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Summary
Models for longitudinal data are employed in a wide range of behavioral, biomedical,
psychosocial, and health-care related research. One popular model for continuous response is the
linear mixed-effects model (LMM). Although simulations by recent studies show that LMM
provides reliable estimates under departures from the normality assumption for complete data, the
invariable occurrence of missing data in practical studies renders such robustness results less
useful when applied to real study data. In this paper, we show by simulated studies that in the
presence of missing data estimates of the fixed-effect of LMM are biased under departures from
normality. We discuss two robust alternatives, the weighted generalized estimating equations
(WGEE) and the augmented WGEE (AWGEE), and compare their performances with LMM using
real as well as simulated data. Our simulation results show that both WGEE and AWGEE provide
valid inference for skewed non-normal data when missing data follows the missing at random
(MAR), the most popular missing data mechanism for real study data.
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1 Introduction
Models for longitudinal data are employed in a wide range of behavioral, biomedical,
psychosocial, and health-care related research studies. One popular modeling paradigm is
the latent variable, or random-effect, based approach for addressing correlated responses
arising from such study data (Demidenko, 2004; Fitzmaurice et al. 2004; Raudenbush and
Bryk, 2002). For example, for continuous response, the linear mixed-effects model (LMM)
is one of the most widely used methods for modeling longitudinal data. By using random-
effects to account for correlations across multiple within-subject outcomes, the LMM
extends the classic multiple linear regression for modeling cross-sectional data to a general
longitudinal data setting.

One major drawback of LMM as well as other random-effects based models is their
dependence on distribution assumptions for inference. In recent years, many software
packages have implemented robust methods to improve the validity of inference in the
presence of departures from assumed parametric models. For example, simulation studies of
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Maas and Hox (2004; 2005) have found that estimates of the fixed-effects, or population
parameters, of LMM are quite robust when model errors depart from the assumed normal
distribution. However, these simulation studies have all been carried out under complete
data. In most real studies, missing data invariably occurs and the robustness of estimates
from LMM requires reassessment in the presence of missing data.

In this paper, we show by simulated data that the robustness of fixed-effect estimates of
LMM is compromised under non-random missing data when the error term of the model
deviates from the normality assumption. To address this key limitation, we investigate the
performance of two robust alternatives, the weighted generalized estimating equations
(WGEE) and augmented WGEE (AWGEE), for inference for non-normal longitudinal data.
In Section 2, we briefly review the parametric LMM and the distribution-free formulation of
this model. In Section 3, we discuss inference by the two dueling paradigms under missing
data. In Section 4, we use simulated data to compare the performance of the various
approaches for fitting non-normal longitudinal data under non-random missing data. In
Section 5, we give our concluding remarks.

2 Models for Longitudinal Data
Over the past three decades, studies in biomedical and behavioral sciences have evolved
from simple cross-sectional study designs to modern day longitudinal trials. As longitudinal
study designs use subjects as their own controls, they provide a unique opportunity to study
changes of outcomes of interest over time, causal effects and disease progression, in addition
to providing more power for assessing treatment differences. In this section, we briefly
review the two most popular approaches for modeling longitudinal data with continuous
response.

2.1 Parametric Linear Mixed-effects Model
First, consider a relatively simple longitudinal study design with only two assessments, i.e.,
the so-called pre-post design. Let n denote the number of subjects and yit some continuous
outcome of interest from the ith subject at time t (= 1, 2). We are interested in modeling the
mean response E(yit) of yit over time. One popular approach is the linear mixed-effects
model (LMM), which for such a pre-post study design, has the simple form:

(1)

where I{·} denotes a set indicator, and N (μ, σ2) denotes a normal with mean μ and variance
σ2. In the LMM above, since E (yit) = β0 + β1I{t=2}, βt represents the (population) mean of yit
at pre-(t = 1) and post-treatment (t = 2) and is known as the fixed or population effect. The
latent bi in (1) accounts for the variation across the individual subjects around the fixed
effect or population mean and is known as the random effect.

Let yi = (yi1,yi2)┬. It then follows from (1) that

(2)
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where  is known as the intraclass correlation (ICC) and Cm (ρ) denotes a m ×
m compound symmetry correlation matrix with a correlation coefficient ρ. The LMM for the
pre-post study design will be used to illustrate the performance of LMM in Section 4.

More generally, the LMM for a longitudinal data with n assessments has the following form:

(3)

where xit = (1, xi1t …, xipt)┬ (zit = (1, zi1t …, zilt)┬) denotes a p × 1 (l × 1) vector of
covariates, bi = (bi1,…, bil)┬ a l × 1 vector of normal random-effect, εi = (εi1,…, εim)┬ the
error term for the model, N (μ, Σ) a multivariate normal with mean μ and variance Σ, Im the
m × m identity matrix. Under (3), we have:

(4)

By setting  and zit = 1 in (4), we immediately obtain (2).

Maximum likelihood (ML) is the most popular inference procedure for LMM (Demidenko,
2004; Raudenbush and Bryk, 2002). One major drawback of ML estimate is the dependence
on the parametric assumptions; if data does not follow the normality assumptions in (1),
model estimates may become biased or inconsistent. In recent years, many packages have
adopted the sandwich variance estimate to address this issue (Goldstein, 1995; Rasbash et
al., 2000; Raudenbush and Bryk, 2002). In this case, these procedures essentially yield
variance estimates equivalent to those from the generalized estimating equations (GEE),
which we review next.

2.2 Distribution-free Linear Model
Since the seminal work of Liang and Zeger (1986), the generalized estimating equations
(GEE) approach has been widely used as an alternative for modeling longitudinal data. By
modeling the marginal mean of the response at each assessment time, GEE eliminates both
layers of distribution assumptions for the random effect and error term, thereby providing
consistent estimates regardless of data distributions and the complexities of structure of
correlated responses.

Within our context, consider the following linear model:

(5)

In (5), only the marginal mean at each time t is specified, which models the fixed-effect of
LMM in (1) at time t. Under GEE, inference is based on the following score-like vector
equation:

(6)
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where μi = (μil, …, μim)┬, Gi (xi) is some matrix function of . If the model in
(5) is correct, then the GEE in (6) is unbiased, i.e., E [Wn (β)] = 0, regardless of the choice
of Gi (xi), ensuring the consistency of estimate of β obtained as the solution to (6) (Liang
and Zeger, 1986;Diggle et al. 2002). In most applications, Gi (xi) has the form:

(7)

where V (α) denotes a working variance matrix parameterized by α.

The phrase working variance is used to emphasize the fact that V (α) is not necessarily the
true variance matrix of yi. For example, the simplest choice is V =diagt (Var(yit)), where
diagt (αt) denotes a diagonal matrix with αt on the tth diagonal. In this case, the correlated
responses yit are treated as if they are independent. In addition, there is no parameter
associated with this particular working independence model. Another popular choice is the
exchangeable or uniform compound symmetry correlation matrix,

, where Cm(ρ) denotes a m × m matrix
correlation matrix with a common correlation ρ for any pair of the component responses of
yi.

In addition to β, (6) also depends on α, though we have suppressed this dependence to
highlight the fact that (6) is the equation for estimating β. Thus, before proceeding with
inference about β, α must be estimated (except for the working independence model).
Although the consistency of β ̂ does not depend on how α is estimated, judicious choices of
the type of estimates of α are required to ensure the asymptotic normality of β ̂. In particular,
if α ̂ is -consistent, β ̂ is asymptotically normal with its asymptotic variance Σβ given by
(e.g. Liang and Zeger, 1986;Kowalski and Tu, Chap. 4, 2007):

A consistent estimate of Σβ is obtained by substituting consistent estimates in place of the

respective quantities above. For example, we can estimate B by .
Since moment estimates are -consistent, α is readily estimated for the working
independence and exchangeable correlation models (e.g. Liang and Zeger, 1986).

3 Inference under Missing Data
In longitudinal studies, missing data are inevitable; subjects may simply quit or they may not
show up at follow-up visits. We characterize the impact of missing data on model estimates
through assumptions or missing data mechanisms, which allow us to ignore the multitude of
reasons for missing data and focus on addressing their impact on estimation of model
parameters. The missing completely at random (MCAR) assumption models a class of
missing data that does not affect model estimates when completely ignored. For example, in
a treatment study, missing data resulting from patient's relocation or scheduling conflict falls
into this category. However, MCAR is not a plausible model when missing data are
associated with treatment interventions such as patients' deteriorated or improved health
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conditions due to treatment. By modeling the occurrence of missing data as a function of
observed responses prior to the assessment point, the missing at random (MAR) assumption
addresses this class of treatment related or response-dependent missing data.

Within the longitudinal study setting in Section 2, define a missing (or rather, observed) data
indicator as:

We assume no missing data at baseline t = 1 such that ri1 = 1 for all 1 ≤ i ≤ n. Below, we
first briefly review inference for the parametric LMM in (3) and then turn our attention to
the distribution-free version in (5).

3.1 Parametric Model

Let yi = (yi1, …, yim)┬ and . Let  and  denote the observed and missing
responses, respectively. Under likelihood based parametric inference, we jointly model the
response yi and missing data indicator ri.

The joint density function, f (yi, ri | xi), can be factored into the product of marginal and
conditional distributions:

(8)

Under MAR, the distribution of ri depends only on the observed response, , and thus:

(9)

It follows from (8) and (9) that:

(10)

If θy and θy|r are assumed disjoint, then following (10) the log-likelihood based on the joint
observations  is given by:

Thus, inference about θy can simply be based on the log-likelihood l1 (θy).
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Most packages provide inference about the parameters of interest θy based on maximizing
the likelihood function l1 (θy). Under the model assumptions of LMM, estimates are
consistent under both MCAR and MAR. When study data fail to follow the parametric
assumptions, maximum likelihood estimates are no longer guaranteed to be consistent. We
examine bias from such estimates using simulated data in Section 4.

3.2 Distribution-free Model
3.2.1 Weighted Generalized Estimating Equations—In the presence of missing data,
we may apply the GEE in (6) to the observed responses, i.e.,

(11)

where Δi = diagt(rit). However, the vector estimating equation in (11) is generally biased,
i.e., E(Wn(β)) ≠ 0, unless missing data follow the MCAR model. To obtain consistent
estimates of β under MAR, we must revise the GEE above.

To illustrate the basic idea for modification, consider the relatively simple, pre-post design,
with a homogeneous sample. We are interested in estimating the mean response at pre- and
post-assessment, μ = E (yi) = (E (yi1), E (yi2))┬. By selecting the Gi (xi) according to (7), it
follows from (11) that

(12)

Solving the equations above for μ yields:

(13)

If the missingness of yi2 depends on yi1, it is readily checked that E(μ̂2) ≠ μ2, implying that
μ̂2 is not a consistent estimate. This is also clear on intuitive grounds. For example, if yi1 and
yi2 are positively correlated with higher values of yi1 leading to missing yi2, μ̂2 in (13) will
be downwardly biased, since it only averages over the observed yi2 corresponding to lower
values of yi1. In treatment studies, this type of response-dependent missingness often occurs
if a patient feels that his/her health condition has improved (or deteriorated) during study
and decides not to undergo any additional treatment.

Under MAR, the missingness of yi2 only depends on yi1, i.e.,

This probability πi2 selects which yi2's are to be observed based on the values of yi1. Thus,
each ith subject observed at t = 2 represents a subgroup of 1/πi2 subjects with the same
baseline value yi1, but unobserved at post-treatment because of the selection process defined
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by πi2. By augmenting each observed response yi2 at t = 2 with the weight function 1/πi2, we
can statistically include the missing responses in the estimation of μ2 by using a weighted
GEE (WGEE):

(14)

It is readily checked that E(Wn(μ)) = 0, enabling (14) to yield a consistent estimate of μ2,

 (e.g. Kowalski and Tu, Chap. 4, 2007). We can also directly verify
this:

where →p denotes convergence in probability.

By comparing (12) with (14), it is seen that the latter differs from the former only in the
definition of Δi. By carrying this modification over to a general setting with m assessments,
we obtain the WGEE for inference about β for the distribution-free LMM in (5), which is
defined by the same vector equation in (11) except for substituting the following modified
Δi:

(15)

It is again readily checked that E [Gi (xi) ΔiSi] = 0, ensuring that the WGEE yields
consistent estimates of β (e.g. Robins et al. 1995; Kowalski and Tu, Chap. 4, 2007).

To use WGEE, we must know or have estimates of πit. In some cases, subject dropout is
created by study design and πit are known. For example, in some multi-stage trials, patients
can only enter the next stage of the study if they satisfy certain criteria such as response to
treatment at the previous stage. However, as noted earlier, in most studies, missing data
patterns are defined by a host of factors not directly related to study design. We discuss
estimation of πit for the general setting after introducing another robust approach for the
distribution-free LMM.

3.2.2 Augmented Weighted Generalized Estimating Equations—The WGEE
discussed in Section 3.2.1 depends on the model for missing data in (15). In most studies, πit
are unknown and must be modeled and estimated. If such a model is misspecified, the
WGEE estimate may be inconsistent. In applications, reliable models may also exist for
directly relating the missing response to the observed ones and other covariates. The
augmented WGEE (AWGEE) is developed to take advantage of this additional source of
modeling information to ensure valid inference when the model for πit may be incorrect
(Robins et al., 1995;Tsiatis, 2006).
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To illustrate, consider again the pre-post study design. Suppose that we can predict yi2
directly based on yi1 using a linear regression:

(16)

Then, we can estimate μ2 without using WGEE by . This new
estimate is consistent if (16) is a correct model, since

By combining both the prediction model in (16) and the WGEE in (14), we obtain an
augmented WGEE to estimate μ as follows:

(17)

It is readily checked that  if either (15) or (18) or both are correct.
Thus, the AWGEE above yields consistent estimates of μ if at least one of these models is
correct. Further, when both models are correct, the AWGEE estimate from (17) may also be
more efficient than the WGEE estimate (Robins et al, 1995;Tsiatis, 2006).

The above is readily extended to a more general setting where the prediction model in (16)
also involves other baseline covariates. Let ui be a set of baseline variables including yi1 and
the prediction model be defined by:

(18)

The AWGEE is defined by

(19)

where . To ensure consistent estimation for the regression model, we assume a
surrogacy-type assumption, [yi2 | ui, xi] = [yi2 | ui], where [yi2 | vi] denotes the conditional
distribution of yi2 given vi (e.g. Prentice, 1989; Kowalski and Tu, 2002). Of course, the

condition holds if ui includes xi. Under the surrogacy condition, , if
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either (15) or (18) or both are correct. Thus, the AWGEE in (15) yields consistent estimates
of β if at least one of the missing data models is correct.

Although feasible in principle, it is more complex to implement AWGEE for a general
longitudinal study with more than two assessments. For example, for m = 3, we need to
consider two missing data patterns when predicting missing yi3: one with observed yi1 and
yi2, and the other with observed yi1 only. The number of prediction models grows rapidly as
the frequency of assessments increases. Further, it is more intricate to specify the prediction
models than models for the missing response probabilities πit.

3.2.3 Estimation of Weight Function and Augmented Term—Under MCAR, ri are
independent of xi and yi and πit = P [rit = 1] = πt. In this case, πt are readily estimated by the

sample moment: . In many studies, however, πit are dependent
of either xi or yi or both. It is difficult to model πit as a function of xi and yi without
imposing some additional assumptions regarding the relationship between them. As in the
literature, we focus on the MAR mechanism.

As noted earlier, missing data in longitudinal trials often occur as the result of subject
dropout due to deteriorated/improved health conditions and other related conditions,
exhibiting the so-called monotone missing data pattern (MMDP). The structured patterns
under MMDP make it possible to model πit in most studies.

Under MMDP, if yit is observed at time t, then all yis at all earlier times s (< t) are also
observed. Let

The subset Hit contains all observed data prior to time t. Under MAR,

(20)

Thus, under MMDP and MAR, πit are a function of observed data only, making it possible
to estimate these selection probabilities.

Let pit = E (rit = 1 | ri(t−1) = 1, Hit) denote the one-step transition probability of the
occurrence of missing data. Then, by invoking MMDP, it is readily checked that

(21)

Thus, we can estimate πit by modeling the pit. Since pit is the probability of a binary
response, we model that using logistic regression:
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(22)

where  and . For each t, we can estimate ξt by maximum
likelihood or GEE conditional on the observed w̃it at t − 1 (2 ≤ t ≤ m).

For AWGEE, we again consider the pre-post study design. In this case, we can readily

estimate η in (18) using GEE, where . With an estimate η ̂, we can predict yit By

using η̂ and ξ ̂ = , we can construct the AWGEE in (19).

3.2.4 Inference for WGEE and AWGEE Estimates—For inference based on WGEE,
let Δi, (ξ) be modeled as in (21) and (22). If ξt is estimated by GEE or maximum likelihood,

 is the solution to the following vector estimating equation:

(23)

Now, let

where Wni is defined in (11). Then, as shown in Appendix A, under -consistency of α ̂, the
WGEE estimate β ̂ is asymptotically normal with the asymptotic variance given by

(24)

In (24), Φ accounts for the variability of estimated ξ ̂. We can estimate Σβ by substituting
consistent estimates in place of the respective quantities.

For AWGEE inference, we also need to estimate η for the prediction model in (18). Using
GEE, the vector estimating equation is given by:

(25)

Let  with ϕ1 = ξ and ϕ2 = η. Then, by combining (23) and (25), ϕ̂ can be
expressed as the solution to the following joint vector estimating equation:
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The AWGEE estimate β ̂ is also asymptotically normal under -consistency of α ̂, with the
asymptotic variance having the same form as in (24) except for substituting si for qi and

redefining  and . Again, we can estimate the asymptotic
variance by substituting consistent estimates in place of the respective parameters.

4 Application
We illustrate our considerations with both real and simulated data. We first present an
application to data from a longitudinal study in depression research and then investigate the
performance of the approach with small to moderate sample sizes by simulation. In all the
examples, we set the statistical significance at α = 0.05. All analyses are carried out using a
code we have developed for implementing the proposed approach using the R software
platform (Free Software Foundation, 1999). This code is available from the author upon
request.

4.1 Real Study
In a study on geriatric depression and associated medical comorbidities for old primary care
patients, 744 subjects were enrolled from private practices and University-affiliated clinics
in general internal medicine, geriatrics, and family medicine in Monroe County, New York
(Lyness et al., 2007). All patients age 65 years and older who presented for care on selected
days and were capable of giving informed consent. Enrolled subjects underwent semi-
structured interviews, administered by trained raters in the subjects' homes or in research
offices at the UR Medical Center. The raters' subject interviews included assessments of
cognition, functional status, and psychopathology, the latter including the Structured
Clinical Interview for DSM-IV (SCID) (Spitzer et al. 1986). Interviews and chart reviews
were conducted at study intake, and again at one- and two-year follow-up time points.

In geriatric research, overall functional disability is of particular importance, as it reflects
both the mental and physical health conditions of the individual. Primary measures of
overall functional status include the Instrumental Activities of Daily Living (IADL),
Physical Self-Maintenance Scales (PSMS), Global Assessment of Functioning (GAF), and
the Karnofsky Performance Status Scale (KPSS) (Lawton MP and Brody, 1969, Karnofsky
DA and Burchenal JH, 1949, Ware JE, Jr. and Sherbourne CD). For illustration purposes,
we analyzed the change of IADL from baseline to one-year follow-up, as this measure
assesses instrumental activities such as shopping or using the telephone and is particularly
popular in geriatric research. Further, we only included the baseline value as a predictor
when modeling the missingness of this outcome as well as the outcome itself at the follow-
up using the respective logistic (20) and linear (18) models.

Of the 744 enrolled, 468 completed the IADL at the one-year follow-up. Shown in Table 1
are the estimates of the intercept and slope from the fitted logistic regression for modeling
the missingness and the linear regression for modeling the outcome of IADL as a function of
its baseline value at the follow-up. The baseline IADL was significant in both models,
indicating that it did predict the occurrence of missing IADL as well as the outcome itself at
the follow-up. Note that the negative sign of the estimate of the coefficient for baseline
IADL in the logistic model indicates that the subjects with lower baseline IADL were more
likely to come for assessment at the one-year follow-up. As lower IADL is associated with
poorer functioning status, the observed sample at the follow-up visit seemed to be biased
towards those with more severe overall functional disability at baseline.
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We fit the LMM in (1) and the distribution-free alternative in (5) to examine the change of
IADL from baseline to the one-year follow-up. Shown in Table 2 are the estimates of the
intercept β0 and slope β1 for the respective models under the different inference procedures.
As the estimates of β1 were positive across the board, the mean IADL increased at the
follow-up visit, indicating better functioning status for the old primary care patients in this
observational study.

However, the magnitude of the estimate of β1 did vary substantially — not only between the
models, but also across the different procedures within the same distribution-free linear
model. The WGEE and AWGEE yielded quite similar estimates, with the latter AWGEE
also providing improved efficiency, as indicated by smaller asymptotic standard errors. The
GEE performed poorly, with a whopping 50% downward bias, as compared to its
counterparts WGEE and AWGEE estimates. For the between-model comparison, the ML
estimate of β1 from the fitted LMM also incurred a downward bias, albeit with a much
smaller magnitude relative to the GEE estimate. The downward bias in both cases was
consistent with the fact that those assessed at the follow-up visit represented a subgroup with
more severe overall functional disability at baseline.

Shown in the Figure is the normal-based Q-Q plot of the conditional residuals obtained from
the estimated fixed and random effects for the fitted LMM model (Nobre and Singer, 2007).
The plot indicates clearly that the residuals did not follow a normal distribution, which may
explain the difference in the estimates of the fixed effects between the parametric (LMM)
and distribution-free models (WGEE and AWGEE).

4.2 Simulation Study
Given the discrepant estimates between LMM and WGEE (AWGEE) for the real study data
in 4.2, we conducted a simulation study with a pre-post study design to investigate this issue
further. We considered two non-normal distributions for the model error term of the LMM: a
rescaled central chi-square with one degree of freedom and a uniform between −1 and 1.
Since the results are quite similar, we only discuss and report the results from the chi-
square-distributed error. To examine the performance of the models under small, moderate
and large samples, we performed the simualation study with three sample sizes: n = 50, 100
and 2,000. All simulations were performed with a Monte Carlo sample of 1,000 using the R
software (R Development Core Team, 2007).
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We considered the pre- and post-treatment design and simulated the outcome according to
the LMM in (1) by setting β0 = β1 = 1 and ∈it (t = 1, 2) to follow the rescaled chi-square

distribution, , where  denotes a central chi-square with one degree of
freedom. We varied  and σ2 to control the within-subject correlation . We
assumed no missing data at baseline t = 1 and simulated the missing response at post-
treatment t = 2 under MAR according to the following logistic regression:

(26)

We set ξ0 = 0.5 and ξ1 = 1.2 to create about 25% missing response yi2 at t = 2.

Under (1), it is readily checked that regardless of the distributions for bi and ∈it (see
Appendix)

(27)

The above was used to predict missing yi2 from yi1 for AWGEE inference about β as
discussed in Section 3.2.4. To study the effect of wrong weight function on WGEE and the
robustness of AWGEE in such a scenario, we also estimated πi2 under an incorrect model by
leaving out yi1 in (26).

We considered the null H0 : β0 = β1, i.e., the mean at post-treatment is twice that at

pretreatment. We tested H0 using the Wald statistic, , which has
an asymptotic central  distribution. We estimated the type I error rate α based on the

distribution of  from 1, 000 Monte Carlo (MC) replications, ,

where  denotes the value of  from the jth MC replication and q0.95 the 95th percentile
of . The maximum likelihood (ML) inference about β = (β0,β1)┬ for LMM was obtained
from the LME procedure in R, while the WGEE and AWGEE estimates for the distribution-
free alternative in (5) were computed based on the asymptotic results in Section 3.2.

Shown in Table 3 are the estimates of β and associated asymptotic standard errors averaged
over 1,000 MC replications obtained from ML, GEE, WGEE and AWGEE for the
respective models, with a within-subject correlation ρ = 0.1 (or  and σ2 = 2). The
results confirmed that the baseline mean β0 is consistently estimated by all four procedures.
For β1, ML yielded consistent estimates for the normal distributed error, but biased estimates
under the rescaled  error. As expected, GEE estimates were biased under both types of
error distributions. Note that in the rescaled  error case, the standard errors of these
estimates did not increase much, making the upwardly biased estimates yield false
significant results in practice.

Under the correct weight function, WGEE performed well. When the incorrect constant
weight function was used, WGEE yielded biased estimates, while the AWGEE estimates
remained close to the true value of β1 under the correct prediction model. However,
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AWGEE did not show any significant gain in efficiency; in fact, the estimate of the slope β1
had a larger standard error under AWGEE than under WGEE across small sample sizes n.

To further investigate the relative efficiency between WGEE and AWGEE, we replicated
the above analysis by increasing the within-subject correlation. For example, shown in
Tables 4 and 5 are the estimates from one such replicated analysis with ρ = 0.3 (or  and
σ2 = 2 and 0.6 (or  and σ2 = 1), respectively. It is seen that all conclusions above
remain the same, except for the relative efficiency between WGEE and AWGEE under the
correct weight function and prediction model. As ρ increased to 0.3, AWGEE have smaller
standard errors than its counterpart WGEE when n = 2000. At ρ = 0.6, not only did AWGEE
show smaller standard errors than WGEE across all sample sizes, their differences also
widened as compared to those with ρ = 0.1.

5 Discussion
We investigated the two primary modeling strategies for longitudinal continuous response,
the linear mixed-effects model (LMM) and the distribution-free linear model, with respect to
their performance under missing data, and illustrated our considerations using real as well as
simulated study data. Our results show that LMM and the GEE procedure for the
distribution-free alternative generally yield biased estimates under MAR when the normality
assumption for LMM is violated. Further, as indicated by the simulation results, the standard
errors of these estimates do not increase to reflect model misspecification, making inference
prone to misleading findings. Thus, when modeling longitudinal data, it is important to test
the MCAR assumption as discussed in Section 3.2 before applying any of the models and
inference procedures considered. If the null of MCAR is rejected, WGEE and/or AWGEE
should be considered, unless there is strong evidence to support the use of the alternative
linear mixed-effects model.

Our simulation results also indicate that the gain in efficiency by AWGEE over WGEE
depends on the magnitude of the within-subject correlation ρ. Within the context of the
particular simulation model considered, AWGEE is less efficient than WGEE for small
sample size under small ρ such as 0.1. But, AWGEE edged out WGEE to be a more efficient
procedure as ρ increased to 0.6.
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Appendix
Under (1), we have

(28)

Further, the above holds regardless of the distributions for bi and ∈it. Now, consider the
linear regression
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Where  denotes a distribution with mean 0 and variance . It follows from (28) and
the relationship between linear regression coefficients and correlation that

Also, since

it follows that .

Under (1) and regardless of the distributions for bi and ∈it, we have

By substituting the expressions of φ0 and φ0 into the above and combining the coefficients,
we obtain (27).
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Table 1

Estimates of parameters of (1) logistic regression for modeling missingness at one-year follow-up, and (2)
linear model for predicting IADL at one-year follow-up for the study on geriatric depression and associated
medical comorbidities.

Estimates of models for missingness and outcome at one-year follow-up

Predictors Estimate Standard error p-value

Logistic regression for missingness at one year follow-up

Intercept 0.635 0.086 <0.0001

Baseline IADL −0.0491 0.018 0.007

Linear regression for predicting missing IADA at one year follow-up

Intercept 0.685 0.124 <0.0001

Baseline IADL 1.01 0.03 <0.0001
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Table 2

Estimates of parameters of (1) linear mixed-effects model (ML), and (2) distribution-free linear model (GEE,
WGEE and AWGEE) for change of IADL from baseline to one-year follow-up for the study on geriatric
depression and medical comorbidities.

Estimates of models for change of IADL from baseline to one-year follow-up

Methods β0 (s.e.) p-value for β0 β1 (s.e.) p-value for β1

ML 2.11(0.16) <0.0001 0.054(0.009) <0.0001

GEE 2.11(0.15) <0.0001 0.032(0.014) 0.02

WGEE 2.11(0.15) <0.0001 0.061(0.016) 0.0002

AWGEE 2.11(0.15) <0.0001 0.060(0.013) 0.0001
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