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Abstract
n-3 polyunsaturated fatty acids (PUFA) are widely used for chemotheraphy/chemoprevention of
chronic diseases. However, the molecular mechanism(s) by which the bioactive n-3 PUFA
(eicosapentaenoic acid and docosahexaenoic acid) modulate effector pathways are not fully
elucidated. Multiple experimental approaches, including use of animal models, cell lines, and human
clinical trials, have been utilized to dissect the complex effectors. It is imperative to link these
different experimental approaches together in order to interpret outcomes in the context of human
physiology and pathophysiology. Unfortunately, the adoption of a broad array of model systems and
a wide range of fatty acid exposures (i.e. doses) has made it difficult to interpret biological outcomes.
Therefore, in this mini-review we discuss the impact of (a) molecular structure of bioactive fatty
acids, (b) dose relevance relative to human consumption, (c) enrichment of fatty acids in sera and
tissues following dietary intake, and (d) limitations of cell/tissue culture studies.

Introduction
Long-chain polyunsaturated fatty acids (PUFA) are subcategorized into n-3 [alpha-linolenic
acid (ALA, 18:3), eicosapentaenoic acid (EPA, 20:5), docosapentaenoic acid (DPA, 22:5), and
docosahexaenoic acid (DHA, 22:6)] and n-6 [linoleic acid (LA, 18:2), arachidonic acid (ARA,
20:4)] families according to the position of the first double bond from the methyl end of the
acyl chain. A plethora of data from epidemiological studies and clinical trials investigating the
effect of increased consumption of n-3 PUFA either in the form of fish or fish oil supplements
suggest that, compared to n-6 PUFA, n-3 PUFA favorably modulate multiple biological
processes involved in coronary heart diseases [1,2], cancers [3–7], immune diseases [8–10],
and brain health [11]. In general, studies involving cell culture and animal models utilizing
fish oil, purified n-3 PUFA in triglyceride, free fatty acid or ethyl ester form, support the
epidemiological and clinical observations [12–14]. However, the interpretation of
experimental data with regard to physiological relevance is complicated by atleast two issues:
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(a) bioavailability/bioactivity of different forms of n-3 PUFA and (b) the dose and local
concentration of effective n-3 PUFA in tissues. In this review, we will probe these issues
specifically from the perspective of immune effector cell model systems.

Molecular forms of n-3 PUFA and their bioavailability
In processed fish oils available as supplements DHA is predominantly localized to the sn-2
position compared to EPA which is more randomly esterified to all three positions of the
triglyceride backbone [15]. In this form, DHA is primarily absorbed as the monoglyceride
[16]. This contrasts, for example, with seal oil (also rich in n-3 PUFA), where EPA, DPA and
DHA are preferentially located both in the sn-1 and sn-3 positions in the triglyceride molecule
[17]. Fatty acids can be easily released from the sn-1 and sn-3 positions by pancreatic lipase
and are directly absorbed [15].

There are reports that fish consumption is more effective at increasing serum EPA and DHA
levels in humans compared to supplementation with fish oil [18]. With respect to intramolecular
fatty acid distribution, the randomization of n-3 PUFA within fish oil triglycerides does not
appear to have an effect on the apparent digestibility of the individual fatty acids [17]. In
addition, De Schrijver et al [19] concluded that once n-3 PUFA are absorbed, their effect on
lipid metabolism in the rat is not determined by the dietary source. Manipulation of fatty acid
content of an oil may increase the susceptibility of the oil to oxidation relative to its unmodified
counterpart [20]. Interestingly, liposomes based on natural phospholipids enriched in n-3
PUFA may have enhanced bioavailability compared to standard fish oil [21]. Lastly, with
respect to in vivo models to evaluate n-3 PUFA bioavailability, it is important to note that most
of the studies conducted to date have been in rats.

What is a relevant dose of n-3 PUFA in experimental models?
In general, the typical American consumes 0.7–1.6 g of n-3 PUFA per day, equivalent to
approximately 0.2–0.7% of total calories [22,23]. Much of this is as ALA, the plant n-3 PUFA,
and intake of fish-derived long chain n-3 PUFA (i.e., EPA and DHA) was reported to be less
than 0.1–0.2 g per day. In contrast, in human clinical trials, 1–9 g/day (0.45–4% of calories)
n-3 PUFA, mainly in the form of EPA and/or DHA has been used [24–27]. With respect to
physiological relevance, this range is similar to levels consumed by Greenland Inuit (i.e., 6–
14 g/day, which corresponds to 2.7–6.3% of daily energy) [28,29]. Similarly, traditional
Japanese diets contain 1–2% of daily energy as long chain n-3 PUFA [30,31]. Therefore, it
seems reasonable for animal feeding studies designed to probe the biological properties of n-3
PUFA relevant to humans, that 4% (wt/wt) fish oil or 1% purified n-3 PUFA ethyl esters be
used. This level of intake delivers ~2.4% of total energy as n-3 PUFA, which is within the
range consumed by humans and used in human clinical trials.

Enrichment of DHA in serum and tissues
Conquer et al. reported the amount of n-3 PUFA in serum total phospholipids and non-esterified
fatty acids (NEFA) in subjects supplemented with 1.5 g DHA/day (~0.7% of calories) [22].
The circulating phospholipid form of DHA (402 μM) was predominant in serum compared to
NEFA (12.7 μM) (Table 1). Levels approximating 130 μM DHA in total phospholipids and
1.5 μM in NEFA were detected in the control group. Overall, DHA supplementation (at 1.5 g/
day) increased phospholipid DHA 3-fold, compared to a 0.5-fold increase in EPA. In contrast
to DHA enrichment in human sera, Switzer et al [13] demonstrated only a modest enrichment
of DHA and DPA in mouse serum total phospholipids following consumption of a diet
containing 4% (wt/wt) fish oil, which supplied 0.87% of total calories as DHA. Notably, EPA
(9.9 μM) was significantly enriched in mouse serum compared to the n-6 PUFA rich corn oil
fed control group (Table 1).
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With regard to tissue enrichment following n-3 PUFA consumption, Damsgaard et al.
demonstrated that DHA, DPA and EPA are highly enriched in human peripheral blood
mononuclear cells (PBMC) following the intake of 5 mL fish oil/d for 8 wk (Table 2) [28].
Significant amounts of n-3 PUFA (DHA, DPA and EPA) were also observed in subjects
consuming 5 mL olive oil (negative control), likely indicating the contribution of the previous
dietary consumption of n-3 PUFA. In comparison, in the mouse model, we have shown that,
following fish oil feeding (4%, wt/wt), CD4+ T-cell membrane lipid raft and non-raft
membrane fractions become enriched in DHA and EPA [13]. Fish oil supplementation
increased mainly DHA levels in T-cell membrane rafts (4-fold) and non-rafts (1.9-fold) of
CD4+ T cells compared to T-cells from 5% corn oil fed mice. Leslie et al. [32] demonstrated
that macrophages from mice fed a diet containing 5% fish oil were highly enriched in DHA
(9.8 mol%), as well as in total n-3 PUFA (22.3 mol%), compared to 5% corn oil fed control
mice (Table 2).

EPA/DHA enrichment in cell culture
Cell culture studies are convenient and advantageous in some circumstances. However,
interpretation of cell culture data in terms of biological outcomes is not always straightforward,
since the experimental conditions may be somewhat contrived and perhaps far removed with
respect to physiological relevance. To assess the effect of dietary fatty acids on specific tissues,
animals are typically fed n-3 PUFA enriched diets followed by the isolation of tissues/cells to
be activated in media, ex vivo. However culture itself can modify the fatty acid composition
of cells. Switzer et al. [13] demonstrated n-3 PUFA enrichment in the non-raft fraction of
murine CD4+ T-cells induced by 4% fish oil feeding for 2 wk dropped from 7.7 mol% to 4.1
mol% by culturing the cells in 5% fetal bovine serum supplemented culture medium for 5 d,
whereas n-3 PUFA in the raft fraction remained at 2.2 mol% after culture. The loss of fatty
acids in the culture might result in the loss of a diet-induced phenotype, and therefore, possible
misinterpretation of the treatment effect. To overcome these limitations, cell culture in the
presence of homologous serum in the medium has been used to maintain a significant amount
of fatty acids in cell membranes [13]. Indeed, the n-3 PUFA level in the non-raft fraction of
CD4+ T-cells from 4% fish oil fed mice increased from 4.1 to 12.2 mol% following 5 d in
culture with homologous serum. This also complicates interpretation, since it is difficult to rule
out a direct effect of n-3 PUFA containing homologous serum. Of interest, recently, Fan et al.
[33] demonstrated that CD4+ T-cells from Fat-1 transgenic mice, which generate endogenous
n-3 PUFA by n-3 desaturase, maintained the initial amount of n-3 PUFA in T-cell membranes
after 72 h in culture without homologous serum supplementation. These data indicate that
Fat-1-containing cells express a physiologically relevant, n-3 PUFA enriched, membrane fatty
acid composition which is resistant to conventional cell culture-induced depletion.

Li et al. [34] reported enrichment of n-3 PUFA into both lipid raft and non-raft membrane
phospholipid fractions upon incubation of human Jurkat CD4+ T-cells with 50 μM DHA (Table
3). However, DHA content (15.3 mol% in rafts and 15.0 mol% in non-rafts) was higher
compared to dietary enrichment of n-3 PUFA in human PBMC (10.0 mol% in total
phospholipids) or murine CD4+ T-cells (2.2 mol% in rafts and 7.7 mol% in non-rafts) as
described above. Therefore, the effect of the concentration of fatty acids used in cell culture
studies should be carefully considered with respect to physiological relevance. As a
precautionary note involving n-3 PUFA enrichment in cells, we recently noted that “lipid
bodies” form when human Jurkat CD4+ T-cells are incubated in the presence of 50 μM DHA.
This impairs the ability of these cells to form an immunological synapse with co-incubated
human Raji B-cells (Figure 1). Therefore, investigators performing cell culture studies
involving the supplementation of media with fatty acids should remain vigilant of the off-target
and perhaps toxic effects of long chain PUFA in culture.
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Conclusion
In this report, we reviewed the potential complicating effects of the molecular form and dose
of n-3 PUFA on biological endpoints. Clearly, the interpretation of experimental outcomes can
be confounded by the failure to consider the effects of the molecular form and the dose of the
fatty acid used and also the incorporation into discrete intracellular domains.
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Figure 1.
The formation of “lipid bodies” following DHA incubation imaged by bright field microscopy.
(A) Fetal bovine serum (FBS, control) or (B) 50 μM DHA was added to FBS (72 h) treated
human Jurkat CD4+ T-cells co-cultured with human Raji B-cells primed with superantigen
Styphyllococal Enterotoxin E to form an immunological synapse (arrow).
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