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Abstract
Multinomial processing tree (MPT) modeling is a statistical methodology that has been widely and
successfully applied for measuring hypothesized latent cognitive processes in selected experimental
paradigms. This paper concerns model complexity of MPT models. Complexity is a key and
necessary concept to consider in the evaluation and selection of quantitative models. A complex
model with many parameters often overfits data beyond and above the underlying regularities, and
therefore, should be appropriately penalized. It has been well established and demonstrated in
multiple studies that in addition to the number of parameters, a model’s functional form, which refers
to the way by which parameters are combined in the model equation, can also have significant effects
on complexity. Given that MPT models vary greatly in their functional forms (tree structures and
parameter/category assignments), it would be of interest to evaluate their effects on complexity.
Addressing this issue from the minimum description length (MDL) viewpoint, we prove a series of
propositions concerning various ways in which functional form contributes to the complexity of MPT
models. Computational issues of complexity are also discussed.
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Introduction
The issue of model complexity is of fundamental importance in the evaluation and selection
of statistical models and has received much attention recently in the field of mathematical
psychology (see, e.g., Myung, Forstery & Browne, 2000; Myung, 2000; Grünwald, 2000;
Myung, Navarro & Pitt, 2006; Pitt & Myung, 2002). Model complexity refers to a model’s
inherent flexibility that allows the model to fit diverse data patterns. A model that gives good
fit to a wide range of data patterns is more complex than one that can only fit a limited range
of data patterns. Generally speaking, the more parameters a model has, the more complex it
is.
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The relevance of model complexity in model selection has to do with the overfitting
phenomenon. The flexibility of a model is a double edged sword. Flexibility allows the model
to readily capture the regularities underlying the observed data but also enables it to improve
model fit by capitalizing on random noise, which would result in over-fitting the data beyond
and above the regularities. Consequently, choosing among models based solely on goodness
of fit (i.e., how well each model fits observed data) can lead to misleading conclusions about
the underlying process, unless the overfitting effect is appropriately taken into account. This
is realized in model selection by defining a selection criterion that trades off a model’s goodness
of fit for its simplicity so as to avoid overfitting. The resulting criterion, known as
generalizability (or predictive accuracy), quantifies how well a model can predict future, yet
unseen, data patterns from the same underlying process that has generated the current data
pattern.

Of particular importance in estimating a model’s generalizability is to accurately measure its
complexity considering all relevant dimensions of model complexity. This is especially true
for multinomial processing tree (MPT) models, for reasons detailed in a later part of this section.
MPT modeling is a statistical methodology introduced in the 1980s for measuring latent
cognitive capacities in selected experimental paradigms (Batchelder & Riefer, 1980, 1986;
Riefer & Batchelder, 1991; Hu & Batchelder, 1994; Hu & Phillips, 1999). MPT models have
been successfully applied to modeling performance in a range of cognitive tasks including
associative recall, source monitoring, eyewitness memory, hind-sight bias, object perception,
speech perception, propositional reasoning, social networks, and cultural consensus (see Riefer
& Batchelder, 1988; Batchelder & Riefer, 1999; Erdfelder, Auer, Hilbig, Aßfalg, Moshagen
& Nadarevic, 2009, for detailed reviews). The data structure requires that participants make
categorical responses to a series of test items, and an MPT model parameterizes a subset of
probability distributions over the response categories by specifying a processing tree designed
to represent hypothesized cognitive steps in performing a cognitive task, such as memory
encoding, storage, discrimination, inference, guessing and retrieval.

To give a concrete example of MPT modeling, consider a source monitoring experiment in
which participants, after having studied a list of items from two sources, A and B, are asked
to judge the source of a test item as either from A, from B, or new (i.e., stimulus from neither
source). MPT models for such experiments typically consist of three distinct trees (Batchelder
& Riefer, 1990; Riefer, Hu & Batchelder, 1994; Bayen, Murnane & Erdfelder, 1996), each of
which models the hypothetical processes a participant might employ to select a response to a
given type of item with three possible responses, A, B, or N. One such model is depicted on
the left panel of Figure 1. A distinguishing feature of this one-high-threshold model (1HTM)
is that it assumes only thresholds for old items to be correctly detected, with probability D1
and D2 for sources A and B, respectively. If an old item is correctly detected as old, a
discriminating decision on its source is made and the parameters d1 and d2 represent this process
for items from sources A and B, respectively. If either the detection or the discrimination
process fails, one or more guessing processes involving parameters b, g and a follows. For new
items, however, the model assumes no detection process, and instead response selection is
determined solely by guessing represented by the parameters b and g. By imposing constraints
successively on the model parameters, a hierarchy of sub-models can be derived from the
original model. This is shown in the right panel of Figure 1. Likewise, new processes can be
added to the original model. For example, the two-high-threshold model (2HTM) as depicted
in Figure 2 assumes a separate detection probability D3 for the new items.

One prominent aspect of these MPT models of source monitoring is that they differ from one
another not only in terms of the number of parameters but also in terms of functional form. For
example, all three models, 6a, 6b and 6c, in Figure 1 have the same number of parameters (6)
but each has different functional form distinct from the others. The same can be said about the
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three 5-parameter models, 5a, 5b and 5c in the figure. This is also true in general for MPT
models and will be discussed in the next section. In addition to these, it is not uncommon that
researchers develop and validate various MPT models with processing assumptions
represented by different structures (e.g., Chechile, 2004;Bayen, Murnane & Erdfelder, 1996).
In selecting among such MPT models, it would be of particular interest to accurately measuring
the contributions of model complexity due to functional form, as well as number of parameters.
Importance of the former factor in model selection is well documented and demonstrated for
models of information integration, retention and categorization (e.g., Myung & Pitt, 1997;Pitt,
Myung & Zhang, 2002;Pitt & Myung, 2002), but the issue remains to be explored in the context
of MPT modeling.

In this paper we investigate the effects of model structure on the complexity of MPT models.
The particular approach we take here is that of minimum description length (MDL; Grünwald,
2000; Grünwald, Myung & Pitt, 2005; Myung, Navarro & Pitt, 2006; Grünwald, 2007). The
desirability and success of MDL in addressing model selection problems for various types of
cognitive models are well documented (e.g., Lee, 2001; Pitt, Myung & Zhang, 2002; Navarro
& Lee, 2004; Lee & Pope, 2006; Myung, Pitt & Navarro, 2007). Importantly, MDL is well
suited for the present purpose; among other things, the MDL complexity measure (defined in
the next section) not only is theoretically well justified, intuitively interpretable and readily
computable, but also, importantly, takes into account both the number of parameters and
functional form dimensions of model complexity. In this article, we address the issue of model
complexity for this class of models from the standpoint of MDL. The application of MDL to
the selection of MPT models is discussed in Wu, Myung & Batchelder (accepted).

The rest of the paper is organized as follows. We first define the class of binary MPT (BMPT)
models and show how they can be constructed recursively from elementary decision nodes. A
BMPT model, by definition, allows only binary choices at each decision node. Since any MPT
model with a single tree1 can be reparameterized into an equivalent BMPT model (Hu &
Batchelder, 1994), it is sufficient to restrict our attention to this class of models. This is followed
by a formal definition of MDL and a brief discussion of its statistical properties in relation to
the issue of model complexity. The next section presents the main results of our theoretical
investigations. Here we prove various propositions regarding MDL complexity of BMPT
models. Some of these results are possible because of the recursive nature of the BMPT models.
The section followed discusses computational issues of MDL complexity. Finally, the
conclusion summarizes and recaps the contributions of the present work.

BMPT Models and MDL
Formal Definition of BMPT Models

Binary multinomial processing tree (BMPT) models are a subclass of MPT models that involve
exactly two processing possibilities at each decision node of the tree. The have been defined
in details in other papers (e.g. Batchelder & Riefer, 1999; Knapp & Batchelder, 2004; Purdy
& Batchelder, in press), so our definition will be succinct and emphasizes some of the properties
of the class that turn out to play a role in establishing some of the propositions involving model
complexity. Any BMPT model is built out of a set of J > 1 mutually exclusive and exhaustive
observable categories, C = {C1, C2, ⋯ , CJ}, and a set ϴ of S latent parameters arrayed for
convenience in a vector θ = (θ1, θ2, ⋯ , θS)’. Each parameter θs represents the probability of
the occurrence, and (1 − θs) the non-occurrence, of some latent cognitive event, such as storing
an item in memory, retrieving a stored item, guessing a response given imperfect memory,
making a particular inference, and the like. The parameters are functionally independent and

1MPT models with multiple trees will be handled separately.
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each is free to vary in (0,1), so the parameter space for the model is given by Ω = {θ ∈ (0,
1)S}2.

Each BMPT model has a structural component and a computational component. The structural
component is specified by the assignment of observable categories and latent parameters to
the nodes of a full binary tree (FBT). A FBT is a special type of digraph D = (V, R), where V
is a full set of nodes, R ⊆ V × V , and (v, v’) ∈ R represents a directed edge from v to v’. In
order to define the class of FBTs, we need the concepts of the parents and children of a digraph
node. For any node v ∈ V , the set of parents of v is defined as {v’|(v’, v) ∈ R}, and the set of
children of v is defined as {v’|(v, v’) ∈ R}. A FBT is a directed graph with a single root node
with no parents, a set of terminal nodes with no children (called leaves), and satisfying the
properties that every node but the root has exactly one parent and every non-terminal node has
exactly two children. In this paper, FBTs are oriented with the root on the left, so every
nonterminal node has an upper child and a lower child. The structural component of a BMPT
model is completed by specifying the assignment of a parameter (or a fixed number x ∈ (0, 1))
to each nonterminal node and a category to each leaf of the FBT. It is possible to assign a
category to more than one leaf and a parameter to more than one nonterminal node. The left
panel of Figure 1 exhibits three BMPT models. Note that the root is on the left and the leaves
are on the right with their assigned categories. In the first tree, parameter D1 is written next to
the upper child of the root node and its ’complement’, 1 − D1, is written next to the lower child
of this node. By convention this notation is designed to depict the case that the parameter D1
is assigned to the root node of this FBT. This convention will be explained more fully when
we discuss the computational component of a BMPT model.

The computational component of a BMPT model provides the set of probability distributions
over the categories of the model in terms of the parameters and numbers assigned to the
nonterminal nodes of the model’s FBT. The parameter (or number) assigned to a nonterminal
node represents the conditional probability of taking the upper child of this node given this
node is reached by prior binary decisions. Starting at the root, a path leading to a leaf is
probabilistically selected by a series of binary choices governed by the parameters (or numbers)
associated with the nonterminal nodes of the tree.

In general, a BMPT model may have Ij paths (denoted by Bij, i = 1, 2, ⋯ , Ij) leading to category
Cj. Let pij(θ) represent the probability of selecting the path Bij as a function of the parameters
θ ∈ Ω. Then the computational rules specify that the probability of category Cj is given by
summing all the Ij probabilities,

(1)

Further from the computational rules, these path probabilities take a particular form given by
(see Hu & Batchelder, 1994, for more details)

(2)

2The parameter space Ω is the set of all possible values of the parameter vector θ, which should not be confused with the parameter set
ϴ defined earlier, which is a set of scalar parameters with S elements.
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where aijs and bijs are, respectively, the number of times θs and 1 − θs that appear on the path
Bij of category Cj, and cij is the product of the numbers along the same path or set to unity if
there are no numbers along that path. From equations (1) and (2) we can seen that any BMPT
model MJ with J categories parametrically specifies a subset of all possible multinomial
distributions over the J categories with parameter space {p = (p1, p2, ⋯ , pJ)|pj ≥ 0, Σj pj = 1}.

In the present paper it is assumed that several participants each make categorical responses to
the same set of items and that these responses are independent and identically distributed into
the J categories of a model. Let nj be the number of these responses that fall into category Cj,
n = (n1, n2, ⋯ , nJ) and N = Σj nj. Then from the computational rules in equations (1) and (2),
n is distributed as a structured multinomial distribution given by

(3)

The Fisher information matrix of a BMPT model in terms of the representation of equations
(1), (2) and (3) is given in Lemma 2 in the Appendix.

It is particularly important to note the role of the structural component of a BMPT model in
this paper. It gives rise to the functional form differences among different BMPT models, which
is a central issue in this article. Because the structural component involves more than the
structure of the FBT, functional form differences may still arise for BMPT models with the
same FBT. In particular, how the categories are assigned to the leaves of th FBT and how the
parameters are assigned to the nonterminal nodes may change a model’s functional form. To
see the different sources of functional form differences, we note the 1HTM and 2HTM
described in Introduction section differ in their tree structures (though they may have the same
number of parameters after assuming appropriate constraints), while the functional difference
between models 5a and 5b in Figure 1 is entirely due to the different assignment of parameters
to the nodes. To avoid possible confusions when referring to identical BMPT models, we use
the following definition in this paper.

Definition 1 (functionally identical)—BMPT models are called functionally identical if

1. they share the same FBT structure,

2. the probabilities assigned to the non-terminal nodes of the FBT are subject to the same
parametric restrictions.

3. their leaves are combined into categories in the same way.

Two functionally identical BMPT models may have different category sets and parameter sets,
but there exist one-to-one mappings between their parameter sets and between their category
sets, such that one model becomes the other after its categories and parameters are mapped to
those of the other model. Functionally identical models are exactly the same except that they
may use different symbols for the categories and parameters.

In addition to its implication on functional form, the structural component of a BMPT model
satisfies several recursive properties that are useful in understanding the model complexity
properties of BMPT models developed in the next section. First suppose  and  are two
BMPT models where some of the categories and some of the parameters may be shared between
models. Let p ∈ (0, 1) be a parameter which may or may not be in the parameter set of either
model. Then we can construct a new BMPT model, denoted by , by introducing a root
node assigned to p and associating  and , respectively, to the upper and lower children
of the new root node. In this new model, the categor set is the union of the category sets of the
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two component models, and the parameter set is the union of the parameter sets and {p}. In
fact Purdy & Batchelder (in press) have shown that all BMPT models can be built up by joining
pairs of models in this way starting with elemental BMPT models consisting of a single
category. A second recursive property of BMPT models is that one can select one or more
categories in a BMPT model  and replace each of them with another BMPT model, and the
result is a BMPT model.3 In this new model, the category set is the union of the category set
of  (with the replaced categories removed) and the category sets of the other BMPT models
used to replace the selected categories in . The first two panels of Figure 6 illustrate these
two ways that new BMPT models can be constructed from other BMPT models.

Minimum Description Length
The principle of minimum description length (MDL) originates from algorithmic coding theory
in computer science. According to the principle, statistical modeling is viewed as data
compression, and the best model is the one that compresses the data as tightly as possible. A
model’s ability to compress the data is measured by the shortest code length with which the
data can be coded with the help of the model. The resulting code length is related to
generalizability such that the shorter the code length, the better the model generalizes
(Grünwald, Myung & Pitt, 2005; Grünwald, 2007).

There are currently two implementations of the MDL principle, Fisher Information
Approximation (FIA: Rissanen, 1996) and Normalized Maximum Likelihood (NML:
Rissanen, 2001). For a model with probability density f(y|θ) and observed data y, they are
defined as an additive combination of goodness of fit and model complexity terms:

(4)

(5)

where

(6)

(7)

In the above equations, LML standing for the logarithm of the maximized likelihood represents
a goodness of fit measure, θ ̂ is the maximum likelihood estimator as a function of data, S is
the number of parameters, N is the sample size, Ω is the parameter space,  is the set of all
possible samples with sample size N, and I(θ) is the Fisher information matrix (e.g. Casella &

3If a category to be replaced by some BMPT model involves more than one leaf, all leaves in this category are replaced by the same
BMPT model.
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Berger, 2001) of sample size one defined as , i, j = 1, ⋯ , S. When
data is discrete, as in the case of MPT modeling, the integration in Equation (7) is replaced by
summation, with f replaced by the probability mass function. Note that both complexity
measures are functions of sample size N. Under each selection method, a smaller criterion value
indicates better generalization, and thus, the model that minimizes the criterion should be
chosen.

In both FIA and NML, generalizability is measured as a trade-off between goodness of fit and
simplicity, thus formalizing the Occam’s razor (Myung & Pitt, 1997). Specifically, both
methods share the same goodness of fit measure (i.e., LML) but differ from each other in how
complexity is measured, represented by CFIA and CNML, respectively. As mentioned earlier,
models with the same number of parameters but with different equation forms can differ in
complexity. This is called the functional form dimension of model complexity. To illustrate,

two psychophysics models in perception,  and , may
have different complexity values, despite the fact that they both have two parameters a and
b.

The NML complexity measure, CNML in Equation (7), is derived to minimize the extra
description length in addition to the amount associated with the predictive distribution with
MLE in the worst case of the data(Rissanen, 2001). Note that this complexity term is defined
as the logarithm of the sum of maximum likelihoods the model can provide across all possible
data (of sample size N) that could potentially be observed in a given experimental design.4
Accordingly, a model that can fit well almost every data pattern, human or non-human, would
be more complex than another model that fits well a few data patterns but fits poorly other data
patterns, thereby nicely capturing our intuition about model complexity.

The FIA complexity measure, CFIA in Equation (6), is derived as an asymptotic expansion of
CNML with CNML = CFIA + o(1) (Rissanen, 1996). CFIA takes into account the number of
parameters (S), the sample size (N) and importantly, functional form captured through the
Fisher information matrix (I(θ)). This is unlike two selection criteria most commonly in use,
namely, the Akaike Information Criterion (AIC: Akaike, 1973) and the Bayesian Information
Criterion (BIC: Schwartz, 1978), neither of which considers functional form. Because of the
asymptotic relationship between CNML and CFIA, all three dimensions of complexity that
CFIA captures are also represented, though implicitly, in CNML.

It should be noted that Equation (6) is only applicable for statistically identified5 models. If a
model is not identified, CFIA can be taken as that of a statistically equivalent6 but identified
model.

In what follows, we present results from our theoretical investigation of the properties of
CFIA and CNML for MPT models and also discuss some computational issues that may arise
in practical implementations of these measures.

4As it can be seen from its complexity term, NML treats equally all potential data that could be observed in an experiment. As such, the
criterion does not explicitly take into account the issue of data plausibility. Interestingly, Bayesian model selection via Bayes factor
allows one to incorporate different prior information about data through the required specification of the parameter prior distribution. In
a sense, NML and FIA can be viewed as a kind of Bayes factor model selection based on a particular prior distribution (i.e., Jeffreys
prior).
5An MPT model is statistically identified if different parameter values produce different category probabilities. Strictly speaking, equation
(6) is applicable if a model is identified excluding a subset of its parameter space that has zero measure.
6Two statistical models are equivalent if they are nested in each other, i.e., they define the same set of distributions.
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Theoretical Investigation of MDL Complexity
In this section we prove some important properties of the MDL complexity measures that are
valid for the entire class of BMPT models, with a particular focus on the effects of functional
form on complexity.

Complexity of Nested and Equivalent Models
In exploring the issue of model complexity for BMPT models, it is useful to note two
observations about MDL that apply to any family of models. Our first observation concerns
complexity relationship between nested MPT models. If model  is nested within model ,
then the complexity of model  is no greater than that of model , or formally,

. This observation is self-evident. If model  is nested within model , then
the collection of distributions defined by model  is a subset of that of model . Consequently,
for every data set, the maximum likelihood for model  would be equal to or smaller than that
of model . Therefore, according to the definition of CNML in equation (5), model ’s
CNML value is not larger than that of model . However, it should be noted that the inequality
relationship between nested models may not hold for CFIA because CFIA is an asymptotic
approximation to CNML. It can sometimes exhibit abnormal complexity order relationships
due to the inaccuracy of the approximation (Navarro, 2004), which will be observed later in
this paper.

Our second observation concerns models that are statistically equivalent. Because they defined
exactly the same set of probability distributions, equivalent models must have the same
maximum likelihood for each data set and therefore must generate identical values of CNML.
For CFIA, because the integral in equation (6) is invariant under reparameterization, equivalent
models always have the same CFIA. The observation that equivalent models have the same
complexity implies that model complexity is an intrinsic property of the model, independent
of the model’s parameterization and identifiability.

These observations are helpful in understanding the fact that an apparently more complicated
model may turn out to have the same or even smaller complexity value than one that looks
much simpler. One good example is given by the following proposition concerning two source
monitoring models: the two-high-threshold five parameter model (2HTM-5) and the one-high-
threshold four parameter model (1HTM-4). Both the 1HTM and 2HTM classes have been
described in the Introduction section and they are depicted in Figures 1 and 2 respectively.
1HTM-4 is a restricted 1HTM described in the bottom of the right panel of Figure 1 with
constraints D1 = D2(≡ D), d1 = d2(≡ d) and a = g (denoted by g). 2HTM-5 is a restricted 2HTM
assuming all the above constraints as in 1HTM-4 but with one extra parameter D3 (denoted by
D*) for the probability of direct identification of the new items. This model is known to be not
identified (e.g. Bayen, Murnane & Erdfelder, 1996).

Proposition 1—The 1HTM-4 and 2HTM-5 models are statistically equivalent.

Proof: We only need to prove 2HTM-5 is nested in 1HTM-4. To distinguish between the
parameters in the two models, we use (D ̃, D̃*, d̃, b̃, g)̃ for parameters of 2HTM-5 and (D, d, b,
g) for 1HTM-4. The following set of equations reparameterizes the 2HTM-5 into 1HTM-4.
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It is self evident that for all values of (D ̃, D̃*, d̃, b̃, g)̃ within [0, 1], the parameters (D, d, b, g)
determined by the above equations are always within [0,1].

Because the two models are statistically equivalent, they must have the same complexity,
though 2HTM-5 looks more complex by allowing an extra threshold for the new items and
assuming an extra parameter. Especially, the well-known result that 2HTM-4 is nested in
1HTM-4 (e.g. Bayen, Murnane & Erdfelder, 1996) is implied by this proposition. Consequently
2HTM-4 actually has smaller complexity than 1HTM-4 though it assumes one more threshold.

Another example concerns BMPT models with inequality constraints. In many cases,
theoretical considerations such as the desired order of treatment effects are incorporated into
BMPT models as inequality constraints on the parameters. Such a model with inequality
constraints is nested in the original model without such constraints and therefore has smaller
complexity value. Especially, Knapp & Batchelder (2004) showed that when the inequality
constraints are in the form of 0 < θ1 < θ2 < ⋯ < θk < 1, the BMPT model can be reparameterized
into an equivalent BMPT model with the same number of parameters and categories but without
inequality constraints. The second BMPT model looks more complex than the original model.
It should be noted, however, since the new, unconstrained model is statistically equivalent to
the original model with the inequality constraints, the complexity values of the two models are
the same, and both are smaller than that of the original model without those constraints. This,
again, indicates sometimes a model that looks more complex may turn out to have smaller
complexity value than one that looks simpler.

A third example concerns the class of uBMPT models in which different non-terminal nodes
are assigned different parameters and different leaves are assigned different categories. For
each value of J, there are many different uBMPT models with J categories that may differ
greatly in their tree structures. However, Purdy & Batchelder (in press, Proposition 10) has
proved that these different models are all statistically equivalent to the multinomial model with
J categories and unstructured probabilities. Consequently, all uBMPT models with J categories
have the same CFIA (and CNML) complexity value, which is also the maximal complexity value
for any MPT model with J categories. Thus for the special case of uBMPT models, the shape
of the tree does not affect the complexity of the model. The FIA complexity value of uBMPT

models is given by  (see Rissanen,
1996;Grünwald, Myung & Pitt, 2005, Chapter 16), which is a non-linear function of the number

of parameters J due to the presence of ( ). In Grünwald, Myung & Pitt (figure 16.3 of
2005, Chapter 16), both CFIA and CNML are plotted against J. Both curves are concave,
increasing more slowly as J increases, different from the complexity measure in BIC and AIC,
which are linear in J.
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Complexity of MPT Models with Multiple Trees
As experiments often involve multiple treatments, most MPT models involve multiple trees,
each representing a different treatment. Because in these models the sum of category counts
in each tree is fixed at the treatment sample size, MPT models with multiple trees cannot be
statistically equivalent to any BMPT model. To evaluate the complexity of such models, the
following proposition is needed.

Proposition 2—Any MPT model  with multiple trees , k = 1, 2, ⋯ , K, has the same
CFIA value as an MPT model  with a single tree constructed by joining the  ’s by constant

multinomial probabilities , k = 1, 2, ⋯ , K , where Nk is the sample size for tree  and
N is the total sample size.

Proof: It follows directly from Lemma 3 in the Appendix that the Fisher information matrix

(of sample size one) of  is given by , where  denotes the Fisher information matrix
of tree  extended to include all parameters in the model as defined in Lemma 3. It is evident
that the Fisher information matrix of model  with sample size (N1, N2, ⋯ , NK) is given by

, so it has the same Fisher information matrix of sample size one. The two models
therefore have the same CFIA value.

This property can be exploited for the computation of CFIA of models with multiple trees using
a program intended for BMPT models, as  in the proposition can be further reparameterized
into a BMPT model. It should be noted that the two models  and  as in the proposition in
general have different NML complexity values, though their CNML value must differ at most
by o(1) given the asymptotic relationship between CFIA and CNML.7 Similar to the construction
proposed by Hu & Batchelder (1994) in which the ’s are joined by free parameters instead
of fixed probabilities, the construction in Proposition 2 can also be used to obtain MLE as 
and  gives the same likelihood function of θ.

Effects of Combining Response Categories on Complexity
The following proposition concerns what happens to the complexity of an MPT model when
two or more response categories are combined into one.

Proposition 3—Let  be an MPT model and another MPT model  is created by combining
some of the categories in , then we have . The equality holds if and only if
the probabilities associated with the to-be-combined categories, say pk(θ), k ∈ K ⊆ {1, 2, ⋯ ,
J} satisfy the relationship pk = ckp(θ), where ck are constants not depending on θ. The same
conclusion holds for CFIA if both models are identified.

Proof: Without loss of generality, let K = {1, 2, ⋯ , K}. We first prove the NML part of the

proposition. Suppose the probability mass function of the original model is  where
n = (n1, n2, ⋯ , nK) is the vector of counts in the k categories to be combined, and n‾ = (nK+1,
⋯ , nJ) includes counts of the rest categories. Denote by 1K the column vector of K 1’s.
Following from the law of total probability, the probability mass function of the new model is

, where n0 denotes the count in the new category in .
Summing over both sides of the equation, we have

7When multiple trees are present, the asymptotic result concerns total sample size N → ∞ with sample size proportions ck fixed.
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where θ ̂(n‾,n) and θ ̂(n‾,n0) denote the MLEs obtained from  and , respectively, and 1 denotes
a column vector of 1’s of appropriate length. The equality holds if and only if

(8)

or the maximizer of  is a function of n through n0 only. Note

. Condition (8) is equivalent to P(n|n0, θ) does not depend

on θ. Further note that , where  is the
model implied probability of the new category in , and we can see (8) is equivalent to pk(θ)
= ckp0(θ).

For the FIA part of the proposition, we note the Fisher information matrix of model , , is

given by , where  (see Grünwald, Myung & Pitt, 2005, equation

16.4 on p.420). Similarly, that of model  is given by . Let

a = (a1, a2, ⋯ , aS)’ be an arbitrary vector, and let , j = 0, 1, ⋯ , J. We have

(9)

where the inequality follows from Hölder inequality: .
In particular, if {us|s = 1, 2, ⋯ , S} is a set of eigenvectors of , we have

(10)

where , s = 1, 2, ⋯ , S, are the eigenvalues of ,  is a diagonal matrix involving the above
eigenvalues, vs and vsr are the typical column and the typical element of some orthogonal matrix
V, the first inequality follows from (9) and the second inequality follows from the concavity
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of logarithm function. Now we have proved . The FIA inequality  can
be established by applying equation (6).

Given , a necessary and sufficient condition for the equality sign “=” in the above
FIA inequality to hold is , which holds if and only if “=” in (9) holds for all vector a.
To see this, on the one hand, if there exists some vector a such that “>” in (9) holds, then “=”
in (10) cannot hold because {us} is a linear basis, and we must have ; on the other
hand, if “=” holds in (9) for arbitrary vector a, we must have . Further, we note that

“=” in (9) holds if and only if  does not depend on j, or  Pjs does

not depend on j for all s, which is equivalent to , or
pj(θ) = cijpi(θ), for some constants cij not depending on θ.

It should be noted that because equation (6) is used, the identification of both models is required.
When either model is not identified, the inequality still holds for the quantity on the right hand
side of equation (6), but in this case, the CFIA value is defined instead as that of an equivalent
and identified model, which may not satisfy the inequality.

Figure 3 illustrates the proposition. In the top panel, the model on the right is obtained by
combining two categories C1 and C2 of the model on the left into a new category C0. According
to the proposition, the resulting model, shown on the right, will have a smaller complexity
value than the original one. The two models on the bottom panel of the figure are both equally
complex, because the probabilities of two categories C1 and C2 of the model on the left are
equal (i.e., pq).

Figure 4 provides another illustration of Proposition 3, this time for a well studied MPT model
of pair-clustering (Batchelder & Riefer, 1986). The pair clustering experiment involves
studying a list of two types of items, paired items and singletons, followed by free recall of the
list. The model posits three parameters: c, probability of pairs being clustered and stored in
memory; r, probability of a stored pair being retrieved from memory; u, probability of a single
item being stored and retrieved from memory. Accordingly, response category E1 indicates
recalling adjacently both items of the studied pairs, response category E2 indicates recalling
non-adjacently both items of the pairs, response category E3 indicates recalling only one item,
and so on. Figure 5 shows CNML and CFIA curves as a function of sample size for the model
(two upper curves). The two trails closely parallel each other, indicating that CFIA provides a
good approximation of CNML in this case.

Both of categories E4 and E5 represent unsuccessful retrieval and as such, cannot be
distinguished from each other based on observed responses. It is therefore necessary to combine
the two categories into one. What would happen to model complexity if this is done? As shown
by the two lower curves in Figure 5, combining the categories has reduced complexity as
predicted by Proposition 3. Since the number of parameters (3) remain unchanged, the
reduction in complexity must be due to the difference in functional forms between the two
models, one uncombined and the other combined.8

Effects of Combining Trees on Complexity
As we noted in the section of Formal Definition of BMPT Models, the structural component
of BMPT models satisfies two recursive properties. In this section we will exploit these

8It is worth noting that the two models assume multinomial distributions with different numbers of categories and cannot be applied to
the same data set, so direct contrast of their complexity does not have implications for model selection.
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recursive properties and focus on the situation in which two or more BMPT models are
combined to form a new BMPT model. We are interested in knowing how model complexity
is affected by such operations. All results in this subsection are based on Lemma 3 in the
Appendix, which gives the form of Fisher information matrix of combined BMPT models in
general. We begin with the simplest situation in which two BMPT models are combined with
a single binomial parameter.

Proposition 4—Let  and  be two BMPT models with disjoint parameter sets ϴ1 and
ϴ2 and disjoint category sets. Suppose  (see the top panel of Figure 6) where p ∉
ϴ1 ∪ ϴ2. Then

where S1 and S2 are the number of parameters in model  and , respectively, and β is the
beta function.

This proposition follows directly from Lemma 3 in the Appendix and equation (6). Note that
the third and fourth terms of the foregoing equation reflects an increase in complexity due to
the binomial parameter p that joins the two trees. If we were to assume that the addition of the
binomial parameter independently contributes to overall complexity, an expected increase in

complexity would be , the FIA complexity of binomial distribution

according to equation (6). Since , the complexity of tree
 with (S1 + S2 + 1) parameters would be smaller than the sum of complexities of the two

individual trees and the binomial model, in contrast to the AIC and BIC complexity measures
which are additive in this case.

The above proposition shows that the FIA complexity value is generally not additive and will
be less than the sum of all three parts of the model in a very simple situation. In the following
proposition, we further pursue this decrease in complexity and present a result in a more general
setting.

Proposition 5—Let , r = 1, 2, ⋯ , Rk, k = 1, 2, ⋯ , K, be  BMPT models that satisfy
the following condition: for all k, the Rk models , r = 1, 2, ⋯ ,Rk are functionally identical
with identical parameter assignment (and therefore with identical parameter set ϴk of Sk
parameters and identical complexity value CFIA,k). In addition, let  be a BMPT model with

parameter set  and complexity value . Suppose all the  models have disjoint
category sets and the K + 1 parameter sets , ϴk, k = 1, 2, ⋯ , K are disjoint. If a new BMPT

model  is constructed by replacing  of ’s categories by the  models 
respectively, then we have
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Proof: From Lemma 3 in the Appendix we can see  is a block diagonal matrix given by

, where for any k = 1, 2, ⋯ , K, pk denotes the total probability
of the Rk categories in model  replaced by , r = 1, 2, ⋯ , Rk. Taking the determinant, we

have . Apply equation (6), note the parameter sets of the K + 1 models are
disjoint, and we have

The inequality follows from the fact that  with  reaches its maximum when

. Further taking logarithm of both sides and applying equation (6) completes the
proof.

The model constructed in this proposition is described in the second panel of Figure 6. The
proposition shows that the complexity of the new model is always less than the sum of those
of its parts, and the amount decrease in complexity has a lower bound of

 (this inequality can be verified by both
sides).

The following proposition summarizes the same result for NML complexity.

Proposition 6—Assuming the same conditions in Proposition 5 except for the requirement
of disjoint parameter sets, we have

Proof: We only prove the proposition for the case where all categories of model  are replaced
by some . The other case where some categories of model  are also categories of model

 can be easily taken care of by allowing some  be a degenerated tree with no parameter and
a single category with category probability 1.

We index the categories of tree  by , k = 1, 2, ⋯ , K, r = 1, 2, ⋯ , Rk, according to the index
of  attached to it. We also index the counts of tree  by , j = 1, 2, ⋯ , Jk, as they are always

counts in some tree . Let  be the sum of counts of tree ,  be the
sum of the corresponding counts in category j across the Rk trees  (r = 1, 2, ⋯ , Rk) and

. Vector n involves all counts of , and  involves all counts that share
the same indices . Other vectors such as m, nkj, nk and ok are similarly defined.

We have
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(11)

where  denotes ,  denotes ,  denotes , and  maximizes

. Note the conditional distribution Pk depends only on k but not r since , r
= 1, 2, ⋯ , Rk have the same tree structure and parameter assignment.

To simplify the last term, we note

We can see immediately that  depends on ok only. Back to equation (11) we have

in which Lemma 1 in the Appendix has been applied. Taking natural logarithm to both sides
completes the proof of the smaller upper bound.

Regarding Proposition 5 and Proposition 6, we have the following remarks. First, if all
categories of  are replaced and all the attached models are statistically equivalent, the upper
bound in Proposition 5 becomes  and the smaller upper bound in
Proposition 6 becomes . Second, when sample size is large, CFIA
and CNML will be close to each other and the bound given by Proposition 5 will be close to the
smaller upper bound in Proposition 6. Third, the larger upper bound in Proposition 6 will be
achieved only when K = 1 and all categories of model  were replaced. The same condition
would be needed for the lower bound of CFIA complexity difference in Proposition 5 to be 0.
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In this case, for both NML and FIA, the complexity of the new model is the sum of those of
model  and . This special additive case is summarized in the following proposition.

Proposition 7—Suppose trees  and , j = 1, 2, ⋯ , , represent  BMPT models with
disjoint sets of categories. Let the  models , j = 1, 2, ⋯ ,  be functionally identical with
identical parameter assignment. Suppose the two parameter sets  and  are disjoint, and
tree  is created by replacing the  response categories of tree  by the  trees . Then
the complexity of tree  is equal to the sum of complexities of  and , that is,

 and .

The third panel of Figure 6 illustrates the proposition. Note that the additive-complexity rule
of the proposition relies on two conditions: (a) the two models do not share common
parameters; and (b) one model is added to every category of the other model. The failure to
satisfy either of these conditions invalidates the additivity rule, as has been demonstrated in
Proposition 4, 5 and 6. This is in sharp contrast to AIC and BIC viewpoint, in which the
complexity is linear in the number of parameters and is therefore always additive.

Now consider the case in which the same tree structure is added recursively to every one of its
own categories. The following proposition shows that the complexity increases as a logarithmic
function of the total number of layers.

Proposition 8—Let  be a collection of functionally identical BMPT models with identical
parameter assignment but disjoint category sets. The sequence of trees  is constructed as
follows:

1. , which has  categories.

2.  is constructed by replacing the  categories of  by , k = 1, 2, ⋯ ,
, respectively.

Then the , where  is the number of parameters in tree .

This proposition follows directly from Lemma 3 in the Appendix. The bottom panel of Figure
6 illustrates the proposition, from which we can see d is the number of layers in  formed by
the recursive operation as described in the proposition. The significance of this proposition lies
in that it enables us to construct two MPT models that have the same number of parameters
but differ greatly in their complexity values. From Proposition 8 we can seen that  and 

have the same number of parameters but differ in their complexity by . However, they
have different numbers of categories and therefore the direct contrast of complexity may not
be useful. This can be resolved by constructing another MPT model  by splitting each category
of  into  categories with equal probabilities. Now  has the same number of categories
as , but according to Proposition 3, it has the same complexity as .

To conclude the present section, the above analytical results on the complexity of BMPT
models provide an illuminating understanding of various ways that functional form can
contribute to the MDL complexity. For the great majority of MPT models of practical interest,
however, the complexity measures CNML and CFIA do not usually have analytical form
solutions. As such, the complexity must be calculated numerically on computer, to which we
now turn our discussion in the following section.
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Computational Issues
In this section we discuss practical implementation issues concerning the MDL complexity,
which can be non-trivial to compute. Recall that to compute CNML, one must first obtain the
maximized likelihood for all possible data sets of a given sample size. Given the fact that
analytic expression for maximum likelihood is generally not available for MPT models,
computing CNML directly would be out of question unless the sample size is small or the models
are simple enough to yield the maximum likelihood in analytic form. Given this, the next best
thing to do would be computing CFIA instead. Note that CFIA represents an asymptotic
approximation of CNML but does not requiring calculating maximum likelihoods. In the rest
of the section, we give a Monte Carlo algorithm for computing CFIA. This algorithm has been
implemented using MATLAB and a brief description of the program is available in Wu, Myung
& Batchelder (accepted).

A Monte Carlo Algorithm
A key step in computing CFIA is the evaluation of the integral in Equation (6) via Monte Carlo.

The rationale of Monte Carlo integration lies as follows. The integral  can be
written as the expected value of , where random vector ξ follows a
distribution with density π(ξ). Monte Carlo method then approximates the expectation by the

sample average , where ξi’s are realizations of ξ. Although the choice of density
π is arbitrary, different choices of π may lead to different rate of convergence of the sample
average to the integral. To choose an appropriate proposal distribution π(ξ), we need the
following proposition.

Proposition 9—  for some constant c.

Proof: Consider the matrix I(θ)D(θ), where diagonal matrix D has typical element Dss = θs(1
− θs), and the elements in the Fisher information matrix I(θ) is given by Equation (13) in the
Appendix. We can see

From the expression of pij given by (3) we know that for all i, j and s,  and  are
polynomials of the θs and are therefore bounded on [0,1]. In addition, pij/pj is also bounded,
so (ID)sr must also be bounded. The proposition follows immediately.

This proposition has two implications. First, it implies that the integral is finite and our Monte
Carlo computation is meaningful. Second, it implies that the choice of density

 would lead to a bounded h(θ) for all MPT models. This is desirable as
it gives a finite Monte Carlo standard deviation of the estimate. It should be noted that uniform
distribution over [0,1]S does not generally satisfy this requirement and the convergence of
Monte Carlo algorithm can be very slow if π(θ) = 1 is chosen.

Wu et al. Page 17

J Math Psychol. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Models with Inequality Constraints
For models with inequality constraints on the parameters, the calculation of CFIA is
straightforward: one simply needs to restrict the integral in equation (6) to the restricted
parameter space . To do this, the algorithm needs to be modified to sample ξi’s
from the proposal distribution π(θ) restricted to , and the integral needs to incorporate the
change in the normalizing constant of the proposal distribution. We have

where  is the renormalized proposal distribution restricted to  In general,
the second term on the right hand side can be easily estimated when sampling from the restricted
parameter space using rejection method. This is done in the program described in Wu, Myung
& Batchelder (accepted). However, due to the symmetry of the proposal distribution π(θ), for
most inequality constraints in practice such as the full or partial order relations on ϴ, this term
can be easily computed analytically. A full order of K parameters θ1 < θ2 < ⋯ < θK reduces
the parameter space Ω to its 1/K!. A subset of the parameter space Ω defined by partial orders
on ϴ can always be expressed as a union of several subsets, each defined by some full order
on a subset of ϴ, and its normalizing constant can be calculated accordingly. For example
{θ1 < θ2, θ1 < θ3} = {θ1 < θ2 < θ3} ∪ {θ1 < θ3 ≤ θ2}, so it reduces Ω to its 2 × 1/3! = 1/3.

In particular, if the original unconstrained model has some symmetry property, the ratio
between the constrained and unconstrained integrals can be calculated analytically and a
separate run of the Monte Carlo algorithm is not needed. For example, if a BMPT model
involves K functionally identical trees representing K experimental treatments and parameters
θ1, θ2, ⋯ , θK are correspondent parameters for the treatments, a treatment effect on θ
represented by θ1 < θ2 < ⋯ < θK would reduce the integral to its 1/K!. However, if treatment
effects are expected simultaneously on two parameters, this method would not work as the
treatments are no longer symmetric after the placement of one of the effects. For example, if
either D1 > D2 or d1 > d2 is assumed in 1HTM-6c (shown in figure (1)), its model complexity
will reduce by ln 2, as the two sources have symmetric role in the model, but the inclusion of
both at the same time may not reduce the complexity by 2 ln 2.

Complexity of Source Monitoring Models
To provide a concrete example of MDL complexity, here we compute CFIA for some well-
known MPT models of source monitoring. The MPT models of source monitoring in Figure
1 (also see Figure 2) are among the most widely studied classes of MPT models in cognitive
psychology. Application of MDL-based model evaluation to this class of models is therefore
of special interest. CFIA was computed for the hierarchy of models shown on the right panel
of Figure 1. Each model is defined in terms of three tree structures, one for each item type, so
three sample sizes (nA, nB, nN) are defined. In a typical source monitoring experiment, the
sample sizes for the old items, A or B, are set to be the same (nA = nB = nO/2), and only the
ratio of new items to the total number of items (nN/(nO + nN)) varies from experiment to
experiment.

Shown in Figure 7 are CFIA complexity curves for six selected models9, plotted as a function
of the percentage of new items for the total sample size of nO + nN = 1000. The first thing to

9Among the eight models in Figure 1, models 7 and 6a are excluded from consideration as they are equivalent to models 6b and 5a,
respectively (Batchelder & Riefer, 1990).
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note in the figure is that complexity is generally ordered according to the number of parameters.
The two six-parameter models are the most complex, trailed by the three five-parameter
models, and the four-parameter model is the simplest. Also note that among models with the
same number of parameters, their complexity values can differ significantly from one another,
sometimes even greater than the complexity difference due to the difference in the number of
parameters. The case in point is the three models, 4, 5b and 5c. At the 50% value of new items,
the complexity difference between model 5c and model 5b is equal to about 1.50, which is
greater than the complexity difference (0.62) between models 5b and 4.10 These results, taken
together, again, demonstrate that mode complexity is determined not only by the number of
parameters but also importantly, by functional form, and sometimes even more so by the latter.

Conclusions
Model complexity is an integral and key concept in the evaluation and selection of quantitative
models of cognition. In this paper we have explored the issue of model complexity in
multinomial process tree (MPT) modeling with a special focus on the effects of tree structure
on complexity for MPT models. The particular approach we took in the present investigation
is that of minimum description length (MDL). The primary contributions of the present study
are a series of Propositions we proved concerning the properties of the MDL complexity of
this class of models and a general algorithm for the computation of CFIA.

Speaking of model complexity, recall that complexity refers to the range of data patterns a
model can provide good fits to, in the sense that a complex model fits well a wider range of
data patterns than a simpler model. This idea is formalized in the NML complexity measure,
CNML, which is equal to the logarithmic value of the sum of best fits that the model can provide,
by varying its parameter values, for all potential data patterns. Here we highlight a few
important insights we have gained about complexity of MPT models from our analytic
investigations. First of all, according to the NML complexity measure, what matters in
measuring a model’s complexity is not the apparent complications of its tree structure (i.e.,
“functional form”) or the number of its parameters but instead the “size” of the family of
probability distributions indexed by the model’s parameters. Second, insofar as the same family
of probability distributions are indexed, complexity remains unchanged regardless of how the
model is parameterized. Third, if other things are equal, the more distinct response categories
a model assumes, generally, the more complex the model is (Proposition 3). Fourth, complexity
is, in general, non-additive with respect to combing two or more models of disjoint parameter
sets (Proposition 4, 5 and 6). Finally and related, tree structure can significantly contribute to
model complexity, sometimes even more than the number of parameters. As an extreme
example of this, it is possible to construct two MPT models with the same number of parameters
yet with complexity values different greatly, as described in Proposition 8.

A step further beyond the current research is to implement the MDL method to addressing
actual model selection problems in the field of MPT modeling, which is described in a separate
paper of ours (Wu, Myung & Batchelder, accepted).

On final note. The primary concern of the present study is the issue of complexity for MPT
models in MDL based model evaluation. This paper is not, however, advocating that the
evaluation of MPT models be made entirely in terms of MDL and its complexity. It is also
important to consider other statistical procedures and criteria in model evaluation. For example,

10We comment briefly on the unusual crossovers of complexity curves observed at extreme values of the percentage of new items. Note
in the figure that model 4, which is nested within model 5b, has greater complexity values than model 5b for the percentage of new items
being greater than 95% or smaller than 5%. Similar “illegitimate” crossovers are also observed between another pair of nested models,
5c and 6c. This demonstrates that CFIA may not conform to the complexity order relationship supposed to hold between nested models,
as discussed in the section Complexity of Nested and Equivalent Models.
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null hypothesis significant testing takes a model falsification point of view and thus may be
useful to test specific parametric constraints under investigation. By the same token,
qualitative, non-statistical criteria of model evaluation such as plausibility and interpretability
are equally, if not more, important to get a “holistic view” of a model’s adequacy.
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Appendix: Three Lemmas
Here we present three lemmas used in the proofs of prepositions. Lemma 1 gives an equality
of combination numbers used in the proof of Proposition 6. Lemma 2 gives the form of Fisher
information matrix for BMPT models in standard representation. Lemma 3 gives the form of
Fisher information matrix of complex BMPT models in terms of its components by exploiting
the recursive property of BMPT models.

Lemma 1

For all non-negative integer N , ,  and  that satisfy the restriction

, the following equality holds:

(12)

Proof
Suppose N objects belongs to p groups, with G(i) objects in the ith group. Now we would like

to randomly re-group all the objects into q groups, with Gj objects in the jth group. Let  be
the number of objects that are recruited from the ith original group to the jth new group. Then
the fraction in this lemma gives the probability for this particular solution, which, after summed
up over all possible solutions, yields 1.

Lemma 2
The Fisher information matrix of a BMPT model with the representation shown in Equations
(3),(1) and (2) is given by

(13)

Especially, if every category of the BMPT model includes only a single leaf, its Fisher
information matrix is a diagonal matrix given by
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(14)

Proof
Equation (13) follows from Grünwald, Myung & Pitt (2005, equation 16.4 on p.420) with the
matrix Pjs in the equation given by Hu & Batchelder (1994, equation 36 on p.40). When the
MPT model is a simple one, its Hessian matrix is given by (Hu & Batchelder, 1994, equation
37 on p.40). Taking expectation of both sides completes the proof of (14).

Lemma 3
Let  and  be BMPT models with disjoint sets of categories  and  and parameter sets

 and , which need not be disjoint. Consider an BMPT model  constructed by replacing
category C0 of  with model . The Fisher information matrix of  is given by

, where  is the implied category probability of C0 in , and  is the extended
Fisher information matrix in which all parameters in  are included but the entries
corresponding to parameters not in model  are set to 0.

Remarks:

1. This proposition can be easily extended to the case in which k > 1 categories in  are
replaced by trees  of disjoint sets of categories.

2. When the two parameter sets are disjoint,  is block diagonal and its determinant is

given by , where  is the number of parameters in model .

Proof
It is evident that the probability of category  (i.e. ) is given by

. Consequently we have

Applying the above equation to equation 16.4 of Grünwald, Myung & Pitt (2005, p.420), we
have

We note  and , and the above equation can be simplified as
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Figure 1.
The one-high-threshold (1HT) multinomial processing tree model of source monitoring is
shown on the left panel. The parameters are defined as follows: D1 (detectability of source A
items); D2 (detectability of source B items); d1 (source discriminability of source A items);
d2 (source discriminability of source B items); a (guessing that a detected but nondiscriminated
item belongs to source A category); a (guessing “old” to a nondetected item); g (guessing that
a nondetected item biased as old belongs to source A category). The right panel shows a nested
hierarchy of eight versions of the model on the left, created by imposing successive constraints
on the parameters. In this figure, the model parameters for each model are listed and a directed
arrow from one model to another means that the second model is nested in the first. Note this
figure combines the nesting relationships shown in both Figures 2 and 3 of Batchelder & Riefer
(1990), and some of the nesting relationships are not explicit from the parameter constraints.

Wu et al. Page 24

J Math Psychol. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
The two-high-threshold (2HT) multinomial processing tree model of source monitoring.
Adapted from Bayen, Murnane & Erdfelder (1996, Figure 3). The parameters are defined in
the same way as in 1HTM shown in Figure 1, except for the additional parameter D3
(detectability of new items).
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Figure 3.
Examples of models created by combining categories.
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Figure 4.
Batchelder and Riefer’s (1999) multinomial processing tree model of pair-clustering. Note the
two categories E4 and E5 are usually combined in practice as they are not distinguishable in
the data.
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Figure 5.
CNML and CFIA complexity curves for the model in Figure 4, plotted as a function of the sample
size of singletons. The sample size of category pairs are set to be twice that of singletons. The
uncombined version of the model assumes five distinct response categories E1 − E5 for paired
items. In the combined version of the model, the two response categories E4 and E5 are
combined into one category. Note that all four models have the same number of parameters
(3).
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Figure 6.
Graphical illustrations of model constructions. The top panel shows the new model constructed
in Proposition 4 by joining two trees  and . The second panel portrays the situation
described in Lemma 3 and Proposition 5 and 6, in which some of the categories of  are
replaced by . In the third panel, a new tree  is created by replacing every category of tree

 by , j = 1, 2, ⋯ , , as in Proposition 7. The bottom panel demonstrates how tree  in
Proposition 8 is created by adding the same tree structure to every category of itself recursively.

Wu et al. Page 29

J Math Psychol. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7.
CFIA complexity curves for six source-monitoring models in Figure 1. The total sample size
is N = 1000.

Wu et al. Page 30

J Math Psychol. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


