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Summary
Learning from experience requires knowing whether a past action resulted in a desired outcome.
The prefrontal cortex and basal ganglia are thought to play key roles in such learning of arbitrary
stimulus-response associations. Previous studies have found neural activity in these areas, similar
to dopaminergic neuron signals that transiently reflect whether a response is correct or incorrect.
However, it is unclear how this transient activity, which fades in under a second, influences
actions that occur much later. Here we report sustained outcome-related responses in single
neurons of both areas, which last for several seconds until the next trial. Moreover, the outcome on
a single trial influences the neural activity and behavior on the next trial: behavioral responses are
more often correct and single neurons more accurately discriminate between the possible
responses when the previous trial was correct. These long-lasting signals about trial outcome
provide a way to link one action to the next, and may allow reward signals to be combined over
time to implement successful learning.

Introduction
Both the lateral prefrontal cortex (PFC) and the caudate nucleus (Cd) of the basal ganglia
have been implicated in learning abstract associations. Anatomically, these two regions are
extensively interconnected with each other and the rest of the brain, including sensory,
motor, and higher-level associational areas (Petrides and Pandya, 2006; Petrides and
Pandya, 2007; Wise et al., 1996; Passingham, 1995; Fuster, 1997). They are thus well-
positioned to control complex behavior. Frontal cortical areas and basal ganglia nuclei are
interconnected in parallel “loops” (Houk and Wise, 1995; Alexander et al., 1986; Middleton
and Strick, 2000; Alexander et al., 1990), suggesting close interaction during their function.
Further, the deactivation or manipulation of neural function in these two areas affects
learning behavior, showing both areas to be necessary for learning (Fellows and Farah,
2005; Petrides, 1985; Petrides, 1994; Gaffan and Harrison, 1989; Murray et al., 2000;
Nakamura and Hikosaka, 2006b; Miyachi et al., 1997; Williams and Eskandar, 2006;
Nakamura and Hikosaka, 2006a).
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Neurophysiological studies in the PFC and Cd have also linked neuronal responses in both
areas to flexible learning. These studies have demonstrated that information about the
stimuli, the behavioral responses, and the association between the two are encoded by
neurons in the PFC and Cd (Asaad et al., 1998; Pasupathy and Miller, 2005). During such
learning, moreover, PFC and Cd neurons modify their activity to more strongly reflect this
acquired knowledge about the learned association (Chen and Wise, 1995; Pasupathy and
Miller, 2005; Asaad et al., 1998; Barnes et al., 2005; Murray et al., 2000). Finally, activity of
many PFC and Cd neurons reflect task outcome or the delivery of reward — another
important piece of information critical for guiding learning. Learning depends on using
feedback from the environment about the outcome of actions, and in the laboratory this
feedback is typically the delivery of a food reward for desired (correct) behavior. Neural
signals related to reward are closely associated with the midbrain dopaminergic system,
whose neurons fire transiently in relation to reward delivery (Ljungberg et al., 1992; Schultz
et al., 1993a). These neurons project to many brain areas, but they strongly innervate the
basal ganglia and the PFC (Anden et al., 1966; Berger et al., 1988; Williams and Goldman-
Rakic, 1993). Unsurprisingly, then, PFC and BG neurons have been found to show activity
after reward delivery and behavioral response feedback (Schultz et al., 1993b; Schmitzer-
Torbert and Redish, 2004; Barraclough et al., 2004; Barnes et al., 2005; Apicella et al.,
1991; Ichihara-Takeda and Funahashi, 2006; Watanabe, 1989; Lau and Glimcher, 2007; Seo
et al., 2007).

Thus, in the PFC and BG, neural correlates of both outcome and learning have been
documented, but it is still unclear how these interact and whether the outcome related signals
are used to modify neural activity and behavior. This is because reward-related activity
occurs at the end of the trial and has mainly been reported to be quite transient. Reward
responses last just a few hundred milliseconds after the delivery (or withholding) of the
reward (Lau and Glimcher, 2007), whereas the next opportunity for behavior (i.e., the next
behavioral trial) and the associated task-related neural activity is typically seconds away.
Thus, it has been unclear how such temporally disparate signals interact, though several
ideas have been put forth, especially in the context of neuroeconomics (e.g. Rangel et al.,
2008; Montague and Berns, 2002; Rushworth and Behrens, 2008; Doya, 2008). Specifically,
in the frontal cortex, some studies show that past reward history can modulate task-related
activity (Barraclough et al., 2004; Uchida et al., 2007; Seo et al., 2007; Seo and Lee, 2009).
In the hippocampus, this has been seen in some outcome-modulated neurons (Wirth et al.,
2009). However, little is known about the transient vs. sustained nature of outcome-related
single neurons in learning tasks, and the role of the basal ganglia has not been explored.

How neurons encode trial outcome — transiently or by sustained firing — has important
implications for the mechanism of learning. Prior work has suggested two ways that learning
might occur. First, the outcome of previous trials could be stored in synaptic strengths,
represented by a connection weight in a neural network model. The transient responses to
reward would then be used to change synapses after each trial, affecting on the next trial
only neurons’ excitability or responses (Barraclough et al., 2004; Sugrue et al., 2005). This
would be supported by transient reward responses. However, there is a second possibility:
The outcome of each trial might be stored in the sustained firing patterns of the neurons.
Then, the dynamic state of the network could store the learned association without any
required change in synaptic strength (Maass et al., 2002; Ganguli et al., 2008). Outcome-
related activity sustained until the next trial could then be combined with the learned
representations to select the next action. This latter model predicts that sustained neural
firing related to outcome should be observed between trials and the learning induced
changes will be evident on the next trial. But until now, no such sustained reward-related
firing has been observed in these areas.
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Here, we report data that supports this second model, shedding light on the neural
mechanisms linking environmental feedback to neural plasticity by showing that learning
can indeed be implemented by changes in network state. As animals learned associations
between visual stimuli and saccade responses, we studied the responses of neurons in the
PFC and Cd. We found that the activity of many neurons in the PFC and Cd reflects the
delivery or withholding of reward (i.e., whether a trial was correct or incorrect). This
activity can be sustained, and we observed that it often lasts for several seconds, the entire
period between trials. Finally, we found that the outcome of a single trial also did impact the
neural representation of the learned association, as if information about outcome was being
combined with task information to cause learning-related changes. Response selectivity was
stronger on a given trial if the previous trial had been rewarded and weaker if the previous
trial was an error. This was independent of whether the animal had just begun to learn the
association or was already quite good at it. Together, these results describe how learning in
PFC and Cd is shaped by behavioral outcome signals.

Results
In order to assess how outcome signals could be used to guide learning, we trained animals
to perform an associative learning task. Animals learned arbitrary associations between each
of two picture cues, both new each day, and a leftward or rightward eye movement response
(Fig. 1). The task and behavioral performance are described in detail in Pasupathy and
Miller (2005). Animals learned the association by trial and error, and once they were
performing well (>90% on each picture; see Methods), the associations were reversed
without any explicit cue. By repeatedly reversing the associations, we could examine
multiple instances of learning and relearning. Animals performed at least three reversals
during each recording session.

We found that the activity of many neurons reflects the behavioral outcome (correct vs.
error) in both the PFC and Cd. Single neurons in both the PFC (Fig. 2A) and Cd (Fig. 2B)
show immediate changes in activity based on whether the behavioral response was correct or
an error. Some neurons show an increase in activity after corrects (Fig 2, left column) while
others show an increase in activity after errors (Fig 2, right column). In the PFC and Cd,
both types of responses are roughly equal in number (greater for correct: 54%, 101/186 in
Cd; 47%, 112/237 in PFC; amongst cells modulated by outcome in the first 500ms after
response, p<0.05 via non-parametric ANOVA; see also Supp. Fig. 3).

PFC and Cd neurons maintain outcome information in sustained activity
Neurons in both the PFC and Cd are known to show transient responses to rewarding stimuli
(e.g. Schultz et al. 1993b). However, it is not known how information about previous actions
might be carried in the brain from one trial to the next, so that it can be used in learning. We
found that many neurons in both PFC and Cd carry this sustained information. Single
neurons in both areas convey strong, sustained outcome information across the entire 4–6
second inter-trial interval (Fig. 2C–D).

We used a tuning index, computed from the area under a receiver operating characteristic
(ROC) curve, to quantify the outcome information carried by different neurons in the
population. To measure the time course of the outcome-related selectivity, we computed this
index in a sliding time window, 200 ms long (Fig. 2, bottom panels: A3, B3, C3, D3). If
outcome-related selectivity is low, a neuron’s firing will be identical after correct and after
error, and the ROC area will be 0.5. In contrast, if a neuron perfectly encodes whether a
response is correct or not, the ROC area will be 1. This analysis showed that sustained
information about outcome is present in an average over the population in each brain region
(Figure 2E). Further, we found that information about outcome peaks shortly after the
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reward and lasts until the next trial. In summary, we found that in both PFC and Cd, neurons
carry information about the outcome of previous trials until the next trial, where this signal
is available for guiding the animals’ next response.

Single correct responses increase direction selectivity on the next trial
We also found that the outcome of one trial strongly impacts how much information neurons
carry on the next trial about the learned association. We have previously shown that in this
task, PFC and Cd responses carry association information through selectivity for the
direction of the learned response (Pasupathy and Miller, 2005). Here, we describe how this
direction selectivity on a given trial is altered by the outcome on a preceding trial.
Specifically, we found that a correct trial increases direction selectivity on the next trial,
while incorrect trials reduce it (Fig. 3). An example PFC neuron (Fig. 3A1) illustrates these
effects. This neuron reflects both the outcome of the previous trial and the learned direction
response. These effects are quantified, respectively, by an outcome ROC (Fig. 3A3) and a
direction ROC (Fig. 3A4). The neuron fires at a higher rate when the previous trial is correct
than if it was an error. Simultaneously, it encodes the learned association — it also fires
more when the upcoming saccade is rightward than leftward. And, the strength of the
association selectivity depends on the outcome of the previous trial, because after a correct
response this selectivity is stronger. An illustrative example from the Cd (Fig. 3B) also
shows stronger direction selectivity after a correct behavioral response. In these neurons, i)
information about the outcome from the preceding trial is available on the subsequent trial
and, ii) neural activity that reflects the upcoming learned behavior is modulated by the
previous trial’s outcome.

This increase in direction selectivity after a correct trial is seen across the population of
recorded neurons (Fig. 4). For both areas, there was significantly greater direction selectivity
when the previous trial had been correct than when it had been incorrect (Fig. 4AB). We
also quantified this effect for each neuron by subtracting the mean ROC value for the cued
saccade direction when the previous trial was correct from that when the previous trial was
incorrect. Across the population in both areas, these differences are positive (p<0.001 in
both cases; sign test for non-zero median), showing greater selectivity for the cued saccade
direction if the previous trial had been correct (Fig. 4CD; see also Supp. Results). Increases
in accuracy after correct trials were also reflected in the animals’ behavior: performance on
a given trial is more likely to be correct if the previous trial was correct than if it was
incorrect (Fig. 4E).

We used the area under the direction ROC curve to quantify the neural changes that
accompany learning. In our past work (Pasupathy and Miller, 2005), we separated neural
selectivity into cue, response direction, and association components by partitioning the total
variance, using a two-way model for cue and direction with an interaction term. (Thus,
association selectivity is principally the degree to which neurons simultaneously encode cue
and response direction; cf. Pasupathy et al., 2005, Asaad et al., 1998). Here, we used ROC
area for direction because it captures, in a single measure, selectivity for the learned
response and also the majority of association selectivity, both of which change over
learning. We also repeated our past methods to examine direction and association selectivity
separately, and found that both show the same effects as when they are combined in the
direction ROC area. They each show stronger tuning after correct trials, and weaker tuning
after errors (Supp. Fig. 5).

Thus, we found that single behavioral responses have strong effects on both animal behavior
and neural activity — a correct trial strengthens both neural selectivity and the probability of
a correct behavioral response, while after an error both are much nearer to chance
performance.
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Behavioral accuracy is improved after a correct response
The outcome of a single trial influences direction selectivity on the next trial. However,
animals’ behavioral performance improves slowly with learning. Thus, in theory it might be
possible that the effect of a single trial on the next trial’s response was due merely to these
slow changes. This was unlikely due to the large changes caused by a single correct or error
trial (Fig. 4), but we confirmed that it was not the case by comparing performance both early
and late in learning (Fig. 5). The increase in selectivity when the previous trial is correct is
seen during the first half of a block of learning trials, when many errors are made, as well as
on the second half, when performance was better and fewer errors are made. On error trials,
direction selectivity is smaller and thus closer to what would be expected by chance. The
fact that reversals are not accompanied by an explicit cue probably encouraged the animals
to favor a trial and error strategy, where error trials often resulted in guessing on the next
trial (see Discussion). The behavioral impact of a single trial’s outcome was also seen at the
start and end of learning: in the first 10 trials after reversal, animals made 72% correct
responses on trials after corrects and 53% following errors, while in the last 20 trials,
animals perform at 92% following corrects and 57% following error trials.

A weaker signature of outcome can persist beyond single trials
We report above how each trial’s outcome affects direction selectivity on the next trial.
While this was the strongest effect, we also observed a weaker signature of changes arising
from more than one trial in the past. For example, one might expect a cluster of correct trials
to result in greater direction selectivity than one correct trial preceded by several error trials.
This can be seen in the population data (Fig. 2E). There is an elevated baseline outcome
ROC before the time of the response (red and blue dotted lines elevated above chance level,
0.5). When we repeated the analysis with random reassignment of the current trial’s correct
and error status, this effect was still present (data not shown). However, it fell to chance
when we reshuffled trial numbers, which breaks the link between trials nearby each other in
time. This implies that it is not merely due to the statistical structure of the spike trains we
recorded, but was a true signature of neurons that reflect behavioral outcomes over more
than one trial. Despite the presence of this weaker multi-trial effect, a single trial produces
an increment in this long-term information (difference between solid and dotted lines in Fig.
2E). Furthermore, the magnitude of the single trial effect is at least as large as all the multi-
trial effects summed together (difference between dotted lines and 0.5 level).

Transient outcome effects are large
The transient outcome responses shown by prefrontal and caudate neurons have received
relatively little emphasis (but see Lau and Glimcher, 2008; Fujii and Graybiel, 2003),
though these responses are quite large. More precisely, the large ROC value for transient
correct and error responses indicate that the neurons carry a large amount of information
about correct vs. error. Because we use the same ROC analysis method to examine both
outcome and direction information, we can compare the relative strength of these effects
(Supp. Fig. 1). The transient outcome ROC often shows a value between 0.7 and 0.9 (Supp
Fig 1B–C), similar to the direction ROC during the saccade (Supp Fig 1C), and larger than
the other information these neurons represent (Supp Fig 1A–B). Thus, whether the transient
outcome signal reflects mainly input or local processing, its strength implies it is an
important signal in these two areas.

Discussion
Here we report two main results. First, in a learning task, neurons in the PFC and caudate
nucleus show sustained activity that reflects a trial’s correct or incorrect status, which lasts
until the next trial. Second, the neural representation of the learned information in this task is
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changed by a single trial’s outcome: correct trials improve the strength of direction
selectivity on the next trial.

Implication for learning models; relation to the dopamine system
There are at least two ways that the brain might store information for seconds or longer
about behavioral outcome. At these timescales, information might reside in changes in the
strength of synaptic connections, resulting in different sized responses to future stimuli. Or,
it might be stored in the activity of the neurons, maintained by sustained neural firing rate.
Demonstrating the feasibility of both methods, neural network models have been devised
that use each method for information storage (Hopfield, 1982; Rumelhart et al., 1986; Maass
et al., 2002; Drew and Abbott, 2006; Ganguli et al., 2008). Previously, mainly transient
reward responses had been reported in the frontal cortex and basal ganglia (Schultz et al.,
1993b; Schmitzer-Torbert and Redish, 2004; Barnes et al., 2005; Apicella et al., 1991;
Ichihara-Takeda and Funahashi, 2006; Watanabe, 1989; Lau and Glimcher, 2007; Lau and
Glimcher, 2008; though note that modulation of frontal lobe task responses can depend on
reward history: Barraclough et al., 2004; Uchida et al., 2007; Seo et al., 2007; Seo and Lee,
2009), and similarly transient responses have been seen in the dopamine system of the basal
forebrain, which sends strong connections to the areas we studied. Thus, because transient
responses were seen in the frontal lobe, the basal ganglia, and in dopamine neurons, prior
work suggested that the “synaptic strength” hypothesis might be the mechanism for storing
information about past responses (Jackson et al., 2006). This was also supported by
observation of task-related modulation by reward (Barraclough et al., 2004; Seo et al., 2007;
Uchida et al., 2007). But learning seemed to be too fast to result from synaptic changes.
While there are ways that synaptic strengths can vary transiently (through synaptic
depression or facilitation, e.g. Thomson and Deuchars, 1994; Tsodyks and Markram, 1997),
long-lasting synaptic changes require protein synthesis (Frey et al., 1996) and therefore take
tens of minutes to occur. If synaptic changes did underlie this learning, it had not been
explained how such fast yet long-lasting changes might occur. Thus, there has been an
inconsistency in our understanding of the mechanism for learning in these areas: the types of
changes thought to be required took much longer than the time available to make them.
Consistent with models that have proposed how network state can store memories (Maass et
al., 2002; Ganguli et al., 2008), our data demonstrate that this can be seen in the sustained
activity of single neurons.

Note that while we found sustained firing rate changes, it is possible that learning also
results in synaptic changes. In fact, the ability to remember associations over hours, days or
more almost certainly requires a remodeling of connection strengths somewhere in the brain.
However, given that frontal cortex is known to show sustained changes in activity in
memory tasks (Fuster and Alexander, 1971; Funahashi et al., 1989) and other complex tasks
(Fuster et al., 2000; Wallis et al., 2001 2001), it is consistent with our understanding of these
areas that sustained rate changes also encode outcome information. Having both outcome
and direction information available puts the frontal cortex and basal ganglia in an excellent
position to combine them and thus perhaps guide synaptic strength adjustments, so that both
types of changes may co-exist during learning. Because all information relevant to the task
is present in both areas, they may be the principal place where such learning is instantiated.

Sustained outcome responses fill a gap in our knowledge of the neural responses necessary
for learning. The transient and sustained responses are, however, likely to be intimately
related. For example, the transient responses may trigger sustained responses. Two recent
studies (Williams and Eskandar, 2006; Nakamura and Hikosaka, 2006a) support this idea.
Microstimulation of the striatum led to improvements in learning, and moreover, these
improvements were seen only when the microstimulation occurred at the time of the reward.
It may be that these transient outcome responses reflect a large input from the dopamine
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system, and microstimulation applied at the time of the outcome signal interferes with the
transformation of this dopamine input into the sustained changes we observed. This kind of
transformation has recently been reported in PFC in vitro by Sidiropoulou et al. (2009), who
found that dopamine inputs can depolarize single neurons, leading to sustained firing rate
changes. While we saw this type of sustained activity, we found roughly equal numbers of
neurons that increase firing to correct (when dopamine neurons typically increase activity)
as increase firing to error (when dopamine neurons typically decrease activity). But
dopamine has also been reported to inhibit frontal neurons’ firing (Otani et al., 1999), and
depolarization by dopamine may also trigger recurrent network mechanisms, possibly in
frontal-basal ganglia loops (Alexander et al., 1990), which inhibit some neurons and excite
others.

Our results cannot be explained by drift/baseline changes
One potential concern might be that long-term changes in neuronal activity over many trials
might affect our results, whether due to baseline activity changes or possible changes in
position of the electrode relative to the neuron. To deal with this issue, we included neurons
in the analyses only if the neuron’s activity was stable while the animal performed at least
four repetitions of learning – i.e., the animal first learned one pairing followed by three
reversals of the pairing, each of which the animal learned to the behavioral criterion level.
Thus, long-term changes in the neurons’ activity would tend to affect all types of trials
equally, ruling out spurious effects where neurons would appear to respond to one stimulus
or direction due to drift. Also, we corrected for bias in the ROC area by shuffling trials
randomly (e.g. in Fig. 2E; see Methods; Supp Fig. 2). Since this method intermixed trials at
the beginning and end of the recording sessions, it also controls for any effect of long-term
drifts in activity.

Transient outcome responses: pure reward responses?
Animals can and often do learn given only secondary reinforcement that is not in itself a
reward (Pavlov, 1927). As an example, human students will study for an exam in order to
much later earn a high salary. Here we study only how a trial’s outcome yields future
changes in behavior and in neural activity. Because the exact nature of the stimulus used to
provide feedback is not important for the changes we study, we have not examined whether
the transient end-of-trial responses are associated with the primary or secondary
reinforcement stimuli (cf. Wirth et al., 2009). This is because in either case, the signal is
likely to arise from the midbrain dopaminergic system, whose neurons have been shown to
fire in response to both types of reinforcers (Schultz et al., 1993a). Specifically, dopamine
neurons code for reward predictions, and they begin to fire in response to many sorts of
secondary reinforcers when these reinforcement stimuli predict future rewards (Schultz,
1998). Thus, whether these neurons fire for reward alone or for trial outcome, they strongly
encode information about a key element of learning: whether responses were correct or
incorrect.

Relation to previous work
Other laboratories have studied similar effects in other task contexts. Lee and colleagues
(Barraclough et al., 2004; Seo et al., 2007; Seo and Lee, 2009) have demonstrated that past
history of reward can modulate the task-related responses of neurons in a mixed-strategy
game. They have found these effects in several frontal lobe areas, including the
supplementary eye fields (also called the dorsomedial frontal cortex, or DMFC), the
cingulate cortex, and the PFC. These studies, however, did not closely compare transient and
sustained outcome-related activity (though they have found some signatures of this; e.g. Fig.
6, Seo and Lee, 2009). Wirth et al. (2009) studied the hippocampus and identified neurons
that show outcome-related activity and also change their task-related responses based on
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prior outcome (cf. Supp. Fig. 1). Narayanan and Laubach (2008) saw outcome-related
effects in rat frontal but not motor cortex. Taken together with our work, these studies
suggest that the effects we observed reflect general mechanisms for learning that are present
in many learning-related brain areas. Future studies are needed to examine how information
flows between these structures.

We have previously (Pasupathy and Miller, 2005) described how direction and cue
selectivity evolves with learning. The present study explores a number of new phenomena.
First, this report examines outcome-related signals. Second, we show here how single trials
impact the strength of information about the task. Our prior work focused on the timecourse
of selectivity, comparing latency of direction selectivity near the beginning (right after a
reversal) and the end of learning (just before the next reversal). Here, we look at how the
strength of direction selectivity on a single trial is affected by the trial that immediately
precedes it, no matter if it is at the start or end of each block. In fact, we show that the
single-trial effect is only weakly affected by the position in the block (Fig. 5). While
apparently at odds, these two effects are complementary. Because learning results in more
and more correct trials, there are fewer error trials at the end of learning than at the
beginning. We find that a single error trial has a constant effect on the next trial no matter
where it occurs, and that the accumulation of them at the beginning of a block produces the
average effect we previously reported.

But why should neurons weight error trials at the start and end of learning similarly? We
expected that the animal would obtain much more information from early than late error
trials, as early error trials were key to re-learning the reversed association. We think that this
is explained by the strategy the animals used. In this task, reversals occurred with no explicit
cue. Because each error trial, especially at the end of learning, might have signaled a
reversal, it makes sense to attempt a few guesses after an error, no matter where it occurred,
to determine if a reversal had happened. Under the task constraints we imposed, this was a
rational behavioral strategy (see also Fusi et al., 2007).

Both behavior and neural responses were more accurate after correct than error trials. This
suggests that the animals learned more from correct trials than mistakes; in other words, a
correct trial told the animal more about how to make future responses than an error trial.
While this may be a strategy specific to this task, it may also be a more general strategy for
animal learning that bears future investigation.

Conclusion
The results reported here show that these two areas, previously known to show learning-
related changes, also have full information available to them to do all the neural
computations necessary for learning. Here we have shown that cells show robust signals
about the outcome of behavioral responses, and that these persist between trials.
Furthermore, after a correct trial, cells increase their selectivity for the association to be
learned, and likewise decrease it after an incorrect trial. This may represent a single-trial
snapshot of the learning process — how single cells change their responses in real time as a
result of information about what is the right action and what is the wrong one.

Methods
Behavioral task

Animals began each trial by fixating a central spot for 800 ms, followed by the appearance
of the picture cue for 500 ms and then a 1000 ms memory delay period. The end of the delay
was signaled by the disappearance of the fixation spot and the appearance of two identical
saccade target spots, one on the left and one on the right. Animals made a saccadic eye
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movement to one of the two possible saccade targets. Animals had to learn, by trial and
error, an arbitrary association between the two cues and the two possible responses. After
animals could perform the association well (after at least 30 correct responses and 90%
correct trials over the previous 10 trials for each cue) the association was reversed with no
signal, and they had to relearn the new association. Perhaps because there was no explicit
signal, so that any error might signal a reversal, the animals relearned the association slowly
after reversal (Fig. 1). Each recording session consisted of 3–8 reversals (4–9 trial blocks).
By requiring animals to repeatedly relearn the associations, we could dissociate learning-
related effects from artifactual effects that resulted from slow shifts over the course of a
session, related i.e., to motivational changes or changes in the position of the electrode
relative to a neuron.

The cues were complex color images and were new for each recording session so that
animals had no prior response associated with a cue. Two other sets of cues, both with non-
reversing cue-response associations, were intermixed with the two reversing cues (total 6
cues), a set of highly-familiar cues which were unchanged from day to day, and a set which
were new each session. Data presented here comes from the first set of novel cues with
reversing associations only.

When animals made the correct response, they received drops of juice paired with a tone for
each drop. The first tone and drop began 100–130 ms after a correct saccade was completed.
The next trial began in 5.5 seconds. If a correct response was made, the saccade targets were
left in place for 500 ms to provide a fixation target and reduce post-reward saccades. If an
incorrect response was made, a visual error stimulus (a large red square) was displayed
during an additional 1 second delay before the start of the next trial. A black screen occupied
the remaining interval (final 5–5.5 s) between trials. The time of outcome feedback was
defined as the time of the beep for correct and the time of red square onset for error trials.
To ensure that the slight difference in interval between trials (correct: 5.5 s, error, 6.5 s) did
not affect our results, we computed outcome measures both forward from the end of each
trial and backward from the start of the next (Fig. 2E). This did not change the effects.

Data analysis
The recording methods used here are described in Pasupathy and Miller (2005); the data set
described there is the same set used here. All recording and animal procedures were in
accordance with US National Institute of Health (NIH) guidelines and were conducted under
the guidance of MIT veterinary staff and with the approval of the MIT Institutional Animal
Care and Use Committee.

We recorded all neurons with sufficiently large signals without pre-selecting neurons for
task-related responses like saccadic or visual responses (722 PFC neurons, 597 Cd neurons).
For population direction analyses (Fig. 4, Fig. 5), we used the neurons which showed a
significant effect of cue or of saccade via ANOVA, as well as being stably recorded for at
least 3 reversals — 4 instances of learning (N=350, PFC; 249, Cd). All directional analyses
used the actual saccade direction, not the cued direction on that block (identical on correct
trials but different if the response was an error). For the population outcome ROC plot (Fig
2E), to compare effect magnitude across the time of reward and the inter-trial interval we
used all neurons which showed a significant effect of reward in both time periods, via non-
parametric ANOVA (p<0.05; N=94, PFC; N=85, Cd. Number of cells significant at p<0.05
in reward period by itself: N=237, PFC; N=186, Cd; in inter-trial interval: N=125, PFC;
N=110, Cd). The effect in each interval was qualitatively similar and remained significant if
we used all cells that were significantly modulated by reward in that interval.
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The histograms (Figs. 2, 3) were calculated by convolving the spike train with a 140 ms
square window. All ROCs were computed over a 200 ms sliding window, which gave
slightly more statistical power than a 140 ms window. To compute the area under the ROC
curve, for each neuron we divided the set of trials into two groups, i.e correct vs. error for
the outcome ROC. Then, we constructed the ROC curve: the fraction of correct decisions
(“hits”) that an ideal observer would make vs. incorrect decisions (“false alarms”) as the
threshold is varied (Green and Swets). The area under this curve is the probability that an
ideal observer successfully chooses the correct trial condition given the firing rate on that
trial, and thus gives a measure of overlap of the two firing rate distributions (e.g. Dayan and
Abbott, 2001). The ROC values we computed were similar between the two animals and so
for the population figures we pooled each animal’s data together. Because there is no a
priori preferred case for e.g. reward vs. error (Supp. Fig. 3), we rectified ROC values around
0.5. To correct for biases in ROC values, we used a shuffle-corrector: for each cell and time
point, we randomly shuffled trials between the two groups and repeatedly recomputed the
ROC. Then, we subtracted the difference between the shuffled, random value and 0.5 from
the measured ROC. (See Supp. Fig. 2 for further details.) Supporting the validity of these
procedures, we found that post-correction, the mean fixation-period direction ROC was 0.5
(Fig 4A–B); further, these ROC results agreed with results found using a linear model
(Supp. Fig. 5).

The trial time periods were defined as follows: Transient selectivity after the outcome
feedback (“reward period”, Fig. 6) was computed from the time of the correct or error
feedback to 500 ms afterwards. Outcome selectivity lasting from one trial to the next (“inter-
trial period”) was computed 2–4000 ms after the outcome feedback, and computing it from
2500 ms to 500 ms before the start of the next trial produced nearly identical results. The
cue period was from the onset of the cue till its offset 500 ms later, and the delay period is
1000 ms long, from cue offset. The saccade period was chosen to cover pre- and post-
saccadic peaks (Bruce and Goldberg, 1985) and was defined as from the offset of the
fixation point signaling the beginning of the response period to 500 ms later.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Behavioral task
A, schematic of the associative learning task. Animals were required to learn, by trial-and-
error, an arbitrary association between a picture cue and a directional eye movement
response. On each trial, they held their eye position on a central fixation point for 800 ms,
and then the cue was turned on for 500 ms. After a 1000 ms memory delay period, the
fixation point was extinguished and the animals made their response; the correctness of the
response was signaled immediately after the saccade (see Methods). After animals had
learned this association, we reversed the pairing with no explicit signal and animals
relearned the reversed association. B, Average learning curve, showing performance before
and after reversal. X-axis: trial number; at trial 0, the association was reversed with no
signal, almost always causing an error (trial 1). Within a few trials, performance reverted to
near 50% and then gradually increased as animals learned the new pairing. Error bars:
S.E.M.
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Figure 2. Cells signal correct or error outcome
A1–3: Single cell recorded from the PFC showing an increase in firing rate after correct
outcome was signaled. All three panels show data from the same set of trials. X-axes: time
from correct/error feedback signal. Top panel (A1): trial raster; each tick corresponds to a
spike. Each row is a different trial; blue ticks, response times (end of saccadic eye
movement); trials are sorted by response time within each of the four trial groups. Middle
panel (A2): histogram of the same trials. Firing rates (colored lines) were computed by
convolving the spike trains in A1 with a 140 ms square kernel. Gray lines: 1 S.E.M. Bottom
panel (A3): information that this cell gives about correct vs. error at each time point,
measured as area under ROC curve (Y-axis). B1-B3: a 2nd cell from Cd which exhibits a
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similarly strong increase in firing rate on correct trials. C1-C3 and D1-D3: single PFC and
Cd cells showing sustained responses about reward vs. error that lasted for several seconds
into the next trial. Conventions as in A and B. E, population summary. Y-axis: mean reward
information (reward ROC area) over the population of cells from each area. Blue, PFC mean
(N=85; see Methods); red, caudate (N=94). Gray lines: 1 S.E.M. X-axis: time from correct/
error feedback signal. Dotted lines indicate baseline information maintained from previous
trial (see Discussion); elevation above this level shows additional information gained by
neurons because of a single trial’s reward. Left panel: data aligned on reward onset; right
panel: aligned on the next trial’s fixation onset (note inter-trial period length for errors: 6.5
s; for corrects: 5.5 s). The population of recorded cells from both areas signals whether
single trials are correct or incorrect, and this information is maintained until the next trial.
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Figure 3. Direction signal is stronger when previous trial is correct: single cells
Left panels (A1-A4): single PFC cell showing increased direction selectivity after previous
trial was correct versus when the previous trial was an error. A1: trial raster; conventions as
in Fig. 2A1. Trials are arranged by the response direction the animal chose on a given trial
and the correct/error status of the previous trial. A2: Histogram of firing rates, conventions
as in Fig. 2A2. A3: Information carried by this cell (measured by ROC area) about the
correct vs. error outcome of the previous trial, averaged over response direction of the
current trial. A4: Information (ROC area) about the response direction of the current trial,
plotted in green when the previous trial was correct and red when the previous trial was an
error. Right panels (B1-B4): a single cell recorded from the caudate nucleus; conventions as
in A1-A4. Both cells give more information about the animal’s intended response (i.e. ROC
area is larger) when the previous trial was correct.
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Figure 4. Direction signal is stronger when previous trial is correct: population summary
A, Averaged direction ROC values for all PFC cells when the previous trial was correct
(solid blue line) vs. previous error (dotted blue line). Black lines: 1 S.E.M. X-axis, time in
trial, Y-axis: average ROC value. B, Averaged direction ROC values for all Cd cells;
conventions as in A. For both areas, information about direction is stronger after a correct
trial than after an error trial. C-D, Distribution, over all cells, of the difference in ROC value
after correct and after error. For each cell, we subtracted the delay period direction ROC
value after correct trials from that after error trials. C, blue: PFC cells; D, red: Cd. The
distributions are significantly shifted to the right (PFC: p<10−7, Cd: p<10−8, Wilcoxon test),
showing stronger direction tuning after correct trials. E, Behavioral performance on the next
trial after a correct or error trial. Error bars: std. dev. over 63 experimental sessions.
Performance was much higher when the previous trial was correct than when the previous
trial was an error.
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Figure 5. Increases in direction selectivity after correct trials occur both at the start and end of
learning
Y-axis, the delay period direction selectivity (area under ROC curve) of all cells in the
population after correct trials, middle bars, and after error trials, right bars. Each repetition
of learning, from one reversal to the next, was divided into two sets of trials; the first half
are shown as dark gray bars (“start of learning”), and light gray bars show the second half
(“end of learning”). The ROC area from the fixation (baseline) period is shown at left. A,
PFC neurons; B, Cd. These data show that the increases in direction selectivity after a
correct trial exist both early and late in learning.
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