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Abstract
Previous research has shown that neuronal activity can be used to continuously decode the kinematics
of gross movements involving arm and hand trajectory. However, decoding the kinematics of fine
motor movements, such as the manipulation of individual fingers, has not been demonstrated. In this
study, single unit activities were recorded from task-related neurons in M1 of two trained rhesus
monkey as they performed individuated movements of the fingers and wrist. The primates’ hand was
placed in a manipulandum, and strain gauges at the tips of each finger were used to track the digit’s
position. Both linear and non-linear filters were designed to simultaneously predict kinematics of
each digit and the wrist, and their performance compared using mean squared error and correlation
coefficients. All models had high decoding accuracy, but the feedforward ANN (R=0.76–0.86,
MSE=0.04–0.05) and Kalman filter (R=0.68–0.86, MSE=0.04–0.07) performed better than a simple
linear regression filter (0.58–0.81, 0.05–0.07). These results suggest that individual finger and wrist
kinematics can be decoded with high accuracy, and be used to control a multi-fingered prosthetic
hand in real-time.

I. Introduction
Previous work has shown that neuronal ensemble activity from various motor areas can be
used to continuously predict the kinematics for gross movements of a single effector, such as
during reach [1,2] or control of a computer cursor [3,4]. However, in order to achieve neural
control of advanced upper-limb neuroprostheses, there is also a need to develop Brain-Machine
Interfaces (BMI) for dexterous movements, such as the manipulation of individual fingers.

We have recently demonstrated neural decoding of discrete flexions and extensions of
individual fingers and the wrist [5,6], but for truly dexterous control of a multi-fingered
prosthetic hand it will be necessary to continuously decode the kinematics of multiple digits.
Single-unit activities were recorded from a population of neurons in the primary motor cortex
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(M1) hand area of two male rhesus monkeys during individuated flexion and extension
movements of each digit and the wrist. Simultaneous kinematics of each digit were obtained
through strain gauges mounted on microswitches on the tip of each finger.

Popular methods for decoding activity from neuronal ensembles include population vectors
(PVs) [7], linear filters, and artificial neural networks (ANNs). PVs have proven successful in
decoding discrete movements in center-out tasks [7], and may not be well suited for continuous
decoding. Linear regression filters and ANNs have been effective for real-time neural control
of a 2D cursor [4] and prediction of hand trajectory [2], but both lack a clear probabilistic model
and do not incorporate temporal information. More recently, Kalman filters have been used to
decode hand position [8] and trajectory of a computer cursor [9] using a recursive, probabilistic
approach.

In order to determine the best approach to model the data for this particular task, three different
algorithms were used to decode the kinematics of each finger and the wrist from the same
population of M1 neurons – a linear regression filter, a feedforward ANN, and a Kalman filter.
The results of each model were then compared using the mean squared error and Pearson
correlation coefficients.

This work demonstrates how neural activity can be used to simultaneously predict the
kinematics of multiple end-effectors, and lays the foundation for dexterous manipulation of a
multi-fingered hand neuroprosthesis.

II. Methods
A. Experimental Setup

Two male rhesus monkeys (monkey C, monkey K) were trained to individually flex or extend
each digit and the wrist of the right hand by operating a pistol-grip manipulandum (see Fig. 1,
inset). By flexing or extending each digit a few millimeters, the monkey closed microswitches
at the tips of each finger as shown in Fig. 1. The position of each finger was obtained from
switch-mounted strain gauges on either sides of the fingertip, and a potentiometer transduced
wrist flexion and extension.

A row of LEDs above each switch were illuminated instructing the monkey to perform 12
distinct movements. Each instructed movement is abbreviated with the first letter of the
movement type (f=flexion, e=extension), and number of the instructed digit (d1=thumb…
d5=little finger, d6 or w=wrist; e.g. ‘e4’ indicates extension of ring finger). Fig. 1 shows the
average analog traces from strain-gauges during instructed flexion movements for Monkey K.
A detailed description of the behavioral task can be found in [10].

Well-isolated single units with task-related activity were recorded sequentially in the M1 hand
area (anterior bank of the central sulcus), contralateral to the trained hand (monkey C, n=49;
monkey K, n = 115). Up to 15 trials per movement type were recorded during daily 2-to-3-
hour recording sessions. Simultaneously recorded activity of multiple single units was
simulated by aligning the activity of each unit at the time of switch closure.

B. Continuous Decoding of Finger and Wrist Kinematics
Three different models were used to decode the kinematics of each finger and the wrist from
the same population of M1 neurons. All models were trained using the neuronal firing rate over
a 100 ms window shifting every 20 ms. Mutually exclusive trials were used for training (100
sets), validation (50 sets), and testing (100 sets).
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1) Linear Regression Filter—The first approach used a linear filter to represent each
decoded parameter as a weighted sum of the firing rate [2],

(1)

where yk is the kinematic parameter recorded from the strain gauge for digit k, xi is the firing
rate of neuron i, wi is the weight for the neuron, N is the total number of neurons, and bk is a
bias term.

Multiple linear filters were used to simultaneously extract the kinematics of each digit and the
wrist. The system of equations was set up as follows:

(2)

where Y is the matrix of kinematic parameters recorded from the strain gauges, X is the matrix
of neuronal firing rates, and W are the weights of the model. The bias term was calculated by
appending a row of ones to matrix X. The optimal weights were calculated using the least
squares solution,

(3)

2) Feedforward ANN—The second approach was to use a multilayer, feedforward Artificial
Neural Network (ANN), which have been widely used in non-linear regression, function
approximation, and classification [11]. As before, the relationship between finger position and
neural activity can be modeled as,

(4)

but where g(x) is a non-linear transformation of the firing rate activity. The ANN was designed
with a single hidden layer containing 25 neurons with a tan sigmoidal transfer function.
Dimensionality of the input space was reduced by performing Principle Component Analysis
(PCA), and retaining those components that cumulatively contributed to >95% of the total
variance. The networks were trained offline in MATLAB 7.4 (Mathworks Inc.), with the
optimal weights calculated using the scaled conjugate gradient algorithm and early validation
stop to prevent overfitting.

3) Kalman Filter—As opposed to the feedforward model, a Kalman filter [9] models the
relationship between neural activity and finger and wrist position by using a probabilistic
approach that incorporates prior events.

In the Kalman framework described in detail in [9], the position of each end-effector is modeled
as the system state, Y, and the firing rate is modeled as the observation, X.
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The Kalman model makes two important assumptions:

1. The observations are a linear function of the current system state,

(5)

where H(t) is the coefficient matrix and q(t) ~ N(0,Q).

2. The current system state is a linear function of the previous system state,

(6)

where A(t) is the coefficient matrix, and w(t) ~ N(0,W). A and H were assumed to be
constant and calculated offline using a least squares approach.

At each time step, we first calculate an a priori estimate Y′ using Eq. 5 and calculate its error
covariance matrix, P′,

(7)

(8)

We then calculate the Kalman gain, K, update the estimate with an a posteriori estimate using
new measurement data and calculate the posterior error covariance matrix, P,

(9)

(10)

(11)

The Kalman gain produces a state estimate that minimizes the mean squared error [9].

III. Results
The sample decoding results in Fig. 3 from monkey K, demonstrate that the predicted output
(red) was highly correlated with the actual hand kinematics (blue) using all three decoding
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models. Each plot shows the simultaneous reconstructed kinematics for all five digits and the
wrist during instructed flexion movements.

Two different performance metrics were used to evaluate the decoding accuracy: mean squared
error (MSE) and Pearson correlation coefficients (R). Table I and Table II summarize the
decoding results for monkey C (n = 49) and monkey K (n = 115) respectively. Fig. 4 compares
the MSE and correlation coefficients for all three decoding approaches, and across each end
effector. Fig. 4A and 4B show the results for monkey C, while Fig. 4D and 4E show the results
for monkey K.

As can be seen, the feedforward ANN appears to have the best performance for both monkey
C (R=0.76; MSE=0.05) and monkey K (R=0.86; MSE=0.04). Furthermore, for both monkeys
the poorest performance appears with decoding of the wrist kinematics (two-way ANOVA,
p<0.05). This is consistent across all three decoding models (monk C: linear, R=0.25; ANN,
R=0.54, Kalman, R=0.38 – monk K: linear, R=0.66; ANN, R=0.77, Kalman, R=0.72) which
suggest that this movement parameter is especially difficult to decode given the available
neuron population.

Fig. 4C (monkey C) and Fig. 4F (monkey K) show the average correlation coefficient (R) as
a function of randomly selected subpopulations of neurons for the linear regression (blue),
ANN (red), and Kalman (green) filters. The results were averaged across five random subsets
of a given number of neurons. Both the feedforward ANN and Kalman filter perform
statistically significantly better than the linear regression filter (two-way ANOVA, p<0.05).

IV. Discussion and Conclusion
This work demonstrates that it is indeed possible to decipher the neural coding of individual
finger and wrist kinematics, which paves the way for dexterous manipulation of a multi-
fingered hand prosthetic hand. The results do indicate, however, a negative bias towards
decoding of wrist movements for both monkeys. This is likely due to the fact that the recording
location of electrodes may have been biased to the lateral M1 hand area, and thus did not include
as many neurons coding for wrist movements [5]. Furthermore, mechanical stops on the
manipulandum may have prevented complete flexion and extension of the wrist (note saturation
of wrist measurement during ‘fw’ in Fig. 2).

Furthermore, it appears that for this particular task a nonlinear decoding filter may be
appropriate. Although the feedforward ANN and Kalman filter show comparable correlation
coefficients, the ANN has smaller MSE values-particularly for fewer neurons (data not shown).
Given the dexterity of the motor movements, and the fact that we are tracking multiple end-
effectors simultaneously, it is not surprising that a nonlinear filter is better able to decode finger
and wrist kinematics.

It is important to note, however, that even a simpler linear regression algorithm still provides
respectable decoding accuracy (see Fig. 4C,F), and thus would be an acceptable low-cost
alternative for embedding in the hardware controller of a prosthetic arm.

Future experiments aim to extend the techniques developed in this paper, in order to decode
entire kinematics of the hand and arm as subjects perform less constrained movements. By
demonstrating the decoding of individual finger primitives, these findings can be extended to
more complex dexterous tasks involving multiple fingers and different grasp conformations of
the hand.
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Figure 1.
Illustration of strain guagues mounted at microswitches at the tip of each finger of the
manipulandum (from [10]).
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Figure 2.
Average analog traces from the strain gauges during instructed flexion movements (e.g. top
left plot shows simultaneous traces of all five fingers and wrist during an instructed flexion of
the thumb). Similar traces were obtained for instructed extension movements.
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Figure 3.
Reconstruction for the position of each end-effector using a) linear model, b) feedforward
ANN, and c) Kalman filter. The predicted kinematic output (red) for each digit and the wrist
was highly correlated with the actual hand kinematics (blue) using all three decoding models.
Results are shown for monkey K (n = 115).
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Figure 4.
Mean square errors and correlation coefficients for monkey C (top row) and monkey K (bottom
row). All movements are decoded with high accuracy, although all three decoding models
performed worst with wrist movements. Plots of the average correlation coefficient as a
function of number of neurons (right column) show that the linear filter (blue) performed worse
than both the ANN (red) and Kalman filter (green).
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