause 
a non-negligible loss of power (up to 20%). Other meth-
ods to deal with missing data all perform well, especially 
when the genetic effects are same (all of them almost 
achieve the power if all phenotypes are actually observed). 
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When the genetic effect sizes differ, imputing the missing 
values based on E-M algorithm is slightly more powerful 
than other methods, and the advantage tends to be bigger 
when the correlation is higher.

Furthermore, the results are still similar when the 
missing mechanism is MAR instead of MCAR. We find 
that imputation technique of conditional mean model is 
still almost identical to the imputation technique of E-M 
algorithm, and has substantially higher power than other 
methods. In addition, FBAT-LC-obs and FBAT-LCC-obs 
also show a noticeable gain of power, compared to mean-
imputation or complete data analysis.

Data Analysis
We apply FBAT approaches to test the association be-

tween SNP rs7566605 and Body Mass Index (BMI) in the 
Framingham Heart Study (FHS) offspring cohort.

The Framingham Heart Study is conducted and sup-
ported by the National Heart, Lung and Blood Institute 
(NHLBI) in collaboration with Boston University and the 
participants are enrolled from the community without 
ascertainment for a particular trait or disease [12, 13]. 
SNP rs7566605 is located on chromosome 2q14.2 near the 
INSIG2 gene and is reported to be associated with obe-
sity in several populations [13]. Six longitudinal measure-
ments of Body Mass Index (BMI) over a follow-up period 
of 24–25 years, as well as family genotypic information at 
SNP rs7566605 are provided for study subjects.

Many different family structures exist in the FHS data. 
For simplicity, we only use the 70 trios (one offspring with 
the parent-pair) to compare the performance of different 
methods for handling missingness. For the 70 offspring, 
there should be 70 ! 6 = 420 measurements of BMI, giv-
en six per subject. In fact, we have a total of 385 observa-
tions, which means the missing rate here is about 8.3%. 
Furthermore, only 51 offspring have complete six obser-

vations. In other words, if we are going to discard subjects 
with any missing value, our sample size will be only 72.9% 
of the original size.

For testing approaches FBAT-PCM, FBAT-LC, FBAT-
LCC and Bonferroni correction, five different methods to 
deal with missing values are used here: use the complete 
data subset, use all available observations, impute the 
missing by phenotypic mean, impute the missing by con-
ditional mean model, or impute the missing by E-M al-
gorithm. As shown in table 1, due to the small sample size 
(only 17 out of the 70 trios are informative), after adjust-
ing the p value for multiple comparison, Bonferroni cor-
rection does not show any significance, no matter which 
method is used to handle missingness. In addition, the 
results for FBAT-LC are basically unaffected by which 
method is used to handle the missingness.

The p values for imputation technique of CMM are 
always quite similar to those for imputation technique of 
E-M. Compared to these two imputation techniques, the 
mean imputation yields substantially larger p values, 
since it does not utilize the correlation structure in the 
data. This is consistent with the result shown in the sim-
ulation studies. In addition, When the missing pheno-
types are imputed by conditional mean model or E-M 
algorithm, the most significant results are achieved by 
FBAT-PCM and FBAT-LCC. This is also consistent with 
the previous finding that FBAT-PCM and FBAT-LCC 
tend to have the highest power in the FHS data since the 
phenotypic correlation is high and the estimated genetic 
effect sizes show difference over time.

Interestingly, the results of FBAT-LCC and FBAT-LC 
are also nominally significant when only the complete 
data subset is used. This is probably due to the fact that 
the genetic effect for the first BMI measurement is the 
biggest, and there are no missing observations for the 
first BMI. In addition, a simple logistic regression model 

Table 1. Testing for association between rs7566605 and BMI in FHS trios data, with missing measurements

p values

FBAT-PCM FBAT-LCC FBAT-LC Bonferroni correction

Use complete subset 0.083 0.045 0.035 0.18
Use all available N/A 0.28 0.057 0.18
Impute by mean 0.15 0.27 0.057 0.18
Impute by CMM model 0.021 0.034 0.053 0.19
Impute by E-M 0.023 0.028 0.053 0.18

p values for FBAT approaches, with different methods to handle missingness.
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(equation 28) shows that the chance that an offspring’s 
second BMI measurement is missing is significantly as-
sociated with the value of his or her first BMI measure-
ment (p = 0.007), as well as genotype at SNP rs7566605 
(p = 0.003).

Discussion

Missing phenotypes are a common problem for ge-
netic association studies with longitudinal or repeated 
measurements. Here we discuss several ways for han-
dling the missingness to improve the power of previous-
ly introduced FBAT approaches, because the complete 
case analysis suffers substantial loss of power even when 
the missing rate is as low as 5%.

In this paper, we extend FBAT-LC and FBAT-LCC sta-
tistics to allow incomplete phenotypes for study subjects. 
Generally, FBAT-LC-obs and FBAT-LCC-obs based on 
the observed data outperform the mean-imputation tech-
nique, but are not as powerful as other proposed imputa-
tion techniques.

Since the test statistics of these FBAT approaches are 
conditional on the phenotypes, we can impute the miss-
ing data without biasing the subsequent tests, provided 
that the imputation does not involve the offspring’s geno-
types. We propose an imputation technique that uses the 
E-M algorithm, whose false positive rate and significance 
level are always correctly controlled. We also show that 
this method consistently has higher power than mean-

imputation, whose gain of power can be as high as 20%. 
In addition, if the phenotypic correlation is very high, 
this method can almost achieve the same power as the no 
missing situation.

Alternatively, we present another imputation tech-
nique which is based on the conditional mean model. 
This technique is more straightforward to use and in-
volves less computation than the technique using E-M 
algorithm. Both the simulation studies and the example 
of FHS data analysis suggest that imputing by condition-
al mean model is generally as powerful as imputing based 
on E-M algorithm. We think that this simple imputation 
technique is practically useful for genetic association 
studies.

The computation of all these FBAT approaches is 
straightforward once you have all the univariate FBAT 
test statistics. In addition, univariate FBAT and FBATLC 
have been implemented in the software package FBAT 
and is freely available at http://www.biostat.harvard.edu/
�fbat/default.html; FBAT-PC and FBAT-PCM have been 
implemented in the software package PBAT and is freely 
available at http://www.biostat.harvard.edu/�clange/de-
fault.htm.
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