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Summary
Size-biased sampling arises when a positive-valued outcome variable is sampled with selection
probability proportional to its size. In this article, we propose a semiparametric linear regression
model to analyze size-biased outcomes. In our proposed model, the regression parameters of the
covariates are of major interest, while the distribution of random errors is unspecified. Under the
proposed model, we discover that the regression parameters are invariant regardless of size-biased
sampling. Following this invariance property, we develop a simple estimation procedure for
inferences. Our proposed methods are evaluated in simulation studies and applied to two real data
analyses.
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1. Introduction
Muttlak (1988) presented a study to estimate vegetation coverage in an area of Laramie,
Wyoming. This area was an old limestone quarry dominated by regrowth of mountain
mahogany (Cercocarpus Montanus). As described in the study, a line-intercept sampling
method (Canfield, 1941) was used: a straight baseline was first established, and then parallel
transect lines were drawn perpendicular to the baseline. Those mountain mahogany shrubs
intercepted by the transect lines were measured for their widths. See Figure 1 for an illustration.
As shown in Figure 1, a shrub width is defined by the maximum distance between the shrub
tangents that are parallel to the transect line. Apparently, shrub widths collected this way are
not random samples, but subject to size-biased sampling, i.e., their probabilities of being
sampled are proportional to the widths themselves. In statistical literature, this study has been
a classical example to motivate methods development for size-biased sampling (Muttlak and
McDonald, 1990; Jones, 1991; Wang, 1996).

Size-biased sampling arises frequently in other studies as well, for example, when tumor size
is measured in cancer screening trials to study tumor biology and progression (Kimmel and
Flehinger, 1991). Because of lead-time bias in cancer screening trials, a tumor may be detected
according to its individual size (Ghosh, 2008). More examples of size-biased sampling have
been observed in industrial fiber testing (Cox, 1969), family studies of rare genetic diseases
(Patil and Rao, 1978; Davidov and Zelen; 2001), etiological studies (Simon, 1980), and
chronic/early disease modeling (Zelen, 2005).

In general, consider an outcome variable X > 0 with distribution function FX (x). When X is
subject to size-biased sampling, its size-biased outcome, Y, then follows the distribution
function of
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where . Cox (1969) proposed a one-sample empirical estimator of
FX(·) based on observed Y’s. Vardi (1982, 1985) later showed that it is indeed the nonparametric
maximum likelihood estimator (NPMLE) of FX(·). A kernel density estimator by smoothing
the NPMLE was developed in Jones (1991).

Usually, covariates, say Z, are also collected to study potential predictors or risk factors in
association with X. In Muttlak (1988), information was collected on maximum shrub height
and total number of shrub stems, both of which are important predictors to estimate the
percentage of an area’s vegetation coverage. In Kimmel and Flehinger (1991), because tumors
of local lesions may grow to shed cancer cells into the lymphatic system and/or blood stream,
secondary cancers known as lymph-node or distant metastases may develop and lead to rapid
disease progression or death. Therefore it is important to capture the association between tumor
size and the metastasis status to understand the natural history of cancer progression. In fact,
information was collected on tumor metastasis status and cancer types in Kimmel and Flehinger
(1991). In either example, regression becomes an important tool to measure the association.

Parametric models can be used in regression. It is however important that the assumed
parametric distributions are correctly specified, otherwise serious bias may arise in inferences
(Duan, 1983). Nonparametric methods have been developed to estimate regression functions
of size-biased outcomes. For example, the kernel estimator developed by Jones (1991) was
extended to multivariate setting (Ahmad, 1995); Wu (2000) developed a class of local
polynomial estimators; and Cristóbal and Alcalá (2000) proposed several regression function
estimators by way of modified local polynomials. Since X tends to be positive, semiparametric
proportional hazards models (Cox, 1972) have also been developed, for example, to model
shrub width and tumor size in Wang (1996) and Ghosh (2008), respectively. In these models,
regression parameters are based on hazard functions. When X is not time-to-event, such as
shrub width or tumor size, regression models of X’s hazard functions are yet to be seen practical.

For general positive outcomes, a useful alternative to the semiparametric proportional hazards
model is the log-linear regression model (Kalbfleisch and Prentice, 2002, p. 218). When X is
time-to-event, it is the so-called accelerated failure time model (Wei, Ying and Lin, 1990). It
is also a transformation model in Tsiatis (1990). In this article, we aim to develop a
semiparametric version of this model in size-biased sampling. In the rest of this article, we first
introduce a semiparametric linear model and its invariance property in size-biased sampling.
Then we develop a simple estimation procedure for inferences on regression parameters. We
assess our methods validity and performance by Monte-Carlo simulations, and further
demonstrate it in actual data analysis.

2. The Method
2.1 A linear regression model

Let Z ∈ ℛp be the covariates vector associated with outcome variable X. Assume that the
distribution of (X, Z) is determined by a joint density function of fX,Z(x, z). Consider the
following linear regression model:

(1)
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where β ∈ ℬ ⊂ ℛp is the regression parameter. Here, T denotes the transpose of a vector or a
matrix. In this model, ξ = exp(ε) are assumed to have an unspecified density function of fξ( ·).
Thus an equivalent form of model (1) is

(2)

where fξ(·) is nuisance parameter and β is the parameter of interest. Similar to the
semiparametric proportional hazards model, such a semiparametric model formulation shall
allow a wide range of error distributions.

Now consider a size-biased sampling indicator S, being 1 when X is selected and 0 otherwise,
such that pr{S = 1 | X = x, Z = z} = pr{S = 1 | X = x} ∝ x. Note that this selection probability
depends on X only. Then the size-biased density function becomes

(3)

which is identical to those in Cristóbal and Alcalá (2000) and Wu (2000). Furthermore, under
the assumed log-linear regression model (1), we have

where  and μξ = Eξ. As a result, the regression parameter β is invariant
regardless of size-biased sampling (3), as summarized in the following property:

Property 1—Assume that there exists a random variable η = exp(ε) with the density function
fη(·), where fη(y) = yfξ(y)/μξ. Under size-biased sampling, model (1) satisfies that

(4)

According to (4), the size-biased (X, Z), say (Y, Z), satisfies log Y = −βTZ + ε. Comparing it
with (2), we find that (Y, Z) would follow a model almost identical to that of (X, Z) for the same
β, except for the nuisance parameters. Property 1 is hence called an “invariance property” of
model (1) in presence of size-biased sampling. An illustrative example is provided in the web
supplementary materials.

2.2 Estimation and Inferences
In random sampling, a collected dataset would usually consist of n independent and identically
distributed (iid) copies of (X, Z), (Xi, Zi), i = 1, 2, …, n. Then the likelihood function of β in
model (1) would be proportional to

Chen Page 3

Biometrics. Author manuscript; available in PMC 2010 May 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(5)

Now suppose that data are instead collected subject to size-biased sampling (3). That is, the
actual collected data consist of n iid copies of {(X, Z) | S = 1}, {(Xi, Zi) | Si = 1}, i = 1, 2, …,
n. Since under (3),

where  and  are the supports of X and Z, respectively, then by Property 1, the likelihood
function becomes proportional to

If fξ(·) is parametric, the usual maximum likelihood estimation (MLE) can be used to estimate
β. Nevertheless, L1(β) and L2(β) are identical in β under the semiparametric model (1),
regardless of size-biased sampling. For this reason, we hence aim at developing a
semiparametric estimation procedures for β, without resort to any parametric form of fξ(·) or
fη( ·)

To simplify our notations, we drop the notation S and denote the size-biased data by (Yi, Zi),
i = 1, 2, …, n. Let λ(y) = −d log F̄(y)/dy denote a hazard function, where F̄(y) = 1 − F(y). By
Property 1, it is true that

(6)

Let Ni(y) = I(Yi ≤ y) and Δi(y) = I(Yi ≥ y), i = 1, 2, …, n. Thus the score function for β based
on (Yi, Zi) is

Apparently, because λη(·) is not specified and hence unknown, lβ( ·) cannot be used directly to
solve for an estimator of β as in the usual MLE method.

For model (1), however, λη(·) itself is an infinite-dimensional nuisance parameter. To estimate
β, we adapt a quasi partial estimating equation approach in Chen and Jewell (2001). This
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approach would first construct a consistent nonparametric estimator for λη(·), and then develop
appropriate estimating functions to estimate β.

Suppose that β0 is the true value of β. Since ENi(y) = F(y | Zi), i = 1, 2, …, n, therefore

(7)

where F̄(y | Zi) = 1 − F(y | Zi) and . In addition, since
, we consider the following unbiased estimating equation for

Λη(·) when β = β0,

(8)

By solving (8) we obtain a nonparametric estimator for Λη( ·),

(9)

Let , i = 1, 2, …, n. Then { } are martingales with

respect to the filtration defined by . As a result, Λ̂η(y; β0) is

consistent, since . Moreover, by the
Martingale Central Limit Theorem, n1/2{Λ ̂η(y; β0) − Λη(y)} goes to a mean zero Gaussian
process as n → ∞.

Similar to (7), we also notice that . Thus with the
consistent estimator of Λ̂η( ·) obtained in (9), we propose to use the following estimating
equations to estimate the regression parameter β,

(10)

to solve for β. By some algebraic manipulation, the above equations become equivalent to
Un(β) = 0, where Un(β) = Un(∞; β), and

(11)
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Here, Z ̄(y; β) = ℰ(1)(y; β)/ℰ(0)(y; β) with , k = 0, 1, 2, where
⊗ is the Kronecker matrix product that defines v⊗0 = 1, v⊗1 = v and v⊗2 = vvT for a vector v.
In general, because Un(β) is not a continuous function of β, a unique solution to the estimating
equations in (11) may not always be plausible. We thus define a solution β ̂n as a zero-crossing
of Un(β) such that Un(β ̂n −)Un(β ̂n +) ≤ 0, as in Tsiatis (1990), or the minimizer of the Euclidean
norm of ||Un(β)||, as in Wei, Ying and Lin (1990).

Assume that limn → ∞ ℰ(k)(y; β) = e(k)(y; β). We have the following asymptotic results:

Theorem 2—Under the regularity conditions specified in the Appendix, β̂n is consistent, and

where

Details of proof can be found in the web supplementary materials.

To apply the asymptotic results, we need to find consistent estimators for D−1V (D−1)T. A
straightforward way is to find consistent estimators for V and D, respectively. For example,

. For D, it is less straight-
forward because of the unknown λη(·). One approach was suggested in Tsiatis (1990) by a
smoothing kernel of λη(·). As pointed out by one reviewer, however, such an estimator is usually
sensitive to the choice of smoothing parameter, although it may have less impact on the variance
estimator of β ̂n in the proposed semiparametric model. Other alternative approaches to
estimating the asymptotic variance of β ̂n may involve computer-intensive resampling to
approximate the variance-covariance matrix, such as in Parzen, Wei and Ying (1994). A less
computer-intensive sample-based algorithm can be used as well. See the web supplementary
materials for details.

In addition to the estimation of regression parameter β, we may also be interested in estimating
the distribution function of Fη(·) in model (6), and further the distribution function of Fξ(·) in
model (1). In order to do so, for a given value of β, consider η ̂i(β) = Yieβ

TZi, i = 1, 2, …, n. By
(6), an estimate for the distribution function Fη(·) is straightforward, which is simply the
empirical distribution function based on η ̂i(β)’s:

Moreover, according to Property 1, we know that . To estimate μξ, we
consider the harmonic mean of η ̂i(β) by Cox (1969),
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Therefore, an estimate of Fξ(x) is

which is a weighted average of rescaled Ni(·)’s. Thus, Fη(·) and Fξ(·) can be estimated by
F̂η( ·;β ̂n) and F̂ξ(·;β ̂n), respectively, where β ̂n are the estimates obtained earlier. In fact, when
β = 0, our proposed models reduce to a one-sample problem, and F̂ξ( ·; 0) becomes the exactly
same NPMLE as studied in Vardi (1982).

Let Gη(y) = n1/2{F̂η(y; β̂) − Fη(y)}. Given the fact that Gη(y) = n1/2{F̂η(y; β̂) − F̂η(y; β0)}+
n1/2{F̂η(y; β0) − Fη(y)}, it is true that Gη( ·) converges weakly to a mean zero Gaussian process
with covariance function of σ(y1, y2), similar to Theorem 8.3.3. of Fleming & Harrington
(1991, p. 299). To construct a confidence interval of Fη(y), we consider the logit-transformation
of F̂η(y; β̂). That is, a 95% confidence interval is

where

and

Here, σ ̂(y, y) is an estimated standard error of G(y) and . Similar procedure can
be applied to Gξ(y) = n1/2{F̂ξ(y; β̂) − Fξ(y)} to construct confidence intervals for Fξ(y).

Our proposed estimating functions can be extended to include more general weight functions,
wn(y; β) say, with limn wn(y; β0) = w(y). Specifically, consider the weighted estimating
equations for β:

(12)
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Let  and

. Denote  the solution in (12). Under the

assumed regularity conditions,  is consistent and  →   .
The sample-based method can be similarly used to estimate the variance of . In
addition, by an application of Cauchy-Schwarz inequality, the optimal weight function for the

weighted estimating functions in (12) should be proportional to . It is indeed
shown in Ritov (1990) that  of wopt(y) is the most efficient estimator among all of the
semiparametric estimators under model (6). It is however yet to see a broader application of
wopt(y) in practice given the challenge in its estimation.

Another prominent choice of weight function is wg(y) = n−1 ΣiΔi(ye−βTZi) of the Gehan-type
(Tsiatis, 1990), for which  reduces to

Therefore, solving  amounts to minimizing n−1 Σi,j min{log Yi − log Yj + βT(Zi − Zj),
0}. This minimization is achieved by a linear programming of maximizing Σi,j δij in β subject
to δij ≤ min{log Yi − log Yj + βT(Zi − Zj), 0} (Koenker and Bassett, 1978). Denote  the
minimizer. Then  is consistent and asymptotically normal (Jin et al., 2003), and can further
assist to augment an algorithm for the general weighted estimating equations in (12).
Specifically, consider the iterative algorithm proposed by Jin et al. (2003): ; in the kth
step,

where w̄(β) = w(y; β)/wg(y; β). As k grows, β ̂(k) is deemed to converge when ||β ̂(k) − β ̂(k−1)|| is
less than a prespecified convergence criterion. In practice, this algorithm works sufficiently
well by k = 3. To estimate the variance-covariance of , we can use the resampling approach
developed in Rao and Zhao (1992), Parzen et al. (1994) and Jin et al. (2003). A computer
software package called “rankreg” is available in R-language
(http://cran.r-project.org/doc/packages/rankreg.pdf). Instruction and sample programs can be
found in the package manual. This package generally works well with moderate sample sizes.
However, it may be time-consuming and take up to 3–4 hours on a personal computer of 1G
RAM to estiamte a model of 4 covariates, when sample size becomes 1,000.

One use of the weighted estimating equations is in model adequacy assessment. As proposed
in Gill and Schumacher (1987) for the proportional hazards model, the rationale is that the
estimates based on different weighted estimating equations should be reasonably close to each
other if the assumptions of the proportional hazards model do hold, and should differ otherwise.
This same rationale can be applied to the adequacy assessment of model (1). Specifically,
consider the estimating equations in (12) for two different weight functions, wn,1(y) and

wn,2(y) say. Their associated estimates of the regression parameter are  and ,
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respectively. Should model (1) be true, then a Wald-type of statistic based on  is

seemingly straightforward to use, given the asymptotic normality of  similar to
that in Lin (1991).

Due to the difficulty in estimating λη(·) and λξ(·) in the asymptotic variance of

, however, we would instead use the method proposed in Wei, Ying and Lin
(1990) to derive a goodness-of-fit test for model (1). That is, we consider

, which is asymptotically joint normal with the variance-covariance
matrix that is the limit of

where

and

Thus, the following statistic can be used in the goodness-of-fit assessment of model adequacy:

(13)

which is asymptotically -distributed as shown in Wei, Ying and Lin (1990).

3. Numerical Studies
3.1 Simulations

Simulation studies are conducted to assess both semiparametric methods and the MLE methods
for the proposed linear regression model. In our simulations, we consider the linear regression
model (1) of log X = −βTZ + ε, where two distributions are chosen for the random variable ε,
i.e.,

• a standard Normal distribution with the density function of (2π)−1/2 exp(−s2/2), and

• an Extreme-value distribution with the density function of 2 exp(2s − e2s).

Hence for ξ = exp(ε), the density function fξ(·)’s are Log-normal (2π)−1/2s−1 exp{−(log s)2/2}
and Weibull 2s exp(−s2), respectively. According to Property 1, for η = exp(ε) in log Y =
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−βTX + ε, then the respective density function fη( ·)’s are (2π)−1/2 exp{−(log s)2/2}/μL and
2s2 exp(−s2)/μW. Numerical integration shows that

 and .

In each simulation, we generate a sample of n iid copies of size-biased (Y, Z) according to the
model of . Here, β0 is the true value of β, and Z are simulated according to a
uniform distribution U[0, 1] and hence continuous. We use four methods to estimate β in model
(1):

• Para-L: MLE method with underlying Log-normal distribution,

• Para-W: MLE method with underlying Weibull distribution,

• Semi-L: semiparametric method with w(y) ≡ 1, and

• Semi-G: semiparametric method with the Gehan weight function wg(·).

In particular, when the underlying distribution is Log-normal, Para-W represents an incorrect
MLE method using the Weibull distribution. Similarly, when the underlying distribution is
Weibull, Para-L represents an incorrect MLE method using the Log-normal distribution.

Simulation results are tabulated in Table 1. In this table, n is chosen to be 50, 200, and 500,
representing small, moderate and large sample sizes, respectively. The true value β0 is chosen
to be 0 and 1, representing the null and a specific alternative hypotheses, respectively. Each
cell in the table is calculated with 10,000 simulated samples. A bias is calculated as the average
of 10,000 (β ̂ − β0)’s. A coverage probability is calculated as the percentage of 10,000 95%
nominal confidence intervals (CI) containing β0. The sample standard error (SSE) of 10,000
β ̂’s and the mean of 10,000 estimated standard errors (MSE) are also calculated.

As shown in Table 1, the bias of β ̂ for each method in this simulation setup is mostly close to
zero, even though the MLE methods may specify incorrect underlying distributions for fξ( ·).
The coverage probabilities for a correct Para-L or Para-W, i.e., an MLE method with correctly
assumed underlying distributions, and Semi-L or Semi-W are generally close to the nominal
level of 95%, while an incorrect Para-L or Para-W deviates from 95% notably. Similarly, the
SSE and MSE are generally close to each other when the correct MLE methods and the
semiparametric methods are used, but otherwise for the incorrect MLE methods.

As far as the semiparametric methods and the correct MLE methods are compared, the correct
MLE methods generally yield smaller SSE and MSE, which means the semiparametric
methods are yet to be fully efficient. As shown in the table, however, the efficiency of
semiparametric methods may be potentially improved by choosing different weight functions.
For example in the current simulation setup, the Gehan weight function may yield smaller
variances, compared with those of wg(·) ≡ 1. As a summary, the correct MLE methods generally
outperform the semiparametric methods. The validity of MLE methods however depend on
whether or not the assumptions are correct. The semiparametric methods are generally more
reliable with respect to different underlying distributions. Their efficiencies may be improved
by choosing appropriate weight functions.

3.2 Real data examples
In this section, we use our proposed methods to analyze the real data examples that are
introduced in §1: one is the classical dataset of shrub widths in Muttlak (1988), and the other
is the tumor size dataset in Kimmel and Flehinger (1991). To save space, we present major
analysis results in this article.
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Example 1—The original dataset of shrub widths contains data on 89 shrub samples. In
addition to the measurement of shrub widths (Width), two more attributes of mountain
mahogany, maximum height (Height) and number of stems (Stem), were measured. Both
attributes are important predictors of shrub width in estimating vegetation coverage of
mountain mahogany. To ensure uniform coverage over the study area, two independent
replications (Replicate), each with three systematically placed parallel transects (Transect),
were established (Muttlak, 1988).

As shown in the scatter plots of Figure 2, when either attribute of Height or Stem increases,
Width tends to increase. There appears, however, a quadratic relationship between Width and
Stem. It is plausible that there may exist systematic deviation in Replicate and Transect. As
shown in the boxplots of Figure 2, there appears some distributional difference in Width
between different Replicates, although this difference is not seemingly prominent. There also
appear distributional differences in Width between Transects I and II, and between Transects
I and III. Some univariate summary statistics of the outcome variable and four covariates are
in Table 2.

To examine the association between Width and the two attributes adjusting for Replicate and
Transect, we consider a linear regression model log X = −βTZ + ε, where X is the outcome
variable Width, and Z is the covariate vector including Height, Stem, Replicate and Transect,
in regression analysis. Estimates of regression parameters are tabulated in Table 3. As shown
in the table, all four methods, i.e., Para-L, Para-W, Semi-L and Semi-W, yield that Height and
Stem are significant predictors, adjusting for Replicate and Transect, by their 95% confidence
intervals (CI). This implies that taller shrubs with more stems are associated with greater width
spread and hence more vegetation coverage, and per unit increase in Height and Stem would
lead to about 118% and 2.5% increase in Width, respectively.

For the seemingly quadratic association with Stem, we include an additional squared Stem in
the model, and find that Width is not significantly associated with the added quadratic term. It
is however still significantly associated with Height and Stem, with or without Replicate and
Transect. Applying the goodness-of-fit test in (13) to the model with all covariates, we obtain
T = 9.13 ~ χ2(p = 0.10, df = 5), which does not reject the models adequacy.

Example 2—In Kimmel and Flehinger (1991), a lung cancer dataset was used to examine the
relationship between the occurrence of metastases and the size of primary cancers. In the
dataset, lung cancers were diagnosed in a population of male smokers over 45 years old who
enrolled voluntarily in a randomly controlled trial to evaluate the use of sputum cytology. Two
types of lung cancer were detected: adenocarcinomas by radiologic screening or patients
symptoms, and epidermoid cancers by sputum cytology, chest X-ray or patients symptoms.
The diagnosis of metastases was based on the then best available staging, clinical, surgical, or
pathological readings. Among the total 228 patients, there were 141 adenocarcinomas and 87
epidermoid cancers. Tumor sizes were determined by the geometric means of recorded
dimensions: resected cancers were measured directly, and nonresected cancers were mainly
measured on radiography. More descriptive details can be found in Ghosh (2008).

As pointed out in Ghosh (2008), a complication in analyzing tumor size in this dataset is the
presence of size-biased sampling, i.e., tumors detected in the screening program tend to depend
on their growth and hence the sizes themselves. In Ghosh (2008), tumor sizes were treated as
time-to-event variables. Their hazard functions were modeled by the proportional hazards
model. Therefore, the regression parameters would be interpreted in relative risk of tumor sizes.
Additional summary statistics and exploratory analysis results of this dataset can be found in
Ghosh (2008).
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To examine the association between tumor size and the occurrence of metastases in size-biased
sampling, we consider the proposed linear regression model. We first fit a linear regression
model with the presence/absence of metastases only. The regression parameter estimate of β ̂
equals 0.45 with a 95% CI (0.12, 0.78). This means that tumor size is about 56% significantly
greater in presence of metastases. However, when including the cancer types of
adenocarcinomas and epidermoid in the model, β ̂ becomes 0.24 with a 95% CI (−0.07, 0.57),
which is not statistically significant. On the other hand, the regression parameter estimate for
cancer types is 0.65 with a 95% CI (0.45, 0.86). This implies that tumor size tends to be 91%
greater in epidermoid cancers than that in adenocarcinomas. Our finding is consistent with the
relative risk calculation in Ghosh (2008), although larger sample size may be needed to confirm
a significant positive association in relative risk. Applying the goodness-of-fit test in (13) to
the model with both covariates, we obtain T = 4.97 ~ χ2(p = 0.08, df = 2), which does not reject
the models adequacy, either.

4. Discussion
Our proposed regression model is essentially a semiparametric linear model. In the statistical
literature, semiparametric linear models have been extensively studied. For example, the
accelerated failure time model is a classical example of semiparametric linear model in time-
to-event analysis (Kalbfleisch and Prentice, 2002, p. 218). Additional examples include
semiparametric linear models in curve regression analysis (Hardle and Marron, 1990),
generalized linear regression (Chen, 1995) and partial linear regression (Bhattacharya and
Zhao, 1997).

One prominent assumption in our proposed model is the choice of log-transformation. Because
outcomes in size-biased sampling are mostly positive, a log-transformation would relax the
restriction on β to allow a wide range of covariates Z. In addition, for log-transformed X, our
proposed model essentially assumes a multiplicative association between X and Z. It is the
multiplicative association that leads to the critical invariance property, which greatly simplifies
our estimation. Other transformations, such as identity, are yet to be seen to have these
advantages.

However, our proposed model can be generalized to, for example, log X = h(X, β) + ε for some
function h(X, β). Under this generalized model, the invariance property still holds in size-biased
sampling. This shall lead to further work. Specifically, an alternative class of regression models
can assume that

where h(·) is unknown, but ε follows a known distribution, such as a standard Normal
distribution, to avoid potential identifiability issue. This model shall further relax model
assumptions and assist with model adequacy assessment.

As pointed by an Associate Editor, the use of hazard functions for outcomes other than censored
time-to-event seems unnatural. This is in fact why semiparametric linear regression model may
be more appealing to model outcomes, such as shrub width or tumor size, than the usual
proportional hazards model. Nevertheless, we extensively use (cumulative) hazards functions
in this manuscript to develop our estimation procedure, because of the simple representation
of baseline cumulative hazard function in (9). This simple representation ultimately facilitates
a straightforward estimation of β. The advantage of hazard functions is also seen in developing
the asymptotic theory of Theorem 2. Otherwise the expression of D would be more complex.
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When X is time-to-event, regression models based on hazard functions are appealing. When
time-to-event is size-biased, it is usually called length-biased. Researchers have been studying
censored length-biased time-to-event in the statistical literature. For example, Vardi (1989)
estimated the lifetime distribution under multiplicative censorship; Asgharian, M’Lan and
Wolfson (2002) developed an unconditional approach to studying length-biased lifetimes; and
a recent work by Cristóbal, Alcalá and Ojeda (2007) proposed some nonparametric estimation
from backward recurrence times. More work is needed to extend the proposed linear regression
model to censored time-to-event.

5. Supplementary Materials
Details of those referenced in Section 2 are available in the web supplementary materials under
the Paper Information link at the Biometrics web site http://www.tibs.org/biometrics.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Schematic intercept sampling of shrub widths by one transect line

Chen Page 15

Biometrics. Author manuscript; available in PMC 2010 May 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Exploratory plots of shrub data: (a) boxplot of Width by Replicate; (b) boxplot of Width by
Transect; (c) scatter plot of Width versus Height; (d) scatter plot of Width versus Stem
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