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Summary
Rigorous statistical evaluation of the predictive values of novel biomarkers is critical prior to applying
novel biomarkers into routine standard care. It is important to identify factors that influence the
performance of a biomarker in order to determine the optimal conditions for test performance. We
propose a covariate-specific time-dependent PPV curve to quantify the predictive accuracy of a
prognostic marker measured on a continuous scale and with censored failure time outcome. The
covariate effect is accommodated with a semiparametric regression model framework. In particular
we adopt a smoothed survival time regression technique (Dabrowska, 1997) to account for the
situation where risk for the disease occurrence and progression is likely to change over time. In
addition, we provide asymptotic distribution theory and resampling-based procedures for making
statistical inference on the covariate specific positive predictive values. We illustrate our approach
with numerical studies and a dataset from a prostate cancer study.
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1. Introduction
The utility of novel molecular markers and clinical information for predicting disease risk and
future prognostic outcome has great potential for advancing treatment and management
decisions. In the Pacific Northwest Prostate Cancer SPORE (Specialized Program of Research
Excellence), a cohort of patients diagnosed with prostate cancer (PC) are under follow-up for
clinical outcomes. Information on biomarkers such as serum prostate-specific antigen (PSA)
at diagnosis and genotype data on single nucleotide polymorphisms (SNPs) have been
collected. One goal of the study is to identify biomarkers that can predict PC-specific mortality
so that treatment options can be tailored to the individual. In this setting there are two key
prognostic questions. First, should a test be taken by a patient to predict his/her prognosis?
Second, given a patient has the test, what is the probability that a poor outcome will be realized
in the near future based on the test result?
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The first prognostic question may be addressed with retrospective accuracy characterized by
correct classification rates such as the true positive fraction (TPF) and true negative fraction
(TNF). Traditionally for a marker measured on a continuous scale, denoted by Y, measured
concurrently with the disease outcome D, its discrimination potential can be summarized with
the receiver operating characteristic (ROC) curve. The ROC curve is a plot of the TPF, P(Y >
c|D = 1) against the false positive fraction (FPF), P(Y > c|D = 0) for all possible values c, where
D = 1 indicates the presence of disease. These summaries reflect how well the test results reflect
the true outcome, and they are crucial for evaluating the public health implications of clinical
guidelines. Extending the traditional cross-sectional concept of ROC curve to accommodate
the censored failure time outcome has been an area of active research for the past decade (e.g.,
Etzioni et al. (1999); Heagerty et al. (2000); Cai and Pepe (2002); Heagerty and Zheng
(2005), for review, see Pepe et al. (2008)).

Physicians and individual patients are often most concerned with disease prediction given their
clinical status data. Thus the prospective accuracy such as positive predictive values (PPV)
and negative predictive values (NPV) are critical in addressing the second prognostic question.
When data from a prospective cohort are available, calculation of PPV and NPV is usually
performed. In contrast to research on retrospective accuracy, statistical methods for prospective
accuracy have not been well developed, especially when a continuous marker is measured and
the outcome is followed prospectively from a cohort study. The two prospective accuracy
summaries are traditionally defined for a dichotomous test Y as

To accommodate a continuous marker, Moskowitz and Pepe (2004b) proposed to define PPV
(v) = P{D = 1|F(y) ≥ v} and NPV(v) = P{D = 0|F(y) < v}, where F is the cumulative distribution
function of Y in the population. Analogous to the idea of an ROC curve for thresholding the
continuous marker values, they consider the PPV curve, a plot of PPV(v) versus v, for 0 < v <
1, where subjects with marker values exceed the vth percentile of the population are regarded
as having a positive test. The consideration of v rather than the raw marker values as the x-axis
of the PPV curve is appealing. First, it provides a common scale for comparing multiple markers
with raw values measured on different scales. Second, it highlights the need for considering
both predictive probability and marker distribution in the targeted population when evaluating
the predictive accuracy of the marker.

Zheng et al. (2008) considered extending the PPV curve concept to a setting where disease
status is not measured concurrently with the test and the time to event can be censored.
Specifically, they consider disease status as a function of time, D(t) = 1(T < t) for a clinical
event time T. Consequently PPV and NPV were time-dependent functions of the form

A time-dependent PPV curve at a predictive time t is then defined as a plot of PPV(t, v) versus
v for v in an open interval of (0, 1). Therefore the x-axis of a PPV curve shows the proportion
of subjects testing positive when a positive test is defined by exceeding the threshold
corresponding to the vth percentile of Y in the population: Y ≥ F−1(v), whereas the y-axis of a
PPV curve shows the risk of developing an event by time t for subjects who satisfy the positivity
criterion. Zheng et al. (2008) focuses on a class of nonparametric PPV curve estimators and
their associated indices that provide a natural way for handling censored event outcomes and

Zheng et al. Page 2

Biometrics. Author manuscript; available in PMC 2010 May 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



involve little parametric assumption. The methods are useful for evaluating individual PPV
curves and comparing PPV curves.

In this article we focus on the statistical method for evaluating factors that may influence the
predictive accuracy of a continuous biomarker. In practice there are many variables that can
affect the accuracy of a marker, such as a subject’s age, gender, or body mass index (BMI).
For example PSA levels tend to increase with age, and older patients may have a higher risk
of prostate cancer progression depending upon treatment. It is likely that the predictive
performance of PSA can be altered by these confounding variables. Marker performance may
also depend on the means by which a biomarker-based test is administered or varying protocols
between different institutions participating in the study. For example, variations in the timing
for collecting and processing biological specimens should be considered. Furthermore, the
heterogeneous nature of the disease will often affect the performance of the test. Gleason score
is a PC aggressiveness index. A biomarker such as PSA could have differential performance
in predicting prognosis in patients with a high Gleason score as compared to those in a low
Gleason score group. Genetic studies will often identify new genotypes that give rise to sub-
populations differing in their disease susceptibility, and the performance of PSA among these
sub-populations may be substantially different. When the performance of a biomarker among
sub-populations may be substantially different from the general population, covariate-specific
PPV curve should be considered. It provides a graphical tool for investigating the impact of
these confounding factors on the predictive performance of the marker, and therefore helps to
identify appropriate sub-populations with effective test performance.

A broad range of questions can be addressed with covariate-specific PPV curves, in a regression
model framework. It can be used to characterize the simultaneous or independent effects of
covariates on predictive accuracy and to compare tests with regard to predictive accuracy while
controlling for potential confounding variables. Using a test indicator as a covariate in the
model permits more efficient comparison of two tests. Finally, it may provide a way to evaluate
the incremental values of a new test, for example by examining whether the new test is
predictive beyond previously identified prognostic information.

Statistical methods for incorporating covariate effects into PPV analysis are limited. One
approach to incorporating covariate effects into time-dependent predictive values has been
suggested by Moskowitz and Pepe (2004a) for a binary marker Y, where Y = 1 indicating a
positive test result. For PPVz(t) = P (T < t|Y = 1, Z = z), they considered a standard Cox
proportional hazards model only for individuals who test positive, and model

in which β1 quantifies the difference in positive predictive accuracy between two levels of
covariate Z. However, the idea is not directly applicable to continuous markers. The
nonparametric time-dependent PPV curve estimators considered in Zheng et al. (2007) are
quite flexible in specifying the relationship between a continuous marker Y and clinical event
T, but it can be difficult to handle multiple covariates. In this article, we extend the method of
the time-dependent PPV curve studied by Zheng et al. (2008) to the estimation of covariate-
specific PPV curves. Similar to Moskowitz and Pepe (2004b), we will accommodate the
covariate effects in a regression framework, but we will seek to preserve the flexible
relationship between biomarker and event time that accommodated by the nonparametric PPV
curve estimators in Zheng et al. (2008).
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A formal definition of the covariate-specific PPV curve is given in Section 2. We describe two
alternative estimation procedures and characterize their large sample properties in Section 3
and 4, respectively. The finite sample performance is investigated in Section 5, and in Section
6 we illustrate the method by analyzing a prostate cancer dataset. A discussion of the potential
extensions of current work is given in section 7.

2. The model
Consider a setting where one is interested in determining the effect of Z on the predictive
accuracy of a continuous marker Y. In particular, we have a prospective study where each
subject indexed by the subscript i is followed over time for a clinical event, and measured along
with a marker Yi at the baseline and other covariates Zi. We let FY|z(y) = P (Y < y|Z = z) denote

the conditional distribution function and . Let Ti denote the event time for the ith
subject. Due to censoring, instead of observing Ti, we observe the bivariate vector (Xi, Δi),
where Xi = min(Ti, Ci), Δi = I(Ti ≤ Ci) and Ci is the censoring time for the ith subject. Data for
analysis consist of n independent and identically distributed copies of (Xi, Δi, Yi, Zi) for i = 1,
…, n. For censoring, we require the standard assumption that Ci is independent of Ti conditional
on Yi and Zi. Since a biomarker threshold value is used for clinical decision making, for
covariate-specific PPV curves it is desirable to have the assumption that risk P(T < t|Y = y, Z
= z) be a monotonic function of y given z. However note that the validity of the proposed
procedures for the covariate specific PPV and NPV curves do not require the monotonicity
assumption. By convention we assume that larger values of the marker Y are associated with
higher risks at each level of Z.

2.1 Covariate-specific PPV curves
We define a time-dependent covariate-specific PPV curve for a prediction time t as a plot of

versus v, for v in an open interval of (0,1). In contrast to a PPV curve that ignores covariates,
the x-axis of a covariate-specific PPV curve displays among the subgroups who share the same
covariate values z the fraction of subjects testing positive, when a positive test is defined by
exceeding the threshold corresponding to the vth percentile of Y in the subpopulation: Y ≥
cz(v). The y-axis indicates the risk of event by time t among the subgroup of subjects who share
the same covariate values z, and who test positive based on some positivity criterion. Time
dependent covariate-specific NPV curves can be similarly defined, with

Observe that the differences among PPVz(t, v) at different values of Z may be due to several
factors. For example, if the absolute risk of event varies with covariates Z, naturally one may
expect that the predictive accuracy may also vary with Z. On the other hand, even if a covariate
Z itself is not predictive of risk whereas Y is, variations in the distributions of Y across Z may
also lead to distinctly separate covariate specific PPV curves. Therefore it is important to
investigate the covariate effects on the predictive accuracy of Y, even for a covariate that does
not appear to be associated with disease progression. By inspecting covariate-specific PPV and
NPV curves, one can discover the extent to which the covariates Z influence the predictive
accuracy of Y. If PPV curves representing different covariate levels are different across v at a
fixed time point t, one may conclude that in practice we indeed need to take Z into consideration
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when evaluating the predictive accuracies of Y. Note also that a covariate-adjusted PPV is
dependent on the average disease risk of the subgroup. To gauge the predictive performance
of the marker, in the covariate-specific PPV curve, we can add horizontal lines that correspond
to the marginal event time probabilities P(T < t|Z = z) ≡ PPVz(t, 0). These serve as the
benchmark PPV curves for completely uninformative markers. Markers with PPV curves that
rise more steeply and reach higher levels compared with the horizontal lines can be deemed
informative.

3. Estimation
A simple approach for estimating the covariate-specific PPV curves is to fit an individual PPV
curve using only data with Z = z. The procedure developed in Zheng et al. (2008) can be directly
applied. However, such a subgroup analysis can not accommodate continuous covariates and
may not be feasible due to sparseness of data. We therefore consider here flexible regression
based procedures to accommodate more general structures of Z.

Observe that the covariate-specific PPV curve can be written as

The estimation of PPVz(t, v) requires the specification of (1) the conditional distribution of Y
given Z = z, FY|z(·); and (2) the conditional survival function Sy,z(t) = P (T ≥ t|Y = y, Z = z).

To estimate FY|z(·), if Z is a discrete variable with only a few levels, one can simply consider
empirical distribution

For multiple covariates or continuous variables, we will adopt the semi-parametric regression
quantile method of Heagerty and Pepe (1999). Specifically, it specifies biomarker Y as a
function of Z with a location-scale model: Yi = γTZi + exp(κTZi)εi, where the standardized
error εi has mean 0 and variance 1 with unspecified distribution. The unknown regression
parameters γ and κ may be estimated based on quasi-likelihood methods as discussed in
Heagerty & Pepe (1999). Let γ ̂ and κ̂ denote the respective estimators of γ and κ. The
distribution function of a marker given Z can be estimated using the empirical distribution
function based on the standardized residual (Heagerty & Pepe, 1999). The procedure is more
efficient than the conditional empirical estimator mentioned above, it allows for continuous
covariates, and yet it is flexible as it does not make a distributional assumption about the
residual εi. The semiparametric location-scale estimator of FY|z(·) is

(3.1)

The other key quantity is the conditional survival function Sy,z(t) = P (T < t|Y = y, Z = z). Some
deliberation is required in order to properly capture the relation between Y, Z and T. We provide
details of two alternative estimating procedures below.
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3.1 Estimating Sy,z(t) using Cox proportional hazards model
In order to estimate the absolute risk function Sy,z(t), we first turn to a standard tool for analyzing
survival data, the Cox proportional hazards model (Cox, 1972),

(3.2)

where  is the cumulative baseline hazard function. Under the Cox model
assumption, the survival function can be consistently estimated by

where α̃ and β̃ are the maximum partial likelihood estimators of α0 and β0 respectively, and

is the Breslow estimator of Λ0(t) and Ni(u) = I(Xi ≤ u)Δi.

A plug-in estimator for PPVz(t, v) based on the conditional survival probability is

(3.3)

where . The approach has two advantages. First, the maximum partial likelihood
based estimator will be most efficient when the assumption of a proportional hazards model
holds. Second, it is easy to implement with standard software.

3.2 Estimating Sy,z(t): a more flexible approach
It is often anticipated in biomarker studies that the effects of markers may be time-varying and/
or non-linear. As a result, the standard proportional hazards assumption may not be satisfied.
For example, it is generally observed in HIV studies that the predictive capacity of CD4 cell
counts on time to HIV infection among sero-converters tend to be stronger early in time,
however the effect wanes over time (Zheng and Heagerty, 2005). Mis-specification of T|Y can
have a substantial impact on estimating the PPV curve (Zheng et al., 2008). A more flexible
specification of the relationship between T, marker value Y and covariates Z would be useful
in practice. In the absence of covariates, Zheng et al. (2008) considered a nonparametric kernel
estimator for P(T ≥ t|Y), which results in a more robust PPV estimator. To extend such a non-
parametric procedure to incorporate covariates, we propose to preserve the non-parametric
form of the functional relationship between T and Y, but cast the effects of other time-constant
covariates within a regression model framework. This motivates the consideration of a
“smoothed Cox regression model” by Dabrowska (1997),
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(3.4)

This model, while allowing possibly a complex non-linear effect of Y on T, can easily
accommodate multiple continuous covariates. Note that interactions between Y and Z can be
accommodated by adding additional covariates that corresponding to the interaction terms in
the parametric part of the model. The estimator β ̂ can be obtained as the maximizer of the
following (pseudo) smoothed profile likelihood:

where , and Kh(y)
= K(y/h)/h. Here K is a symmetric kernel density function, with h = h(n) → 0 as the bandwidth.
To alleviate the computational burden Dabrowska (1997) suggested considering a simpler form
of the profile likelihood:

The maximizer of Ĉ*(β) was shown to be asymptotically equivalent to β ̂. Subsequently, the
conditional survival function Sy,z(t) = P (T ≥ t|Y = y, Z = z) under the smoothed Cox regression
model can be estimated as

where . Again, a plug-in estimator of PPVz(t, v) is given by

(3.5)

4. Inference
4.1 Inference on covariate effects

In order to test whether a covariate has a significant impact on predictive accuracies, we
consider an omnibus test to test the joint hypotheses:

at every (t, v) and for all z1 and z2, where z1 and z2 are different covariate values that define
subpopulations under investigation. Suppose we use the semiparametric location-scale model
as specified in model (3.1) for the distribution of the marker. We show in Web Appendix A
that under a proportional hazards regression model as specified in model (3.2), H0 holds if and
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only if H ̃0: α0κ0 = 0 and β0 = −α0γ0 holds. Thus, the covariate effect could be tested by

simultaneously testing . A χ2 test could be constructed based on the
asymptotic distribution of the corresponding estimates. When the assumption of a proportional
hazards model does not hold, and the distribution of the disease process is specified as a
smoothed Cox regression model (model (3.4)), we can show that testing H0 is equivalent to
testing β0 = γ0 = κ0 = 0. A χ2 test can be derived using the variance-covariance matrix of all
parameters involved. In practice, one can first test the proportional hazards assumption in the
failure time model, then select the appropriate χ2 test to test whether predictive accuracies vary
by different values of the covariate.

4.2 Inference about individual points on a PPV curve
To make inference about PPVz(t, v), we derived asymptotic properties of the proposed

estimators. We first show in the Web Appendix B that 
almost surely and  is asymptotically equivalent to a sum

of independent and identically distributed (i.i.d) terms, , where ζi(t, v, z) is
defined in Web Appendix B. Furthermore, we show by the functional central limit theorem of
Pollard (1990) that the process (t, v) converges weakly to a mean zero Gaussian process in

(t, v). Similarly, we show in the Appendix that  almost surely
and  is asymptotically equivalent to a sum of i.i.d.,

, and converges weakly to a mean zero Gaussian process, where ξi(t, v, z) is
defined in the Appendix.

To construct point-wise and simultaneous confidence intervals for PPVz(t, v), we follow a
resampling procedure that was considered in Park and Wei (2003), Cai et al. (2005) and Zheng
et al. (2008). Specifically, to approximate the distributions of (t, v) and (t, v), we first

generate independent standard normal random variates { , i = 1, … n}, for j = 1, …, J. Let

 when approximating (t, v), and

 when approximating (t, v), where ζ̂i(t, v, z) and ξ ̂i(t, v, z) are
the respective empirical counterparts of ζi(t, v, z) and ξi(t, v, z). Then for any t, v and z, one

can estimate the corresponding variance with . A 100(1 − α)%
confidence interval for PPVz(t, v), for example, based on , can be constructed as

where for a pointwise confidence interval, dα is the 100(1 − α/2)th percentile of the standard
normal distribution. To construct simultaneous confidence intervals for PPVz(t, v) for any
given t and z and v ∈ {va, vb}, we find dα from the J samples such that
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5. Simulation
We conduct numerical studies to assess the performance of the estimators under several
scenarios. We first consider their finite sample performance using a moderate sample size of
n = 500 and then a larger sample of n = 2000. We consider the case when the hazard of failure
depends on the marker Y and a single covariate Z through the proportional hazards model of
the form: . We generate the censoring time from a uniform
distribution with mean 10. This yields a censoring rate of 25% approximately. The covariate
Z is a binary random variable from a Bernoulli distribution with probability equal to 0.5. The
marker Y is generated from a conditional normal distribution with mean 0.5Z and variance 1.
We estimate PPV values for Z = 0, 1 at t = 7 and v = 0.1, 0.3, 0.5, 0.7, 0.9. We evaluate the
performance of PPVz(t, v) estimators:  using the Cox regression model and

 using the smoothed Cox regression model. The smoothing bandwidth for
 is taken to be h = n−1/3c, with c equal to the standard deviation of Y. FY|z is evaluated

using the conditional empirical distribution. In addition, since Z is binary, it is possible in this
case to estimate the covariate-specific PPV curves by calculating the PPV curve at each level
of Z. We therefore are also able to obtain nonparametric PPV curve estimators  based
on the Zheng et al. (2008) using subsets with given levels of Z. Consequently, we also compare
the performance of the non-parametric estimator and the proposed semi-parametric estimator
obtained by the regression modeling framework. Results are presented in Table 1. All
estimators show negligible bias, and the analytic standard errors track the empirical standard
deviations well. The coverage probabilities of the pointwise confidence intervals are close to
the nominal 95% level with the exception of when the sample size is small and v is close to 1
for . Improved performance is observed for a larger sample size. As expected,

 achieves smaller bias and better efficiency than , however  is still
more efficient than the nonparametric estimator . The phenomenon is more
pronounced at larger values of v. Similar results are observed with different censoring rates
(data not shown).

We also investigate the robustness of the two estimators under two scenarios. We first consider
a model of the form λ(t) = (2Y +1.5Y2 +3Z}/10, but fit a mis-specified Cox model ignoring the
quadratic term for . In the second scenario, for the ith subject Yi is from a mixture of
the log-normal distribution: log(Yi) = 0.5Zi+ρi, where ρ and Z are random variates from standard
normal and Bernoulli with probability equal to 0.5, respectively. In addition, T is simulated
with a hazard function of the form λ(t) = exp{log(t + 1)Y + 1.5Z}. Since the effect of Y on T
varies as a function of t, a Cox regression model assuming proportional hazards for Y would
likely fail. As shown in Table 2, we found that in both cases,  based on misspecified
Cox regression models yield substantial biases and much greater mean squared errors (MSEs),
compared with . Therefore although  appears to be the method of choice
when the proportional hazards assumption is valid, there is still an advantage for considering

 for its robustness. This aspect is important especially when formal checking of
survival regression models has not become a routine in practice.

6. Example: PSA for Prostate Cancer Prognosis
Prostate cancer is a major health problem in aging men. The disease is unique in that it manifests
in two forms with no clear distinction: an aggressive form, and an indolent form, which
develops slowly over many years and does not pose a threat to the patient’s life. Many patients
with indolent prostate cancer are subjected unnecessarily to invasive procedures that may lead
to important side effects and significant morbidity. One of the goals of our prostate cancer
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research is to identify novel markers, used in combination with other existing markers and
clinical factors, for improved predictions of prostate cancer prognosis. Since PSA has been
used as a prognostic marker in the past, it is a crucial first step to evaluate the predictive
performance of PSA-based criteria for treatment decisions in our population. Specifically, our
cohort consists of 752 incident PC cases who were diagnosed at ages 40–64 years in 1993–
1996 and who are followed for disease progression and survival. We include 671 patients with
PSA measures prior to prostate cancer primary treatment in our analysis. By the time the data
are analyzed, 124 patients are deceased and the median followup time among patients alive is
12 years. Pre-treatment PSA (logarithm transformed throughout this section) is a strong
predictor for all-cause mortality, with an unadjusted hazard ratio of 1.58 [95% CI: 1.39, 1.8].

One question of interest is whether the predictive performance of PSA is affected by other
characteristics such as tumor grade. For example, do PPV curves for PSA differ between groups
of patients with low grade (i.e., Gleason score ≤ 6) and moderate to high grade (i.e., Gleason
score ≥ 7)? Figure 1 shows the distributions of log-transformed pre-treatment PSA for both the
low grade and moderate to high grade patients. Although the mean of PSA appears to be slightly
higher for the high grade group, the two distributions are essentially overlapped. This implies
that a positive test based on PSA would likely include both low and high grade patients. We
use covariate-specific PPV curves to address this question, considering both estimators that
are based on the ordinary Cox proportional hazards model or the smoothed Cox regression
model. To calculate  we fit a proportional hazards model of the form λ(t|Y, Z) = λ0(t)
exp{αlog(PSA) + βI(grade=high)}. For  we fit a smoothed hazards model of the form
λ(t|Y, Z) = λ0{t, log(PSA)}exp{βI(grade=high)} with the smoothing bandwidth h = cn−1/3, using
the standard deviation of the logarithm of PSA for c. FY|z is estimated empirically. Similar
estimates for the effect of Gleason score are observed: exp(β ̂) = 1.90[95% CI: 1.33, 2.67], and
1.77 [95% CI: 1.22, 2.57], respectively from the two models. This indicates that for patients
who test positive at a given threshold based on their PSA values, the averaged risk of death is
higher if they have moderate or high grade PC than if they have low grade PC. There does not
appear to be significant interaction between PSA and cancer grade from either of the models:
the corresponding estimated hazard ratios are 1.13[95% CI: 0.84, 1.43] and 1.07[95% CI: 0.82,
1.40], respectively.

The estimated PPV and NPV for different groups at t=10 years and their estimated 95%
confidence intervals and simultaneous confidence bands are shown in Tables 3 and 4,
respectively. For comparison we also calculated the corresponding PPV and NPV using the
nonparametric estimators introduced in Zheng et al. (2008), using the data from each covariate
group separately. The estimator is the most flexible as it does not involve any parametric
assumptions about the failure time and either PSA or Gleason score. The estimates from the
two semiparametric approaches agree well with those from the nonparametric procedure,
suggesting that the assumptions used in the semiparametric models work well in this sample.
The efficiencies of the two semiparametric models are comparable; as expected, the
nonparametric estimators are relatively less efficient. Since NPVs for both groups do not appear
to vary much over the entire range of PSA values we focus presentation below only on PPV.
The covariate-specific PPV curves for v ranging from 0.1 to 0.9 from the proposed procedures
are displayed in Figure 7. It appears that for low grade PC patients the averaged 10-year PC
mortality risk stays at a very low level across a wide range of PSA values used as positivity
criteria for defining a positive test. The averaged risk for 10-year mortality among these whose
PSA values are at the top 10% of this subpopulation is only about 6%

( , 95% CI: [0.01, 0.12]). In contrast, for the subpopulation of patients
with moderate to high grade cancer, the PPV curve increases relatively more steeply, an
indication that PSA is quite informative at identifying patients with elevated risk of death by
10 years in this subpopulation. For example, at v = 0.1, the corresponding

Zheng et al. Page 10

Biometrics. Author manuscript; available in PMC 2010 May 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



 is 0.15 (95% CI: [0.09, 0.18]), whereas

 equals 0.44 (95% CI: [0.28, 0.60]) at v = 0.9. In other words, PSA
is a more useful marker in helping patients with moderate or high grade tumors to make
treatment decisions. Such information may be helpful for urologists to determine how many
patients are eligible for more aggressive treatment based on both PSA and Gleason scores. For
example, if patients with a 10-year mortality risk of at least 30% are eligible for an aggressive
therapy, we may opt to only administer the treatment to those with high grade cancer and PSA
values in the top 30% of the subpopulation. In contrast, if only the crude PPV curve is
considered (as illustrated in Figure 1), we would use the same PSA threshold for these two
groups. Nevertheless, those eligible patients with low Gleason scores would in fact have a very
low risk of death within 10 years and therefore would not really benefit from the treatment.
We conclude that covariate-specific PPV curves in this case indeed lead to more informed
treatment decisions.

7. Discussion
When applying novel biomarkers into routine standard care, it is important to consider risk
threshold to ensure that medical decisions are satisfying at the individual patient level. It is
also important to identify factors that influence the performance of a biomarker in order to
determine the optimal or suboptimal conditions or populations for test performance. By
understanding the effects of the biomarker on different subgroups, intervention can be targeted
for those individuals most likely to benefit, at a reasonable expense with nominal risk of
complications. The covariate-specific time-dependent PPV curve provides a novel way to carry
out this task.

We develop a regression model framework to accommodate the covariate effect when
quantifying time-dependent predictive accuracies. Existing methods often fail to account for
the fact that risk for disease occurrence and progression is likely to change over time. Such a
limitation is critical given that model checking for failure time data has not become a routine
practice. By adopting a smoothed survival time regression technique, we provide estimating
procedures that will be broadly applicable to many biomarker study settings. Our procedures
are simple yet meaningful for clinical practice, amenable to the complex covariate structure,
and flexible in its assumption about the underlying model and censoring mechanism. Other
flexible modeling approaches can also be considered. One natural choice is the Cox model
with time-varying coefficients, which offers greater robustness than the proportional hazards
model while retaining the loglinear relationship between the baseline hazard and the marker.
This model can be applied in a parametric version, going back to Cox (1972), or in a
nonparametric version, as described by Tian et al. (2005) and other authors. General model
checking procedures can be helpful for selecting a parsimonious model.

The proposed covariate-specific PPV curve is developed for the setting where a test is
administered and subjects are classified into being tested positive and negative based on

. Therefore the assumption of a monotonic function for P(T < t|Y = y, Z = z) is
imposed to reflect the rationale for classifying subjects as short term or long term survivors
based on the binary classification rule. In practice, to ensure the monotonicity of the estimated
risk function when the underlying true risk is expected to be increasing, one may construct
such a monotone estimate by considering various isotonic regression techniques (Friedman
and Tibshirani (1984); Bloch and Silverman (1997); Hall and Huang (2001)). However
inference procedure may need to be modified to reflect the constrained inference. A simpler

remedy is to replace Λ ̂y(t) with , which does not alter the asymptotics of the
proposed estimates (Lin et al., 1999; Peng and Huang, 2007).
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Research on time-dependent PPV curves can be extended in a number of directions. First, once
factors that may have a substantial impact on the accuracy of a clinical prediction are identified,
a natural next step might be seeking a new algorithm for incorporating other factors by
combining multiple factors into a new test. In our PC application it is of great interest to decide
whether new markers (e.g., SNPs) provide significant improvement in predictive accuracy
when combined with standard variables (pre-operative PSA, Gleason score, clinical stage) for
predicting PC mortality. Statistical procedures for deriving and evaluating a new combinatory
rule for improved predictive accuracy for this setting are yet to be developed. Second, the
analysis of time-to-event data is often complicated by the presence of competing risk. In the
prostate cancer example, invasive procedures are only necessary for individuals with
aggressive forms of the disease (i.e., those who are at risk of dying from rather than dying
with prostate cancer). Therefore the most important outcome when considering PC-related
treatment is PC-specific death. Deaths due to other causes are competing risk events.
Characterizing the predictive accuracy of a marker on different causes of failures, might allow
more rational or cost-effective use of specific medical or surgical treatment strategies.
Statistical methods that accommodate competing risk events are subjects of current
development.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix
Throughout we assume that the joint density of T, C and Y is twice continuously differentiable
and W = (Y, ZT)T belongs to a compact set ΩW. We consider v ∈ [pl, pu] ⊂ (0, 1) and t ∈ [τ1,
τ2], where τ1 and τ2 are pre-determined constants such that P (X < τ1) > 0 and P(X > τ2) > 0. In

addition, we assume that , is bounded away from 0 for y ∈ [cz(pl), cz(pu)].
For F̂Y|z(y), without loss of generality, we assume that

(A.1)

where (y, z) =  (y, z, Xi, Δi, Yi, Zi) for some function  that is bounded for (y, z) ∈ ΩW with
total variation bounded by a constant. Under a semi-parametric location model,

, which
satisfies (A.1). The consistency and weak convergence of  can be established through
standard empirical processes theory. The derivations can be found in Web Appendix B. We
next outline derivations for the asymptotic properties of  and also refer to the Web
appendix C for detailed justifications.

We require the same conditions as specified in Dabrowska (1997) and the bandwidth h is chosen
such that nh2 → ∞ and nh4 → 0 as n → ∞. It follows from Dabrowska (1997) that supt,y|

Λ ̂y,z(t) − Λy,z(t)| = op(n−1/4) and , where

, ℐ(β) is the limit of , and

 is the limit of .

The uniform convergence of Λ̂y,z(t), together with the uniform consistency of F̂Y|z(y) and
cz(v), and Lemma A.3 of Bilias et al (1997), implies the uniform consistency of .
Now, to derive the large sample distribution for , we write
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where  and

To approximate the distribution of (t, v), we again invoke Lemma A.3 of Bilias, Gu and Ying
(1997) and use the fact that supt,y|Λ ̂y,z(t) − Λy,z(t)| + supy|F̂Y|z(y) − FY|z(y)| + supv|ĉz(v) − cz(v)| =
op(n−1/4) to obtain

Now, it follows from the asymptotic expansions for Λ̂y,z(t) given in Dabrowska (1997) that

where Ay(s) = E{Ni(s)|Yi = y}dP(Yi ≤ y)/dy is the limit of N̂y(s), π̂y(u) = π̂y (u, β0), πy(u) =

πy(u, β0), ℬz(t, y) is  evaluated at β = β0, and

. It follows that

Now, by a change variable  and assuming that nh4 = op(1),

Therefore, , where
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On the other hand, the process (t, v) can be approximated by  as for (t,

v). Hence, , where ξi(t, v, z) = ξi1(t, v, z) + ζi2(t, v, z). This,
together with a functional central limit theorem, implies that (t, v) converges weakly to a
zero-mean Gaussian process.
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Figure 1.
Box plot shows the distributions of log-transformed PSA values from low grade (Gleason score
≤ 6), and moderate to high grade (Gleason score > 6) prostate cancer patients.
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Figure 2.
Estimated PPV curves (left panel: ; right panel: ) and 95% confidence
intervals and bands for v ∈ (0.10, 0.90) and at t = 10 years after diagnosis in PC study. Solid
lines: estimates of PPVz(t, v); dotted lines: nonparametric estimators of crude PPV(t, v). Dashed
lines: 95% simultaneous confidence bands. Shaded areas: 95% confidence intervals. The
horizontal lines correspond to the marginal event time probabilities P(T < 10 years|low grade)
and P(T < 10 years|moderate to high grade).
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SÊ
)

0.
01

0.
02

0.
02

0.
02

0.
03

0.
02

0.
02

0.
02

0.
02

0.
03

 
95

%
 c

ov
0.

95
0.

95
0.

95
0.

94
0.

95
0.

94
0.

94
0.

93
0.

94
0.

93

PP
V̂

(t
,v

)

 
Es

t
0.

35
0.

40
0.

46
0.

54
0.

68
0.

57
0.

64
0.

71
0.

79
0.

90

 
SE

0.
02

0.
02

0.
02

0.
03

0.
05

0.
02

0.
02

0.
02

0.
03

0.
03

Biometrics. Author manuscript; available in PMC 2010 May 25.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zheng et al. Page 20

Ta
bl

e 
2

Es
tim

at
es

 (E
st

.),
 S

ta
nd

ar
d 

Er
ro

rs
 (S

E)
 a

nd
 M

ea
n 

Sq
ua

re
d 

Er
ro

rs
 (M

SE
) u

nd
er

 T
w

o 
Si

m
ul

at
ed

 R
eg

re
ss

io
n 

M
od

el
s

z =
 0

z =
 1

v 
= 

0.
1

v 
= 

0.
3

v 
= 

0.
5

v 
= 

0.
7

v 
= 

0.
9

v 
= 

0.
1

v 
= 

0.
3

v 
= 

0.
5

v 
= 

0.
7

v 
= 

0.
9

M
od

el
 I

PP
V

z(
t, 

v)
0.

39
0.

44
0.

52
0.

66
0.

92
0.

69
0.

74
0.

82
0.

92
0.

99

PP
V
∼

z(
t,

v)

 
Es

t.
0.

41
0.

47
0.

53
0.

61
0.

74
0.

73
0.

79
0.

85
0.

91
0.

97

 
SE

0.
03

0.
04

0.
04

0.
05

0.
06

0.
03

0.
03

0.
03

0.
03

0.
02

 
M

SE
×

10
3

1.
74

2.
09

1.
68

5.
09

35
.4

5
2.

46
3.

30
1.

61
0.

81
1.

23

PP
V̂

z(t
,v

)

 
Es

t.
0.

39
0.

44
0.

52
0.

64
0.

88
0.

68
0.

73
0.

81
0.

91
0.

99

 
SE

0.
03

0.
03

0.
04

0.
05

0.
06

0.
03

0.
03

0.
03

0.
03

0.
01

 
M

SE
×1

03
0.

81
1.

12
1.

65
2.

83
4.

89
0.

87
1.

05
1.

18
1.

01
0.

12

M
od

el
 II

PP
V

z(
t, 

v)
0.

61
0.

64
0.

69
0.

77
0.

93
0.

80
0.

84
0.

89
0.

95
1.

00

PP
V
∼

z(
t,

v)

 
Es

t.
0.

61
0.

62
0.

64
0.

68
0.

76
0.

80
0.

81
0.

84
0.

88
0.

95

 
SE

0.
02

0.
02

0.
02

0.
02

0.
03

0.
01

0.
01

0.
01

0.
02

0.
02

 
M

SE
×1

03
0.

25
0.

64
2.

53
8.

80
28

.2
2

0.
22

1.
01

3.
12

6.
29

3.
08

PP
V̂

z(t
,v

)

 
Es

t.
0.

61
0.

64
0.

68
0.

76
0.

91
0.

80
0.

84
0.

89
0.

95
0.

99

 
SE

0.
02

0.
02

0.
02

0.
02

0.
02

0.
01

0.
01

0.
01

0.
01

0.
01

 
M

SE
×1

03
0.

24
0.

29
0.

38
0.

52
0.

77
0.

19
0.

21
0.

22
0.

21
0.

10

Biometrics. Author manuscript; available in PMC 2010 May 25.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zheng et al. Page 21

Ta
bl

e 
3

Es
tim

at
es

 (9
5%

 c
on

fid
en

ce
 in

te
rv

al
s)

 a
nd

 [9
5%

 c
on

fid
en

ce
 b

an
ds

] o
f P

PV
z(

t, 
v)

 a
t t

 =
 1

0 
ye

ar
s w

ith
 v

ar
io

us
 sa

m
pl

e 
pe

rc
en

til
e 

(v
) i

n 
th

e 
PC

 S
PO

R
E 

st
ud

y.

v 
= 

0.
1

v 
= 

0.
3

v 
= 

0.
5

v 
= 

0.
7

v 
= 

0.
9

Lo
w

 g
ra

de
 P

C
: G

le
as

on
 sc

or
e 
≤ 

6

ĉ z
(v

)*
2.

7
4.

7
6.

1
8.

5
16

.4

PP
V̂

z(t
,v

)
0.

02
(0

.0
0,

 0
.0

3)
 [0

.0
0,

 0
.0

3]
0.

02
(0

.0
1,

 0
.0

4)
 [0

.0
0,

 0
.0

4]
0.

03
(0

.0
1,

 0
.0

4)
 [0

.0
1,

 0
.0

4]
0.

03
(0

.0
1,

 0
.0

6)
 [0

.0
1,

 0
.0

6]
0.

06
(0

.0
0,

 0
.1

1)
 [0

.0
0,

 0
.1

2]

PP
V
∼

z(
t,

v)

0.
02

(0
.0

1,
 0

.0
3)

 [0
.0

0,
 0

.0
3]

0.
02

(0
.0

1,
 0

.0
3)

 [0
.0

1,
 0

.0
3]

0.
02

(0
.0

1,
 0

.0
4)

 [0
.0

1,
 0

.0
4]

0.
03

(0
.0

1,
 0

.0
5)

 [0
.0

1,
 0

.0
6]

0.
06

(0
.0

2,
 0

.1
1)

 [0
.0

1,
 0

.1
2]

PP
V̂

(t
,v

)
0.

02
(0

.0
1,

 0
.0

3)
 [0

.0
0,

 0
.0

4]
0.

01
(0

.0
0,

 0
.0

3)
 [0

.0
0,

 0
.0

4]
0.

02
(0

.0
0,

 0
.0

4)
 [0

.0
0,

 0
.0

5]
0.

02
(0

.0
1,

 0
.0

6)
 [0

.0
0,

 0
.0

8]
0.

05
(0

.0
1,

 0
.1

4)
 [0

.0
0,

 0
.1

7]

M
od

er
at

e 
to

 h
ig

h 
gr

ad
e 

PC
: G

le
as

on
 sc

or
e 

> 
6

ĉ z
(v

)
4.

2
5.

9
8.

3
15

.8
51

.1

PP
V̂

z(t
,v

)
0.

14
(0

.1
0,

 0
.1

9)
 [0

.0
9,

 0
.1

9]
0.

17
(0

.1
1,

 0
.2

2)
 [0

.1
1,

 0
.2

3]
0.

20
(0

.1
4,

 0
.2

7)
 [0

.1
3,

 0
.2

8]
0.

28
(0

.1
8,

 0
.3

6)
 [0

.1
7,

 0
.3

8]
0.

48
(0

.3
1,

 0
.6

5)
 [0

.2
9,

 0
.6

8]

PP
V
∼

z(
t,

v)

0.
13

(0
.0

9,
 0

.1
8)

 [0
.0

8,
 0

.1
8]

0.
15

(0
.1

0,
 0

.2
0)

 [0
.0

9,
 0

.2
1]

0.
20

(0
.1

3,
 0

.2
6)

 [0
.1

2,
 0

.2
8]

0.
27

(0
.1

8,
 0

.3
6)

 [0
.1

6,
 0

.3
8]

0.
44

(0
.2

8,
 0

.6
0)

 [0
.2

4,
 0

.6
3]

PP
V̂

(t
,v

)
0.

15
(0

.1
1,

 0
.2

0)
 [0

.1
0,

 0
.2

1]
0.

16
(0

.1
1,

 0
.2

2)
 [0

.1
0,

 0
.2

4]
0.

22
(0

.1
5,

 0
.3

0)
 [0

.1
3,

 0
.3

2]
0.

29
(0

.1
9,

 0
.4

0)
 [0

.1
6,

 0
.4

4]
0.

45
(0

.2
6,

 0
.6

2)
 [0

.2
1,

 0
.6

6]

* : P
SA

 th
re

sh
ol

d 
va

lu
es

.

Biometrics. Author manuscript; available in PMC 2010 May 25.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zheng et al. Page 22

Ta
bl

e 
4

Es
tim

at
es

 (9
5%

 c
on

fid
en

ce
 in

te
rv

al
s)

 a
nd

 [9
5%

 c
on

fid
en

ce
 b

an
ds

] o
f N

PV
z(

t, 
v)

 a
t t

 =
 1

0 
ye

ar
s w

ith
 v

ar
io

us
 sa

m
pl

e 
pe

rc
en

til
e 

(v
) i

n 
th

e 
PC

 S
PO

R
E 

st
ud

y.

v 
= 

0.
1

v 
= 

0.
3

v 
= 

0.
5

v 
= 

0.
7

v 
= 

0.
9

Lo
w

 g
ra

de
 P

C
: G

le
as

on
 sc

or
e 
≤ 

6

ĉ z
(v

)*
2.

7
4.

7
6.

1
8.

5
16

.4

N
PV̂

z(t
,v

)
1.

00
 (0

.0
0,

 1
.0

0)
 [0

.9
4,

 1
.0

0]
0.

99
 (0

.9
4,

 1
.0

0)
 [0

.9
3,

 1
.0

0]
0.

99
 (0

.9
6,

 1
.0

0)
 [0

.9
7,

 1
.0

0]
0.

99
 (0

.9
7,

 1
.0

0)
 [0

.9
7,

 1
.0

0]
0.

99
 (0

.9
7,

 1
.0

0)
 [0

.9
7,

 1
.0

0]

N
PV∼

z(
t,

v)

0.
99

 (0
.9

9,
1.

00
) [

0.
99

, 1
.0

0]
0.

99
 (0

.9
8,

1.
00

) [
0.

98
, 1

.0
0]

0.
99

 (0
.9

8,
1.

00
) [

0.
98

, 1
.0

0]
0.

99
 (0

.9
8,

1.
00

) [
0.

98
, 1

.0
0]

0.
99

(0
.9

8,
 1

.0
0)

 [0
.9

8,
1.

00
]

N
PV̂

(t
,v

)
0.

98
 (0

.9
2,

 1
.0

0)
 [0

.9
0,

 1
.0

0]
0.

98
 (0

.9
6,

 1
.0

0)
 [0

.9
6,

 1
.0

0]
0.

98
 (0

.9
7,

 0
.9

9)
 [0

.9
6,

 1
.0

0]
0.

98
 (0

.9
7,

 0
.9

9)
 [0

.9
7,

 0
.9

9]
0.

98
 (0

.9
7,

 0
.9

9)
 [0

.9
7,

 0
.9

9]

M
od

er
at

e 
to

 h
ig

h 
gr

ad
e 

PC
: G

le
as

on
 sc

or
e 
≥ 

7

ĉ z
(v

)
4.

2
5.

9
8.

3
15

.8
51

.1

N
PV̂

z(t
,v

)
0.

96
 (0

.6
3,

 1
.0

0)
 [0

.5
9,

 1
.0

0]
0.

94
 (0

.8
0,

 0
.9

9)
 [0

.7
8,

 1
.0

0]
0.

94
 (0

.8
5,

 0
.9

9)
 [0

.8
4,

 1
.0

0]
0.

94
 (0

.8
7,

 0
.9

7)
 [0

.8
7,

 1
.0

0]
0.

90
(0

.8
6,

 0
.9

4)
 [0

.8
5,

 0
.9

6]

N
PV∼

z(
t,

v)

0.
96

(0
.9

4,
0.

99
) [

0.
94

,0
.9

9]
0.

95
(0

.9
2,

0.
98

) [
0.

92
,0

.9
8]

0.
94

 (0
.9

1,
 0

.9
7)

 [0
.9

1,
 0

.9
7]

0.
93

 (0
.9

0,
 0

.9
6)

 [0
.8

9,
 0

.9
6]

0.
90

(0
.8

7,
 0

.9
4)

 [0
.8

6,
 0

.9
5]

N
PV̂

(t
,v

)
1.

00
 (0

.7
9,

 1
.0

0)
 [0

.6
7,

 1
.0

0]
0.

94
 (0

.8
3,

 0
.9

8)
 [0

.7
8,

 0
.9

9]
0.

94
 (0

.8
9,

 0
.9

8)
 [0

.8
7,

 0
.9

8]
0.

93
 (0

.8
8,

 0
.9

6)
 [0

.8
7,

 0
.9

7]
0.

90
 (0

.8
5,

 0
.9

3)
 [0

.8
3,

 0
.9

4]

* : P
SA

 th
re

sh
ol

d 
va

lu
es

.

Biometrics. Author manuscript; available in PMC 2010 May 25.


