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ABSTRACT

Mammalian inosine triphosphatase encoded by ITPA
gene hydrolyzes ITP and dITP to monophosphates,
avoiding their deleterious effects. Itpa- mice
exhibited perinatal lethality, and significantly higher
levels of inosine in cellular RNA and deoxyinosine in
nuclear DNA were detected in Itpa~ embryos than in
wild-type embryos. Therefore, we examined the
effects of ITPA deficiency on mouse embryonic
fibroblasts (MEFs). Itpa™ primary MEFs lacking ITP-
hydrolyzing activity exhibited a prolonged doubling
time, increased chromosome abnormalities and
accumulation of single-strand breaks in nuclear
DNA, compared with primary MEFs prepared
from wild-type embryos. However, immortalized
Itpa MEFs had neither of these phenotypes
and had a significantly higher ITP/IDP-hydrolyzing
activity than [ltpa~ embryos or primary MEFs.
Mammalian NUDT16 proteins exhibit strong dIDP/
IDP-hydrolyzing activity and similarly low levels
of Nudti6 mRNA and protein were detected in
primary MEFs derived from both wild-type
and Itpa- embryos. However, immortalized Iltpa™
MEFs expressed significantly higher levels
of Nudt16 than the wild type. Moreover, intro-
duction of silencing RNAs against Nudt16 into
immortalized Itpa— MEFs reproduced ITPA-deficient
phenotypes. We thus conclude that NUDT16 and
ITPA play a dual protective role for eliminating

dIDP/IDP and dITP/ITP from nucleotide pools in
mammals.

INTRODUCTION

The accumulation of modified or damaged bases in
genomic DNA is a major threat for the alteration of
genetic information as a result of mutagenesis or even
for programmed cell death. It has been established that
such damaged bases in genomic DNA arise from two inde-
pendent pathways: one is a consequence of the direct mod-
ification of the normal bases in the DNA and the other is
that of the incorporation of modified nucleotides
generated in resident nucleotide pools (1,2).

To control the quality of the nucleotide pools, organisms
possess a number of nucleoside triphosphatases, which
degrade non-canonical nucleoside triphosphates to the cor-
responding monophosphates. We had identified and
characterized three mammalian enzymes: (i) oxidized
purine nucleoside triphosphatase encoded by MTH1 gene
for 8-0x0-2'-deoxyguanosine triphosphate (8-0xo-dGTP),
8-0x0GTP, 2-hydroxy-2’-deoxyadenosine triphosphate
(2-OH-dATP) and 2-OH-ATP (3.,4); (ii) inosine
triphosphatase encoded by ITPA gene for deaminated
purine nucleoside triphosphates such as 2’-deoxyinosine
triphosphate  (dITP), ITP and 2’-deoxyxanthosine
triphosphate (dXTP) and XTP (5,6); and (iii) a newly dis-
covered enzyme, dCTP pyrophosphatase encoded by
DCTPPI gene for halogenated dCTPs such as 5-iodo-2'-
deoxycytidine triphosphate (7).

To clarify the biological significance of the damaged
nucleotides and the enzymes that eliminate them, we had
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previously produced and analyzed knockout mice lacking
MTHI1 or ITPA. Mthl~~ mice are viable and survive
normally but exhibit an increased incidence of spontane-
ous tumorigenesis in the liver, stomach and lung (8), while
Itpa~~ mice die before weaning with features of growth
retardation and heart failure (6).

ATP, the most abundant of the nucleotides, plays a
fundamental role in a wide variety of cellular processes,
including energy transfer, signal transduction, RNA
synthesis,  cytoskeleton  remodeling and  muscle
contraction. Deamination of adenine at C-6 converts
ATP to ITP; such modification is catalyzed by enzymes
such as adenosine or AMP deaminase (9), or induced
chemically under oxidative stress (7). Because ITP
retains a molecular structure similar to that of ATP, it
can act as an aberrant substrate replacing ATP in some
biological processes (10,11). In the case of cardiac
function, a number of sarcomere proteins require ATP
for their normal activities. It is likely that during cardiac
development in Itpa~" mice the accumulated ITP
competes with ATP, which is required for actomyosin
function in the sarcomere, thus causing heart failure (6).

Bradshaw and Kuzminov (12) reported that an
Escherichia coli mutant of rdgB gene-encoding inosine
triphosphatase has no obvious phenotype; however, the
mutant exhibits synergistic lethality in the presence of
recA or recBC mutations. They concluded that RdgB
acts to avoid incorporation of 2’-deoxyinosine (dI) in
DNA and thereby blocks chromosome fragmentation by
hydrolyzing dITP in E. coli. These observations strongly
suggest that ITPA deficiency in mouse cells also causes
chromosomal abnormalities.

In the present study, we examined mouse embryonic
fibroblasts (MEFs) prepared from wild-type (Itpa™'™),
Itpa™'~ and Itpa~" embryos to explore the cellular
dysfunction caused by ITPA deficiency. We found that
Itpa~"~ embryos accumulated more than eight times
higher levels of dI in nuclear DNA than did wild-type
embryos. Moreover, Itpa~/~ primary MEFs with no
ITP-hydrolyzing activity exhibited prolonged doubling
times, increased chromosome  aberrations and
accumulation of single-strand breaks in nuclear DNA.
Surprisingly, these phenotypes all disappeared following
immortalization of Izpa~"~ MEFs, with a significant
increase in IDP-hydrolyzing activity accompanied by a
decreased accumulation of dI in nuclear DNA. We have
thus identified a novel enzyme which constitutes a dual
enzyme system for eliminating dITP/ITP and dIDP/IDP
from nucleotide pools together with ITPA in mammals.

MATERIALS AND METHODS
Nucleotides

Nucleotides used as substrates for enzyme assay were
purchased from Sigma-Aldrich (St Louis, MO, USA), or
Jena Bioscience GmbH (Jena, Germany). Separation and
purification of nucleotides were performed on a Waters
Alliance 2690 HPLC separation module (Waters Corp.,
Milford, MA, USA) equipped with a Model 996
photodiode array detector and a Wakopak Handy ODS

column (4.6 x 250 mm) using 100 mM triethyl ammonium
hydrogen carbonate solution (pH 7.4) (Wako Pure
Chemicals, Osaka, Japan) as the mobile phase. Purified
nucleotides were lyophilized five times with solubilization
in distilled water.

Itpa gene knockout mice

Itpa gene knockout mice were established as described (6).
Genotypes were analyzed using tail DNA. PCR primers
used to detect the wild-type and Itpa mutant alleles were
P46 and P47, or P29 and LNEOI, respectivel/y (Sup-
plementary Table S2). Heterozygous male (Itpa''~) were
backcrossed with C57BL/6J female (Izpa™' ™) (Clea Japan,
Tokyo, Japan) for more than five generations (N > 5). All
animals were maintained in an air-conditioned, light/
time-controlled, specific-pathogen-free room. All studies
were approved by the Animal Care and Use Committee,
Medical Institute of Bioregulation, Kyushu University.

Preparation of primary and immortalized MEFs

Twenty embryonic gestation day (E)13.5 and El14.5
embryos were obtained by intercross mating of inbred
NI10 or N11 Itpa™'~ mice (three pairs). Their genotypes
were Itpa™/™, Itpa™'~ and Itpa' at a ratio of 5:10:5.
Skin fibroblasts were aseptically isolated from these
embryos and at least four independent embryos were
used for each genotype (Itpa™'™, Itpa™'=, Itpa™").
These primary MEFs were cultured in Dulbecco’s
Modified Eagle’s Medium (DMEM) supplemented with
10% heat-inactivated fetal bovine serum (FBS),
100 units/ml penicillin and 100 pg/ml streptomycin at
37°C under 5% CO, in air. Primary MEFs in culture
were harvested by treatment with 0.15% trypsin—0.08%
EDTA in PBS and replated for further passage. Those
from Passage 2 were stocked as primary MEFs.
Spontaneously immortalized MEFs were established
after single colony isolation during 30-40 passages.
Their genotypes were determined by genomic polymerase
chain reaction (PCR) amplification and three lines of
immortalized MEFs were independently established from
three embryos for each genotype.

Cell proliferation assays

Primary or immortalized MEFs were seeded at 1 x 10°
cells (Figures 1C and 4A) or 0.5 x 10°cells (Figure 7C)
per well in six-well plates (Nalge Nunc International
K.K., Tokyo, Japan). Cells were harvested every 2days
or every day, respectively, and the numbers of cells were
counted using a hemocytometer.

Cell-cycle analysis

Flow cytometric analysis of the cell cycle was performed
as described (13). Cells (1 x 10° cells per assay) were
centrifuged, washed with phosphate buffered saline
(PBS) and suspended in PBS containing 0.2% Triton
X-100. We then added 5pl of RNase A (1 mg/ml) and
50l of propidium iodide (PI, 1mg/ml). DNA content
and cell numbers were analyzed with an LSR flow
cytometer (Becton Dickinson, San Jose, CA, USA). The
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Figure 1. ITPA-deficient primary MEFs exhibit various cellular dysfunctions. (A) ITPA deficiency caused a significantly increased accumulation of
inosine in cellular RNA. Inosine level was determined by LC-MS/MS analysis of cellular RNA prepared from embryos (N3) Result of non-repeated
measures ANOVA (two-tailed), P = 1.69 x 10~". Student-Newman-Keuls (SNK) post hoc test, **P <0.01 (versus Itpa*’" and Ipa™'"). Data are
shown as the mean + SD (n = 3 independent embryos). (B) ITPA deficiency caused a significantly increased accumulation of deoxyinosine (dI) in
nuclear DNA. Deoxyinosine (dI) level was determined by LC-MS/MS analysis of nuclear DNA prepared from embryos (N3). Result of non-repeated
measures ANOVA (two-tailed), P = 0.00038. SNK post hoc test, **P <0.01 (versus Itpa™'* and Itpa™ /™). Data are shown as the mean + SD(n=3
independent embryos). (C) ITPA deficiency i 1mpa1rs normal cell proliferation. Prlmary MEFs (Passage 2) isolated from four separate /zpa”" embryos
showed significant prolonged doubling time in comparison to those from Irpa /" and Itpa™/~ embryos Result of repeated measures ANOVA
(two-tailed), P = 0.0005. Bonferroni/Dunn post-hoc test, *P < 0.05 (versus Itpa*'™), **P <0.01 (versus Itpa*'"). Data are shown as the mean + SD
(n = 4 independent MEFs). (D) ITPA deficiency causes G2/M arrest. Primary MEFs (Passage 5) were subjected to flow cytometry analysis and the

percentages of Cell-cycle phases in each MEF set were determined. Result of non-repeated measures ANOVA (two-tailed), P =1.74 x 10~ 8

Bonferroni post hoc test, **P <0.01 (versus Itpat/™"

data were analyzed using CellQuest and ModFit software
(Becton Dickinson).

Karyotype analysis

A 50% confluent culture of MEFs was treated with
0.1 pg/ml colcemid (Nacalai Tesque Inc., Kyoto, Japan)
for 30 min. After hypotonic treatment of harvested cells
in 75mM KCI, cells were fixed in freshly prepared
Carnoy’s fixative (methanol:acetic acid 3:1), and the cell
suspension was dropped onto a glass slide, air-dried and
immediately stained with freshly prepared Giemsa staining
solution (Merck KGaA, Darmstadt, Germany cat. no.
1.09204.0509, 25x diluted in PBS) for 20min. After
rinsing the slide in PBS twice and in distilled water
twice, air-dried slides were cover-slipped using Permount
(Fisher Scientific, Waltham, MA, USA; SP15-100). The
slide was observed under an Axioscope 2 plus microscope
equipped with AxioCam and AxioVision software

and Itpat/7). Data are shown as the mean + SD (n = 3 independent isolates).

(Carl Zeiss Microlmaging Japan, Tokyo, Japan). A total
30 cells in metaphase was examined for each preparation.

Quantification of deoxyinosine or inosine by liquid
chromatography coupled with tandem mass spectrometry

The preparation and digestion of nuclear DNA samples
were as described (14), except that 10mM 2, 2, 6,
6-tetramethylpiperidine-N-oxyl (TEMPO, Wako Pure
Chemicals) and 20 puM 2’-deoxycoformycin (a kind gift
from the Chemo-Sero-Therapeutic Research Institute,
Kumamoto, Japan), an adenosine deaminase inhibitor,
was added at all stages of manipulation, as described by
Taghizadeh et al. (15). RNA was prepared using RNeasy
Mini Kits (Qiagen Inc., Valencia, CA, USA) according to
the manufacturer’s instructions in the presence of 20 mM
TEMPO and 20 uM 2’-deoxycoformycin. DNA or RNA
samples were digested with nuclease P1 (Yamasa, Chiba,
Japan) and alkaline phosphatase (Sigma-Aldrich, P-5521)
and digested samples were subjected to LC-MS/MS



2894 Nucleic Acids Research, 2010, Vol. 38, No. 9

analysis using the Shimadzu VP-10 HPLC system
(SHIMADZU  CORPORATION, Kyoto Japan)
connected to the API3000 MS/MS system (PE-SCIEX,
Applied Biosystems, Foster City, CA, USA), as
described (14).

Immunostaining

To detect single-stranded (ss) DNA, the slides were
incubated with anti-ssDNA (IBL, Takasaki, Japan; code
number 18 731, 1/100 dilution) in combination with Alexa
Fluor 488-conjugated goat anti-rabbit IgG (Invitrogen,
Carlsbad, CA. USA), as described (16). Nuclei were
counterstained with 4', 6-diamino-2-phenylindole (DAPI,
50 ng/ml; Vector, Burlingame, CA, USA). A cover slide
was mounted onto the slide with Vectashield (Vector). The
slide was observed using an Axioskop 2 plus microscope
equipped with AxioCam and AxioVision software (Carl
Zeiss Microlmaging Japan). A total of 100 cells were
examined for each preparation.

Inosine triphosphatase and Inosine diphosphatase assays

Embryo samples or pellets of immortalized MEFs (1 x 10’
cells) were washed twice with PBS and quickly frozen in
liquid nitrogen. Frozen samples in 100 ul of lysis buffer
containing 50mM Tris-HCl (pH 8.0), S0mM NacCl,
I mM dithiothreitol and protease inhibitor cocktail
(Nacalai Tesque), were sonicated at 4°C. The lysate was
centrifuged at 17360 x g for 60min and the supernatant
was collected as a crude cell extract. The protein concen-
tration was determined with a Protein Assay system
(Bio-Rad, Hercules, CA, USA) using bovine serum
albumin (Thermo Fisher Scientific Inc., Waltham, MA,
USA) as a standard. Inosine triphosphatase or Inosine
diphosphatase activities were assayed by measuring the
hydrolysis of ITP or IDP to IMP. The reaction mixture
contained S0mM Tris—=HCI (pH 8.5), 50mM MgCl,,
ImM DTT, 0.2mM ITP or IDP and 1-10pug of the
crude-cell extract to be examined. The reaction was run
at 30°C for 20 min and stopped by adding 150 mM EDTA.
The reaction mixture was applied to HPLC analysis as
described (6). Separation and quantification of nucleotides
were performed by HPLC using a Waters Alliance 2690
separation module equipped with a Model 996 photodiode
array detector. A buffer consisting of 75 mM sodium phos-
phate (pH 6.4), 0.4 mM EDTA, with 20% acetonitrile was
used as the mobile phase in a TSK-GEL DEAE-2SW
column, 4.6 x 250 mm (Tosoh Corp., Tokyo, Japan).

Quantitative real-time reverse transcription polymerase
chain reaction

MEFs were seeded at 1 x 10° cells per well with 500 pl of
medium in 24-well plates and cultured to 70-80%
confluency, or for 3days. RNA was extracted from the
harvested cells using an Isogen kit (Nippon Gene Inc.,
Tokyo, Japan). Totally 2 ug of total RNA was subjected
to RNase-free DNase I treatment and cDNA synthesis
using random decamers and a Cells-to-cDNA II kit
(Ambion), according to the manufacturer’s instructions.
Quantitative real-time PCR was performed using an ABI
Prism 7000 sequence detection system with 10 ng cDNA,

a set of Nudtl6 primers (FmNud3RT, RmNud3RT;
200nM) or a set of Gapdh primers (F-Gapdh, R-Gapdh;
50nM) and Power SYBR Green PCR Master Mix
(Applied Biosystems) in a total volume of 25ul. The
PCR reaction was performed as follows: a single cycle of
50°C for 2 min, a single cycle of 95°C for 10 min, followed
by 40 cycles of 95°C for 15s and 60°C for 1min. The
primers were designed using PRIMER EXPRESS
software (Applied Biosystems) and their sequences are
shown in Supplementary Table S2. Specificity of the
PCR products was established by dissociating curve
analysis and by running the products on a 2% agarose
gel to verify their size. The Nudtl6 mRNA level is
expressed relative to the Gapdh mRNA level. Serially
diluted cDNA was used to obtain a standard curve for
each transcript.

Western blotting

MEFs were seeded at 5x 10° cells per dish in 10ml
medium in a 90mm Petri dish (Nalge Nunc
International K.K.) and were cultured to 70-80%
confluency or for 3 days. Cells were washed twice with
PBS and harvested using 2x SDS sample buffer
[125mM Tris—=HCI (pH 6.8), 4% SDS, 10% glycerol,
4% 2-mercaptoethanol]. The protein concentration was
determined using a Protein Assay system as above.
Protein samples were separated by SDS-PAGE and trans-
ferred to 0.45 um Immobilon-P membrane (Millipore Inc.,
Madison, WI, USA) and western blot analysis using
anti-hNUDTI16 (1 pg/ml) or anti-ITPA antiserum (1/500
dilution) (5) with horseradish peroxidase-conjugated
protein A and an ECL-Plus kit (GE Healthcare
Bio-Sciences, Piscataway, NJ, USA) was performed as
described (17). The same membrane was treated with
WB stripping solution (Nacalai Tesque) and reprobed
with anti-GAPDH (Millipore, Inc., Billerica, MA, USA;
MAB374, 10°x diluted) and HRP-anti-mouse I1gG (BD
Biosciences, San Jose, CA, USA).

Expression of recombinant mouse NUDT16 protein

An expression vector for the mouse NUDT16 protein was
constructed by inserting the Ndel-HindIII fragment of
pET28a(+):mNudtl6 into the Ndel-HindIII region
of pET32a(+) (Merck KGaA), thus Trx-Tag-His-
Tag-S-Tag sequences were removed. Escherichia coli
BL21 cells were transfected with pET32a(+) vector
or pET32a:mNudtl6 wusing a Cell-porator (Life
Technologies, Carlsbad, CA, USA) according to the man-
ufacturer’s instructions. Transformants were selected on
LB-agar plates in the presence of 30 pg/ml ampicillin.
Established transformants were cultured until the ODgqq
reached 0.6 and then incubated with 1mM isopropyl
B-p-thiogalactoside for a further 3 h. Cells were harvested
by centrifugation and resuspended in I ml of 2x SDS
sample buffer. Samples were subjected to 12.5% SDS—
PAGE and the expression of mouse NUDTI16 protein
without tag was confirmed by western blotting.



Introduction of silencing RNA into immortalized MEFs

Nudt16 siRNA (Ambion/Applied Biosystems, Austin, TX,
USA; Silencer Select; s93780, s93782, 25 uM) or control
siRNA (Ambion/Applied Biosystems, Silencer Select
Negative Control #1 siRNA, cat. no. 4390844) was
introduced into immortalized MEFs (Itpat'™", Itpa™")
by electroporation using a MicroPorator-mini (Digital
Bio Technology, Seoul, Korea, MP-100, 1100V, 10ms
for 2 pulses) and cells were replated appropriately into
six-well plates 1day after electroporation for further
analysis.

Statistical analysis

Statistical analysis was performed using Stat View 5.0
(SAS Institute Inc., Cary, NC, USA). The statistical
significance between two groups was determined with
Student’s #-test, and that among more than three groups
was determined with non-repeated or repeated measures
ANOVA with an appropriate correction for multiple
comparisons as described in each figure legend.
P-values <0.05 are considered statistically significant.

RESULTS

ITPA deficient primary MEFs exhibit various cellular
dysfunctions

Itpa~ mice with a 129-C57BL/6J mixed genetic back-
ground exhibited incomplete embryonic lethality and the
surviving pups die about 2 weeks after birth with growth
retardation and heart failure (6). After backcrossing the
heterozygotes (Itpa /™) to C57BL/6J mice for more than
five generations (N3), intercrosses of the obtained Itpa ™/~
mice yielded Itpa~'~ embryos in uterus in accordance with
Mendel’s laws until embryonic gestation day (E) 18, but
there were few newborn pups (Supplementary Table S1),
indicating that ITPA deficiency causes perinatal lethality
in a C57BL/6J genetic background.

We confirmed significantly increased accumulation of
inosine (567.3 + 41.4 residues per 10° guanosine) in
cellular RNA prepared from Irpa~/~ embryos (N14) in
comparison to those from Irpa™’* (10.5 + 1.50) and
Itpa™'~ (11.4 + 1.07) embryos by liquid chromatography
coupled with tandem mass spectrometry (LC-MS/MS)
analysis (Figure 1A), as previously observed in various
tissues of surviving Ipa~'" pups (6).

Furthermore, LC-MS/MS analysis of nuclear DNA
prepared from embryos revealed that Irpa~'~ embryos
(E14.5) obtained from intercrosses of Itpa™/~ mice (N3)
contained significantly more dI in their nuclear DNA
(20.1 + 4.8 residues per 10° nucleosides): more than
eight times that measured in [Jpa” /" embryos
(2.34 £ 0.76) (Figure 1B). The increased dI levels were
also confirmed in [Ipa~/ embryos after further
backcrossing to C57BL/6J mice (N14, E13.5, 24.5 + 2.24
dI residues per 10° nucleosides).

To examine the nature of the cellular dysfunction
caused by ITPA deficiency, we isolated embryos (at
E13.5 and E14.5) from intercrosses of Ipa™ /™ littermates
(N10, one pair; NI11, two pairs) and determined their
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genotypes (Supplementary Table S1). Among 20
embryos, five were found to be Itpa™'", 10 were Itpa™t/~
and the remaining five were Itpa"'". Then we isolated
primary MEFs independently from four embryos of
each genotype and their genotypes and the expression
levels of ITPA protein were confirmed (Supplementary
Figure SIA and B). All Irpa~ primary MEFs at the
second passage showed significantly longer doubling
time (132.0 = 14.6h) than those from [Iipa™/™
(78.6 £ 10.1h) and [Ipa™/~ (87.5+ 14.3h) embryos
(Figure 1C). There was no obvious difference in their mor-
phology under phase contrast microscopy (Supplementary
Figure S1C). In Passage 5, we observed essentially the
same proliferation deficiency in Itpa~/ MEFs and
slightly increased numbers of senescence-associated
B-galactosidase (SA-B-Gal)-positive cells in Itpa~
MEFs (Itpa™’* versus Itpa™", 3.64% versus 7.74%;
Supplementary Figure S2A and B). Flow c?/tometry
analysis of the cell cycle revealed that Itpa™"~ MEFs
exhibited a significant increase in the G2/M phase
(Itpa™'* versus Itpa™, 28.4%  versus 77.4%:;
Figure 1D) and a sli;ht increase in the sub Gl fraction
(Itpa™™™" versus Itpa~'", 1.61% versus 5.51%; fraction M1
in Figure 2A). There was an apparent increase in cells with
an abnormally increased DNA content in /tpa~/~ MEFs
compared with Irpa®/* MEFs (fraction M3 in Figure
2A), indicating that the G2/M phase shown in Figure
1D might have contained some tetraploid cells at the G1
phase (Figure 2B). There was no increase in dead cells
detected as propidium iodide (PI)/Hoechst-double
positive cells (Supplementary Figure S2C). These results
indicate that ITPA deficiency caused delay or arrest in
cell-cycle progression. We further observed that exposure
of Itpa™", but not Itpa™'™, Itpa™/~ MEFs, to sodium
nitrite (NaNO,), which causes predominant deamination
of purine bases (18), resulted in growth suppression
without inducing cell death (Supplementary Figure S2C).
We next examined for chromosomal abnormalities in
mitotic cells (Figure 3A). As shown in Figure 3B, chro-
mosomal structural abnormalities were more frequently
observed in /tpa~/~ MEFs than in Izpa™’* MEFs, espe-
cially premature centromere separation (3.33 times more
common), chromatid gaps (2.04 times) and chromatid
breakages (1.52 times). Moreover, the percentage of cells
with abnormal chromosomes in Izpa~'" primary MEFs
was significantly higher than among Ipa™’" and
Itpa™’~ MEFs. There was an increase in ploidy
abnormalities among Itpa~/~ primary MEFs (Figure 2B):
thus 41.2% in the mitotic fraction exhibited tetraploidy,
while about 25% of mitotic fractions in Itpa™/" and
Itpa™'~ MEFs were detected as tetraploids. This con-
firmed the increase in ploidy among /zpa~/~ MEFs.
Because chromatid gaps or breakages are most likely to
be caused by the accumulation of single- or double-strand
breaks in DNA, we examined levels of single-strand
breaks (SSBs) in DNA wusing an antibody against
single-stranded (ss) DNA (anti-ssDNA) (Figure 3C) (16).
Immunofluorescence  microscopy with anti-ssDNA
revealed that the percentages of immunoreactive nuclei
in Itpa~"~ primary MEFs were significantly higher than
in Irpa®’" MEFs (Figure 3D). Thus, more SSBs
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Figure 2. Increased DNA content in ITPA deficient primary MEFs. (A) Flow cytometric analysis of the cell cycle was performed and the sub Gl
fraction (M1), diploid fraction (M2) and a fraction with an increased DNA content (M3) were determined. (B) ITPA deficiency increased chromo-
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P = 0.094. P-value is shown following a Bonferroni post hoc test.

had accumulated in the DNA of Itpa~’ primary
MEFs. Furthermore, the nuclei were heterogeneous
in Itpa~’~ MEFs and both the small and large nuclei
exhibited ssDNA immunoreactivity (Figure 3C).

Immortalization of Itpa—'~ MEFs reversed the
ITPA-deficient phenotypes with increased ITP/
IDP-hydrolyzing activity

To obtain established cell lines with ITPA deficiency,
spontaneously-immortalized MEFs were isolated after
30-40 passages of each primary MEF line. We noticed
that each immortalized MEF population showed the
same proliferation rate, irrespective of their genotype
(Figure 4A). The extent of chromosomal abnormalities
(Figure 4B), and both levels of dI (2.49 + 0.24dl
residues per 10° nucleosides) and ssDNA (positive in
6.17 £ 0.68% of cells) in nuclear DNA (Figure 7E and
F) were similarly decreased in immortalized Itpa~
MEFs. Furthermore, the G1 phase fraction increased
significantly in immortalized Izpa~'~ MEFs (Figure 5A)
compared with primary MEFs (Figure 2A). Because the
percentages of tetraploids were significantly higher in both
primary and immortalized Izpa~/~ MEFs than Itpa™/" or

MEFs. Results show non-repeated measures ANOVA (two-tailed):

Itpa™'~ MEFs (Figures 2B and 5B), the G2/M fraction in
immortalized Itpa~/~ MEFs was apparently less than in
primary Itpa~'~ MEFs.

To test whether any backup enzyme for ITPA deficiency
might exist in the immortalized Itpa~'~ MEFs, we
measured ITP-hydrolyzing activity in extracts prepared
from embryos and immortalized MEFs (Table 1,
Supplementary Figure S3). There was no detectable
ITP-hydrolyzing activity in extracts prepared from
Itpa~" embryos, but a significantly high rate was
detected in Itpa™’" embryos, thus confirming ITPA defi-
ciency in Jtpa~"~ embryos. We also confirmed that Irpa~/~
primary MEFs (Passage 3) did not generate IMP from
ITP. On the other hand, we detected substantial activity
in extracts from immortalized Itpa—'~ MEFs, although the
levels were less than 20% of that detected in immortalized
Itpa™/* MEFs or embryos. We then measured
IDP-hydrolyzing activity in these extracts (Table 1,
Supplementary Figure S3). Levels were increased both in
Itpa™'" and Itpa~~ MEFs during immortalization and
the activity was more significantly increased in immor-
talized Itpa~/~ MEFs than in immortalized Irpa™’™
MEFs. These results strongly suggest that an increased
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structural abnormalities were observed in /tpa™'~ primary MEFs (Passage 2). (B) ITPA deficiency increases chromosome abnormalities. The fre-

quency of chromosomal abnormality was significantly increased in Itpa~/~ MEFs in comparison to Itpa’/™

and Itpa®/~ MEFs. Result of

non-repeated measures ANOVA (two-tailed), P = 0.0149. Bonferroni post hoc test, P <0.01. Data are shown as pie charts with the mean + SD
(n = 4 independent isolates). (C) Detection of immunoreactivity against ssDNA in Itpa~~ primary MEFs. Immunofluorescence microscopy with
anti-ssDNA antibody (green) revealed significantly increased ssDNA immunoreactivity in nuclei (DAPI, blue) of /tpa™~ primary MEFs (Passage 2)
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expression of IDP or ITP-hydrolyzing enzyme(s) blocked
or reversed the ITPA-deficient phenotypes observed in
primary Itpa~'~ MEFs.

NUDT16 with strong (deoxy)inosine diphosphatase
activity is responsible for cancellation of ITPA-deficient
phenotypes and an increase in ITP/IDP-hydrolyzing
activity during immortalization

We recently found that the human NUDTI16 (nudix
[nucleoside diphosphate linked moiety X]-type motif 16)
protein, identified as an ITP/XTP/GTP binding protein,
has strong IDP and 2’-deoxy-IDP (dIDP)-hydrolyzing

activities with weak ITP/dITP-hydrolyzing activities.
We also confirmed that mouse NUDTI16 protein has
essentially the same activities as the human protein
(Iyama et al., in preparation). Therefore, we compared
Nudtl6 mRNA levels among primary and immortalized
Itpa™'™ or Itpa”~ MEFs (Figure 6A). Quantitative
real-time reverse transcription polymerase chain reaction
(RT-PCR) analysis revealed that the expression levels of
Nudtl6 mRNA were similar between primary MEFs
derived from Irpa™'" and Itpa~" embryos. In contrast,
the expression levels of Nudt/6 mRNA in immortalized
Itpa~"~ MEFs were more than 3-fold higher than those
of primary Itpa~"~ MEFs and more than 2-fold higher
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than those in immortalized Itpa™'" MEFs (Figure 6A).
Significantly increased expression of NUDTI16 protein in
immortalized Itpa~"~ MEFs was confirmed by western
blotting analysis of crude cell extracts prepared from
these MEFs (Figure 6B). We thus conclude that the
increased expression of Nudtl6 in immortalized Itpa='~
MEFs is responsible for the increase in ITP/
IDP-hydrolyzing activity compared with immortalized
Itpa™'* MEFs.

To examine the contribution of NUDTI16 to the
reversal of ITPA-deficient phenotypes in immortalized
Itpa~"~ MEFs, knockdown of Nudt16 mRNA expression
was performed using a mixture of two different Nudtl6
silencing (si)RNAs. This treatment caused an efficient
reduction of both Nudti6 mRNA and protein levels to
less than 20% of the levels seen in controls (Figure 7A
and B). Knockdown of Nudt16 expression in immortalized
Itpa~" but not in Irpa™’* MEFs caused a significant
reduction in proliferation rate (Figure 7C), as observed
in primary Itpa~"~ MEFs (Figure 1C).

We next measured inosine levels in cellular RNA with
or without Nudr16 siRNAs. Immortalized Itpa~/~ MEFs
contained 516.8 + 22.3 inosine residues per 10 guanosine
residues of RNA in the presence of control siRNA which
was slightly lower than that in Irpa™/~ embryos
(567.3 + 41.4 residues per 10° guanosine), and Nudtl6
expression  knockdown increased the level to
648.5 + 01.7 residues per 10° guanosine residues of
RNA (Figure 7D). As shown in Figure 7E, immortalized
Itpa~"~ MEFs contained 2.49 + 0.24 dI residues per 10°
nucleosides in nuclear DNA in the presence of control
siRNA which was equivalent to that in immortalized
Itpa™'™ MEFs (2.74+0.17 dI residues per 10°
nucleosides).  Nudtl6  expression  knockdown in
immortalized Irpa~~ MEFs significantly increased the
level more than 5-fold (12.73 + 0.99 residues per 10°
nucleosides). In contrast, knockdown of Nudtl6 expres-
sion in immortalized Itpa®™/" MEFs did not affect the
level of dI accumulation in nuclear DNA (2.96 + 0.3 dI
residues per 10° nucleosides).

Knockdown of Nudtl6 expression significantly
increased the immunoreactivity against ssDNA in
immortalized Itpa~~ MEFs (Figure 7F). Moreover,
karyotyping of immortalized Itpa~'~ MEFs after Nudt16
expression knockdown revealed a significant increase in
chromosome structural abnormalities, such as chromatid
gaps, premature separation and triradial forms compared
with controls (Figure 7G).

Thus, increased expression of Nudtl6 was responsible
for reversal of the ITPA-deficient phenotypes with reduc-
tion of dI accumulation in nuclear DNA but not inosine in
cellular RNA.

DISCUSSION

ITPA deficiency increases the accumulation of
deoxyinosine in nuclear DNA resulting in severe cellular
dysfunction

Here, we showed for the first time that ITPA deficiency
caused a significant accumulation of dI in the nuclear
DNA of mouse embryos, most of which are likely to die
around the time of birth. In wild-type embryos, fewer than
three residues of dI per 10° nucleosides, corresponding to
about 20000 residues in a whole cell, were detected in
nuclear DNA, whereas about 20 residues of dI per 10°
nucleosides reaching more than 10° residues per cell
accumulated in Itpa~/~ embryos. These results indicate
that both spontaneous generation of dITP and incorpora-
tion of dITP into DNA occurred at significantly high
frequencies. Thus, ITPA deficiency caused severe cellular
dysfunction resulting in perinatal lethality. Indeed, we
demonstrated that this deficiency in primary MEFs
increased the accumulation of SSBs in nuclear DNA
detected as ssDNA immunoreactivity and as chromo-
somal abnormalities such as chromatid/chromosome
gaps or breaks. There was also premature centromere sep-
aration. All these chromosomal anomalies are likely to
cause G2/M arrest thus suppressing cell proliferation, as
observed in primary Itpa~/~ MEFs.
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Table 1. Specific ITP/IDP hydrolysis activity in crude-cell extracts
prepared from embryos and immortalized MEFs

Isolate no. 1 Isolate no. 2

Cell extract Substrate  Specific SD Specific SD
activity activity
(u/ng) (u/ng)
Itpa™’" embryo  ITP 6.34 0.8 4.08 0.7
Itpa™'™ embryo  IDP 0.84 0.2 1.26 0.4
Itpa™’" IMEF ITP 6.42 0.9 7.24 1.0
Itpa™’" IMEF IDP 3.49 0.5 3.68 0.4
Itpa~~ embryo ITP ND ND
Itpa~~ embryo IDP 0.86 0.3 1.85 0.4
Itpa™"~ iMEF ITP 1.09 0.1 1.36 0.3
Itpa™"~ iIMEF IDP 5.90 0.5 7.85 1.5

As a measure,] unit (u) was defined as the level of activity producing
Ipmol of IMP at 30°C for Imin with 0.2mM ITP/IDP, pH = 8.0,
n = 3. Key: ND, not detected; iMEFs, immortalized MEFs.

In E. coli, the lethality of rdgB recA or rdgB recBC
double  mutants, the former-encoding  inosine
triphosphatase, is suppressed by the inactivation of
endonuclease V (EndoV) (12), which cleaves at the
second phosphodiester bond at 3’ to dI and initiates
nucleotide excision repair (19). It is likely that an inosine
triphosphatase deficiency in E. coli results in the accumu-
lation of its substrate nucleotides, dITP in the nucleotide
pools, thus causing an increased accumulation of dI
into DNA. Further excision repair initiated by EndoV
leads to chromosomal fragmentation in rec4 or recBC
mutants.

In mammals, there are at least two enzymes that might
be involved in excision repair of dl: the mammalian
homolog of EndoV and alkyladenine DNA glycosylase
(AAG) which can excise hypoxanthine, a deaminated
adenine base (20-24). Because mammalian cells are
likely to be less efficient in recombination repair than
E. coli (25), ITPA deficiency itself thus causes severe
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Figure 6. NUDT16 with strong dIDP/IDP-hydrolyzing activity is the back-up enzyme responsible for the cancellation of ITPA-deficient phenotypes
during immortalization. (A) Expression of Nudtl6 mRNA. Quantitative real-time RT-PCR was performed to compare Nudt/6 mRNA levels between
primary (passage 3) and immortalized MEFs. Levels of Nudtl6 mRNA were normalized to those of Gapdh mRNA. Values relative to the highest
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primary and immortalized /zpa~'~ MEFs. Data are shown in a bar graph (mean =+ SD), with fold changes between primary and immortalized MEFs
(n = 3 independent isolates). Open and black bars show primary MEFs; shaded bars indicate immortalized MEFs. (B) Expression of NUDTI16
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phenotypes with massive generation of SSBs in DNA,
likely caused by efficient excision repair of dI or
hypoxanthine.

In primary Itpa~/~ MEFs, increased frequency of chro-
mosomal abnormalities such as chromatid/chromosome
gaps or breaks might result from increased SSB accumu-
lation in nuclear DNA, which is likely to be caused by
excision repair of accumulated dI in nuclear DNA. It is
noteworthy that exposure of peripheral lymphocytes to
ITP or IDP in culture were reported to cause chromosome
aberrations such as chromatid breaks and gaps (26) and
sister chromatid exchange (27). Although the precise
mechanism inducing chromosome aberration by ITP or
IDP is not known, exposure to a high concentration of
ITP or IDP might also result in an increase of dI in
nuclear DNA, thus increasing SSBs and chromosome
abnormalities as observed in Jrpa~/~ primary MEFs.
Moreover, both ITPA deficiency and exposure to ITP or
IDP increase premature centromere separation (26).
Increased inosine levels in cellular RNA prepared from
Itpa~"~ embryos indicated that the ITP level was also
significantly increased in the absence of ITPA.
Therefore, these chromosomal abnormalities might be
caused by the increased level of ITP in nucleotide pool.
Because sister chromatid cohesion is established by a
cohesin complex composed of Rad21, Smcla, Smc3 and
two Scc3 orthologs, SA1 and SA2 (28,29) and whose
reaction requires ATP, ITP might compete with ATP to
disrupt sister chromatid cohesion, thus resulting in prema-
ture centromere separation and inappropriate chromatid
separation.

Increased expression of Nudt16 suppresses the
ITPA-deficient phenotype during immortalization

During immortalization of Itpa~/~ MEFs, most of the
ITPA-deficient phenotype characteristics, such as pro-
longed doubling time, G2/M arrest, SSBs accumulation,
chromosome abnormalities were canceled efficiently. This
was accompanied by a significant reduction of dI accumu-
lation in nuclear DNA. The inosine level in cellular RNA
was still high in immortalized I1pa~'~ MEFs (516.8 + 22.3
inosine residues per 10° guanosine residues) as much as
seen in Jtpa~'~ embryos (567.3 + 41.4 inosine residues
per 10° guanosines), thereby indicating that the
ITPA-deficient phenotypes are most likely to be attributed
to the increased accumulation of dI in nuclear DNA.

We identified the human NUDTI16 protein (Iyama
et al., manuscript in preparation) as a dIDP/
IDP-hydrolyzing enzyme, which can bind ITP/XTP/GTP
and efficiently hydrolyzes dIDP/IDP, and to a lesser extent
dITP/ITP, to dIMP/IMP. In the present study, we found
that the levels of mouse Nudtli6 mRNA and NUDTI16
protein were significantly higher in immortalized Irpa='~
MEFs than in immortalized wild-type MEFs or primary
Itpa~"~ MEFs. Because knockdown of Nudtl6 expression
efficiently reproduced the ITPA-deficient phenotypes
accompanied by significant increases of dI in nuclear
DNA, and to a lesser extent of inosine in cellular RNA,
we conclude that NUDT16 and ITPA play a dual protec-
tive role for eliminating dITP/ITP and dIDP/IDP from
nucleotide pools in mammals.

ITP can be hydrolyzed slowly to IDP by ATPase or
other nucleoside triphosphatases (11,30), so increased
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mean = SD (n = 3). (E) Knockdown of Nudti6 mRNA significantly increased the accumulation of dI in nuclear DNA of immortalized Itpa™"
MEFs. Level of dI in nuclear DNA was determined by LC-MS/MS analysis of nuclear DNA prepared from immortalized Itpa~/~ MEFs treated with
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dIDP hydrolysis in immortalized Izpa~~ MEFs is likely to
be sufficient to eliminate dITP from the nucleotide pools.
Moreover, ITP can be generated in a variety of tissue
extracts as well as in erythrocytes (31). We reported
previously that ITP accumulated in erythrocytes but not
in tissues including the heart and liver derived from Itpa~/~
mice, whereas IMP accumulated markedly in RNA
prepared from the latter (6). Because both RNA and
DNA synthesis takes place in the latter tissues, DNA
and RNA polymerases are likely to utilize ITP and dITP
efficiently as nucleotide precursors, thereby consuming
most of the ITP or dITP that accumulates in the
nucleotide pools in the absence of ITPA.

Considering the likely source of ITP or dITP in the
nucleotide pools, IMP generated from AMP by AMP
deamination must be the most relevant precursor,
because most cells can synthesize IDP or ITP from IMP
(31) and IDP may be converted to dIDP by ribonucleotide
reductase, thus generating dITP (21). To minimize
accumulation of ITP or dITP in the nucleotide pools,
hydrolysis of IDP or dIDP to the corresponding
monophosphates catalyzed by NUDTI16 is likely to be
as critical as is any hydrolysis of ITP or dITP to the cor-
responding monophosphates.

In the present study, we showed that increased expres-
sion of NUDTI6 in Itpa~/~ immortalized MEFs is suffi-
cient to cancel the ITPA-deficient phenotypes observed in
Itpa~" embryos or primary MEFs, suggesting that the
lower expression level of NUDTI16 in normal tissues
may be why any ITPA deficiency causes such severe
phenotypes. On the other hand, ITPA deficiency in
humans is likely to be related to azathioprine intolerance
in patients with inflammatory bowel disease, but does not
cause any severe phenotype (32-34), compared with the
Itpa™" mice. It is possible that human NUDTI16 expres-
sion might be higher than that in mouse, thus
compensating for any ITPA deficiency.

Identification of NUDTI16 as a backup enzyme for
ITPA deficiency in mice will shed light on the mechanisms
that enable humans to be resistant to ITPA deficiency.
Towards this goal, it is important to know the relative
expression of ITPA and NUDTI16 in human cells and
organs, and to characterize the enzymatic properties of
NUDTI6.
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