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Abstract
While most cigarette smokers endorse a desire to quit smoking, only about 14% to 49% will achieve
abstinence after 6 months or more of treatment. A greater understanding of the effects of smoking
on brain function may (in conjunction with other lines of research) result in improved
pharmacological (and behavioral) interventions. Many research groups have examined the effects of
acute and chronic nicotine/cigarette exposure on brain activity using functional imaging; the purpose
of this paper is to synthesize findings from such studies and present a coherent model of brain function
in smokers. Responses to acute administration of nicotine/smoking include: a reduction in global
brain activity; activation of the prefrontal cortex, thalamus, and visual system; activation of the
thalamus and visual cortex during visual cognitive tasks; and increased dopamine (DA) concentration
in the ventral striatum/nucleus accumbens. Responses to chronic nicotine/cigarette exposure include
decreased monoamine oxidase (MAO) A and B activity in the basal ganglia and a reduction in
α4β2 nicotinic acetylcholine receptor (nAChR) availability in the thalamus and putamen. Taken
together, these findings indicate that smoking enhances neurotransmission through cortico-basal
ganglia-thalamic circuits either by direct stimulation of nAChRs, indirect stimulation via DA release
or MAO inhibition, or a combination of these factors. Activation of this circuitry may be responsible
for the effects of smoking seen in tobacco dependent subjects, such as improvements in attentional
performance, mood, anxiety, and irritability.
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1. Introduction
Approximately 23% of Americans smoke cigarettes (Balluz et al., 2004). While most smokers
endorse a desire to quit (Fiore et al., 2000), very few will actually quit smoking without
treatment, and only about 14–49% will achieve abstinence after 6 months or more of effective
treatment (Holmes et al., 2004; Hughes et al., 1999; Hurt et al., 1997; Jorenby et al., 1999;
Killen et al., 1999, 2000). Because cigarette smoking carries both considerable health risks
(Bartal, 2001; Mokdad et al., 2004) and high societal costs (Leistikow et al., 2000a,b), there is
an urgent need for improved treatments for this condition. Functional brain imaging (in
conjunction with other lines of research) holds great promise for elucidating both brain circuits
and molecular targets that mediate the acute effects of cigarette smoking and chronic effects
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of tobacco dependence. A greater understanding of brain function associated with smoking
may result in improved pharmacological (and behavioral) interventions.

Many functional brain imaging studies of tobacco use and dependence have been performed,
using four primary imaging modalities: (1) functional magnetic resonance imaging (fMRI),
(2) positron emission tomography (PET), (3) single photon emission computed tomography
(SPECT), and (4) autoradiography. These imaging modalities have been used to determine
relationships between brain function and effects of acute and chronic cigarette smoking and of
smoking-related behaviors. For this review paper, the MEDLINE database was searched using
keywords for the four imaging techniques mentioned above cross-referenced with the words
“nicotine,” “cigarette,” and “tobacco.” Only data driven functional imaging studies are
included in this review, and reference lists within papers found on MEDLINE were also
examined and relevant studies included here. In order to maintain focus in this review paper,
functional imaging techniques that provide measures of blood flow and metabolism (which are
closely related under normal conditions (Paulson, 2002)) are combined under the general
heading of brain activity (including fMRI and certain types of SPECT, PET, and
autoradiography studies). Also, in order to build a cohesive model of brain activity responses
to acute and chronic smoking, nicotine and cigarette studies will be reviewed together, while
recognizing that cigarette smoke has many constituents other than nicotine (Baker et al.,
2004; Fowles and Dybing, 2003).

The purpose of this paper is to synthesize findings from functional brain imaging studies of
tobacco use and dependence, and present a coherent model of brain function in smokers. Acute
brain responses to nicotine/smoking will be reviewed first, followed by chronic responses to
nicotine/smoking, and concluding with a discussion of these imaging findings in the context
of neuroanatomical work and the clinical effects of smoking in tobacco dependent subjects.

2. Brain function responses to acute nicotine administration and cigarette
smoking
2.1. Brain activity responses to nicotine/cigarette administration

Many functional brain imaging studies have been performed examining the effects of
administration of nicotine or cigarette smoking compared with a placebo or control state (Table
1). Though a wide range of brain regions have been reported to have altered activity in response
to nicotine or cigarette smoking, several global and regional findings have been replicated,
leading to general conclusions about the acute effects of nicotine or smoking on brain activity.

One common finding is that administration of nicotine (Domino et al., 2000b; Stapleton et al.,
2003b) or cigarette smoking (Yamamoto et al., 2003) during scanning results in decreased
global brain activity. Similarly, smokers who smoke ad lib prior to SPECT scanning (including
the morning of the scan) have decreased global brain activity compared to former smokers and
non-smokers (Rourke et al., 1997). These findings are generally supported by studies using
transcranial Doppler ultrasound or the Xe 133 inhalation method to measure responses to
smoking, with some (Cruickshank et al., 1989; Kubota et al., 1983, 1987; Rogers et al.,
1983), but not all (Kodaira et al., 1993; Terborg et al., 2002), studies showing diminished
cerebral blood flow.

A large (n = 86) recent study (Fallon et al., 2004) further characterized this decreased global
activity with nicotine administration. 18F-fluorodeoxyglucose (FDG) PET was performed
while smokers and ex-smokers performed the Bushman aggression task (designed to elicit an
aggressive state) and wearing either a 0, 3.5, or 21 mg nicotine patch. Smokers who were rated
high on the personality trait hostility had widespread cerebral metabolic decreases while
wearing the 21 mg patch and performing the aggression task. Low hostility smokers did not
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have these changes during PET, suggesting that personality profile may determine which
smokers have global metabolic decreases in response to nicotine.

In studies examining regional activity responses to nicotine or smoking, the most common
findings are relative increases in activity in the prefrontal cortex (including the dorsolateral
prefrontal cortex, and inferior frontal, medial frontal, and orbitofrontal gyri) (Domino et al.,
2000b; Rose et al., 2003; Stein et al., 1998), thalamus (Domino et al., 2000a; Domino et al.,
2000b; London et al., 1988a,b; Stein et al., 1998; Zubieta et al., 2001), and visual system
(Domino et al., 2000a; Domino et al., 2000b; London et al., 1988a,b) (Jed Rose, Personal
Communication). Additionally, a Xe 133 inhalation study reported increases in frontal lobe
and thalamic blood flow in smokers who smoked a cigarette (Nakamura et al., 2000). The
human studies here examined cigarette smokers, while the animal studies here used non-
dependent rats, with strong concordance of findings between these sets of studies. Functional
brain imaging studies of nicotine or cigarette administration to human non-smokers have not
yet been reported, and would be important for a more complete understanding of the effects
of tobacco on brain activity. While this group of studies demonstrate specific regional
activation with nicotine or smoking, they also imply activation of cortico-basal ganglia-
thalamic brain circuits (Alexander et al., 1990) that mediate the subjective effects of smoking
(see Section 4).

Since regional activity was normalized to whole brain activity in at least some of these studies,
and whole brain activity has been found to decrease with nicotine or cigarette administration
(cited above), the regional findings presented here may represent either increased regional
activity, or possibly, less of a decrease in regional activity than in other brain areas. Regional
decreases in activity are generally not seen with nicotine or cigarette administration, though at
least two studies found relatively decreased activity in the left (Rose et al., 2003) and right
(Zubieta et al., 2001) amygdala.

2.2. Effect of nicotine on brain activation during cognitive tasks
The most commonly replicated cognitive effect of nicotine administration is improved
performance on tasks that require vigilant attention in nicotine-dependent smokers (Newhouse
et al., 2004). Nicotine administration also has been reported to improve reaction time
(regardless of smoking status) as well (Ernst et al., 2001a). Consistent with these findings are
studies which demonstrate that acute abstinence from smoking (within 12 h) results in slowed
response times (Bell et al., 1999; Gross et al., 1993; Thompson et al., 2002).

In examining brain mediation of the cognitive effects of smoking, several groups have
performed functional imaging studies in subjects performing cognitive tasks during
administration of nicotine (compared to a control condition) (Table 2). For most of these
studies, subjects performed a cognitive task that involved visual recognition and working
memory, such as the n-back task. Results of these studies have been somewhat mixed, showing
both decreased (Ernst et al., 2001b;Ghatan et al., 1998) and increased (Jacobsen et al.,
2004;Kumari et al., 2003) ACC activation in response to nicotine administration while
performing the task. Brain activation responses to nicotine during cognitive tasks have been
more consistent in other brain areas such as the thalamus (Jacobsen et al., 2004;Lawrence et
al., 2002) and visual cortex (Ghatan et al., 1998;Lawrence et al., 2002), while nicotine had no
effect on the visual cortex during photic stimulation (Jacobsen et al., 2002). This last finding
indicates that nicotine activates the visual cortex only during demanding visual tasks, rather
than simple stimulation.
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2.3. Brain dopamine responses to nicotine and smoking
A common pathway for the positive reinforcement associated with most, if not all, addictive
drugs is the brain dopamine (DA) system (Koob, 1992; Leshner and Koob, 1999). Laboratory
animal studies demonstrate that DA release in the ventral striatum (VST)/nucleus accumbens
(NAc) underlies the reinforcing properties of nicotine (Koob, 1992; Leshner and Koob,
1999). Microdialysis (Damsma et al., 1989; Di Chiara and Imperato, 1988; Pontieri et al.,
1996; Sziraki et al., 2001) and lesion (Corrigall et al., 1992) studies in rats indicate that nicotine-
induced DA release is strongest in this region, and is more robust than the DA release found
in associated structures receiving dopaminergic input, such as the dorsal striatum (Di Chiara
and Imperato, 1988). These studies generally used nicotine dosages that simulated human
cigarette smoking. Acute exposure to cigarette smoke and nicotine has been found to up-
regulate dopamine transporter mRNA in the ventral tegmental area (VTA) and substantia nigra
(Li et al., 2004), and chronic exposure to cigarette smoke, more so than chronic nicotine alone,
has also been found to up-regulate D1 and D2 receptor mRNA in the VST (Bahk et al., 2002).
Additionally, many in vitro studies of the VST have reported DA release in response to nicotine
(Connelly and Littleton, 1983; Marien et al., 1983; Rowell et al., 1987; Sakurai et al., 1982;
Westfall et al., 1983).

Functional brain imaging studies of the DA system (Table 3) corroborate and expand upon
these laboratory studies. Striatal DA release in response to a nicotine or cigarette challenge has
been demonstrated repeatedly in both non-human primates and humans (Brody et al.,
2004a;Dewey et al., 1999;Marenco et al., 2004;Tsukada et al., 2002), with the majority of these
studies using PET and the radiotracer 11C-raclopride (a relatively specific D2 receptor binder)
to demonstrate DA release through radiotracer displacement. These studies have reported a
wide range of DA concentration change. In two studies that examined the question directly
(Marenco et al., 2004;Tsukada et al., 2002), nicotine was found to result in less radiotracer
displacement than amphetamine, while it has also been reported that nicotine-induced DA
release is comparable in magnitude to that induced by other addictive drugs (Pontieri et al.,
1996). In addition, an association between 11C-raclopride displacement and the hedonic effects
of smoking (defined as elation and euphoria) has been demonstrated (Barrett et al., 2004),
though this study did not find an overall difference between the smoking and non-smoking
conditions. Thus, while the majority of studies do provide evidence for nicotine/smoking-
induced DA release, there are disparities between studies in the extent of human smoking-
induced DA release, leaving this issue currently unresolved. Disparities between these studies
may be due to differences in methodology (e.g., nicotine administration versus cigarette
smoking) and/or technical complexities in performing such studies. (As an aside, effects of
smoking on dopamine projections to the prefrontal cortex (Goldman-Rakic et al., 1989) have
not yet been reported with functional brain imaging.)

Nicotine-induced DA release in the NAc has been reported to be mediated by stimulation of
nicotinic acetylcholine receptors (nAChRs) on cells of the ventral tegmental area (VTA) that
project to the NAc rather than by nicotinic receptors within the NAc itself (Nisell et al.,
1994). Lesioning of mesolimbic VTA neurons projecting to the NAc leads to decreased nicotine
self-administration (Corrigall et al., 1992; Lanca et al., 2000). Additionally, the effects of
nicotine on the dopaminergic system appear to be modulated by glutamatergic and GABAergic
neurons (Picciotto and Corrigall, 2002), with nicotine stimulation of gluatamatergic tracts from
the prefrontal cortex to the VTA leading to increased DA neuron firing (Kenny and Markou,
2001) and GABA agonism leading to a dampening of DA neuron responses (Cousins et al.,
2002). Recent work indicates that nicotine administration causes prolonged depression of
GABAergic firing leading to relatively greater excitatory (glutamatergic) input into the
mesolimbic DA system and increased DA neuron firing (Mansvelder et al., 2002).
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Other functional imaging studies of the DA system have reported decreased D1 receptor density
(Dagher et al., 2001), increased 18F-DOPA uptake (a marker for increased DA turnover)
(Salokangas et al., 2000a), and both decreased (Krause et al., 2002) and no alterations (Staley
et al., 2001) in dopamine transporter binding in smokers.

To summarize these studies of the DA system, there is extensive evidence that nicotine
administration and smoking result in activation of the brain DA mesolimbic pathway, resulting
in increased DA release and turnover in the VST/NAc. Because dopaminergic input to the NAc
modulates neurotransmission through cortico-basal ganglia-thalamic circuitry (Haber and
Fudge, 1997), smoking-induced increases in DA concentration may explain some of the clinical
effects of smoking as discussed below (Section 4).

2.4. Functional imaging of nicotinic acetylcholine receptors
Because stimulation of nicotinic acetylcholine receptors (nAChRs) is intimately linked with
effects of smoking, a longstanding and still developing area of research is the labeling of
nAChRs using functional brain imaging. Nicotinic acetylcholine receptors are ligand-gated ion
channels consisting of α and β subunits (Court et al., 2000; Hogg et al., 2003). At least twelve
nAChRs have been identified with the heteromeric α4β2 being the most common subtype in
the brain and the homomeric α7 being the next most common. Post-mortem (Benwell et al.,
1988; Breese et al., 1997) and laboratory (Yates et al., 1995) studies demonstrate that smokers
have widespread up-regulation of nAChRs, likely related to desensitization of these receptors
from nicotine exposure. (Many animal studies also demonstrate up-regulation of nAChRs in
response to chronic nicotine administration) e.g. (Pauly et al., 1996; Shoaib et al., 1997; Zhang
et al., 2002). Thus, nAChRs are a natural target for tracer development in the pursuit of a greater
understanding of tobacco dependence and other illnesses with abnormal nAChR levels.

Animal research demonstrates that nicotine binds to nAChRs in the brain to mediate a variety
of behavioral states (Lukas, 1998; Paterson and Nordberg, 2000)such as heightened arousal
and improved reaction time and psychomotor function (Paterson and Nordberg, 2000).
Nicotine administration also produces reward through DA release in the NAc, at least in part
through stimulation of nAChRs in the ventral tegmental area (Blaha et al., 1996; Corrigall et
al., 1994; Nisell et al., 1994; Yeomans and Baptista, 1997; Yoshida et al., 1993). Nicotinic
acetylcholine receptors are widespread throughout the brain, with a rank order distribution of
nAChR density being: thalamus > basal ganglia > cerebral cortex > hippocampus > cerebellum
(Broussolle et al., 1989; Cimino et al., 1992; Clarke et al., 1984; Davila-Garcia et al., 1999;
Dávila-García et al., 1997; London et al., 1995, 1985; Pabreza et al., 1991; Pauly et al., 1989;
Perry and Kellar, 1995; Valette et al., 1998; Villemagne et al., 1997).

Innovative researchers have developed tracers for the nAChR in recent years, with labeled
A-85380 (3-(2(S)-azetidinylmethoxy) pyridine) (Koren et al., 1998) compounds having the
most widespread use. Radiolabeling of A-85380 was a major advance in imaging nAChRs,
because administration of radiolabeled nicotine (used for previous imaging studies) results in
high non-specific binding and short drug–receptor interaction times (Sihver et al., 2000). In
recent years, 2-[18F]F-A-85380 or simply 2-FA and related compounds (Chefer et al., 1999;
Horti et al., 1998; Koren et al., 1998) have been developed for PET imaging, and 5-[123/125I]
iodo-A85380 has been used for SPECT imaging (Chefer et al., 1998; Horti et al., 1999; Mukhin
et al., 2000) of α4β2 nAChRs.

Studies of non-human primates and humans have examined distributions of nAChRs with these
new tracers, and found regional densities of these receptors similar to those in the animal work
cited above (Chefer et al., 1999, 2003; Fujita et al., 2002; Fujita et al., 2003; Kimes et al.,
2003; Valette et al., 1999). In initial human studies, no subjective or cardiovascular effects of
2-FA have been reported; however, studies of tobacco dependent subjects have not yet been
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published. Finally, two recent studies of baboons examined effects of nicotine or tobacco
smoke on nAChR availability. In a 2-FA PET study (Valette et al., 2003), IV nicotine (0.6 mg),
inhalation of tobacco smoke from one cigarette (0.9 mg nicotine), and IV nornicotine were all
found to reduce the volume of distribution of the tracer by roughly 30–60% in the thalamus
and putamen at 80 min, and this reduction of 2-FA binding was relatively long-lived (up to 6
h). Similarly, a 50% reduction in nAChR availability was found with IV nicotine administration
to baboons using an epibatidine analog and PET scanning (Ding et al., 2000). Taken together,
these studies demonstrate that radiotracers for nAChRs can be administered safely to measure
nAChR densities, and that nicotine and smoking substantially decrease α4β2 nAChR
availability.

2.5. Glutamatergic (and other) effects of nicotine/cigarette smoking
Recent autoradiography studies of rodents are determining effects of nicotine/smoking in brain
systems that may be activated by nAChR stimulation. For example, in response to nicotine,
glutamate release has been demonstrated in the prelimbic prefrontal cortex (Gioanni et al.,
1999), and glutamate and aspartate release have been demonstrated in the VTA (Schilstrom et
al., 2000). The finding of nAChR-induced glutamate release in the prefrontal cortex has also
been demonstrated by measuring spontaneous excitatory postsynaptic currents (Lambe et al.,
2003). Importantly, one of these studies (Gioanni et al., 1999) also demonstrated that nicotine
administration facilitates thalamo-cortical neurotransmission through stimulation of nAChRs
on glutamatergic neurons.

Other autoradiography studies of rats have demonstrated that chronic administration of nicotine
increases glucose transporter (Glut1 and Glut3) densities in an array of brain areas (Duelli et
al., 1998) and that chronically administered low dose nicotine is protective against
neurodegenerative agents in the striatum (a model for Parkinson’s Disease) (Ryan et al.,
2001).

3. Brain function responses to chronic nicotine administration and cigarette
smoking
3.1. Functional brain imaging of cigarette craving

Turning to brain imaging of tobacco/nicotine dependence, chronic cigarette smokers
experience craving for cigarettes (urge to smoke) within minutes after the last cigarette, and
the intensity of craving rises over the next 3–6 h (Jarvik et al., 2000; Schuh and Stitzer,
1995). Cigarette-related cues have been shown to reliably enhance craving during this period,
when compared to neutral cues (Carter and Tiffany, 1999).

Two recent studies used a cigarette versus neutral cue paradigm paired with functional imaging
to evaluate brain mediation of cigarette craving. In one study (Due et al., 2002), 6 smokers and
6 non-smokers underwent event-related fMRI when presented with smoking images (color
photographs) compared with neutral images, for 4 s each. For the smoker group, craving
increased during the testing session and exposure to smoking images resulted in activation of
mesolimbic (right posterior amygdala, posterior hippocampus, ventral tegmental area, and
medial thalamus) and visuospatial cortical attention (bilateral prefrontal and parietal cortex
and right fusiform gyrus) circuitry, while the non-smoker group did not have these changes.
In the second study (Brody et al., 2002), 20 smokers and 20 non-smokers underwent two FDG-
PET sessions. For one PET session, subjects held a cigarette and watched a cigarette-related
video, while for the other, subjects held a pen and watched a nature video (randomized order)
during the 30-min uptake period of FDG. When presented with smoking-related (compared to
neutral) cues, smokers had higher regional metabolism in bilateral anterior cingulate cortex
(ACC), left orbitofrontal cortex (OFC), and left anterior temporal lobe. Change in craving

Brody Page 6

J Psychiatr Res. Author manuscript; available in PMC 2010 May 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



scores was also positively correlated with change in metabolism in the OFC, dorsolateral
prefrontal cortex, and anterior insula bilaterally.

Taken together, these studies of cigarette craving indicate that immediate responses to visual
smoking-related cues (fMRI study) activate the brain reward system, limbic regions, and the
visual processing system, while longer exposure to cues (FDG-PET study) leads to activation
of the ACC, which mediates anxiety, alertness, and arousal (Chua et al., 1999; Critchley et al.,
2001; Kimbrell et al., 1999; Naito et al., 2000; Rauch et al., 1999) and the OFC, which functions
in part as a secondary processing center for sensory information (Rolls et al., 1998; Rolls and
Baylis, 1994).

In a related preliminary study, seventeen smokers underwent the same FDG-PET craving
versus neutral cue protocol as in the second study of craving listed above (Brody et al., 2002)
after treatment with a standard course of bupropion HCl (tapered up to 150 mg per oral twice
a day for a mean 5.6 weeks). This group of treated subjects had a significant reduction in
smoking levels from pre- to post-treatment (mean 27.1 cigs/d pre-treatment to a mean of 3.7
cigs/d post-treatment). Bupropion-treated smokers also had reduced cigarette cue-induced
craving and diminished ACC activation when presented with cigarette-related cues, compared
to untreated smokers (Brody et al., 2004b). This diminished ACC activation was due to elevated
baseline normalized ACC activity in treated smokers, giving an indication that bupropion
treatment of smokers increases resting ACC metabolism.

3.2. Functional brain imaging of cigarette withdrawal
Brain activity changes (measured with fMRI) during cigarette withdrawal were recently
reported for nicotine-dependent rats (Shoaib et al., 2004). In this study, subcutaneous
mecamylamine (1 mg/kg), a nicotine receptor antagonist, was administered to precipitate
withdrawal during scanning, and this state was compared to a control state after subcutaneous
saline administration. After subcutaneous mecamylamine, nicotine dependent rats had bilateral
increases in nucleus accumbens activity compared to the control state.

3.3. Monoamine oxidase function in smokers
Fowler and colleagues have performed a series of elegant studies demonstrating decreases in
monoamine oxidase (MAO) A and B activity in cigarette smokers using the PET tracers [11C]
clorgyline (Fowler et al., 1996b) and ([11C]L-deprenyl-D2) (Fowler et al., 1996a, 1998b),
respectively. When compared to former smokers and non-smokers, average reductions for
current smokers are 30% and 40% for MAO A and B (Fowler et al., 2003a). These reductions
are the result of chronic smoking behavior rather than a single administration of intravenous
nicotine (Fowler et al., 1998a) or smoking a single cigarette (Fowler et al., 1999, 2000), and
are less than those seen with antidepressant MAO inhibitors (Fowler et al., 1994; Fowler et al.,
1996b). Additionally, a human post-mortem study of chronic smokers demonstrated a modest
reduction in MAO A binding that did not reach statistical significance (Klimek et al., 2001).
Peripheral MAO B is also reduced in cigarette smokers (Fowler et al., 2003b).

MAO participates in the catabolism of dopamine, norepinephrine, and serotonin (Berlin and
Anthenelli, 2001; Fowler et al., 2003a), and it has been postulated that some of the clinical
effects of smoking are due to MAO inhibition, leading to decreases in monoamine breakdown
with a subsequent increase in monoamine availability (Berlin and Anthenelli, 2001). Thus,
smoking may enhance DA availability and the rewarding properties of smoking both through
DA release (as described above) and MAO inhibition. Smoking may also alter mood and
anxiety through MAO inhibition effects on norepinephrine and serotonin availability and
turnover. Comprehensive reviews of the role of MAO in tobacco dependence have recently
been published (Berlin and Anthenelli, 2001; Fowler et al., 2003a).
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4. Discussion: functional neuroanatomy of tobacco use and dependence
Both acute and chronic effects of nicotine/cigarette exposure have been elucidated with
functional brain imaging. Replicated responses to acute administration of nicotine/smoking
include: a reduction in global brain activity (perhaps most prominently in smokers with high
levels of hostility as a personality trait); activation of the prefrontal cortex, thalamus, and visual
system; activation of the thalamus and visual cortex (and possibly ACC) during visual cognitive
tasks; and increased DA concentration in the ventral striatum/NAc. Replicated responses to
chronic nicotine/cigarette exposure include decreased MAO A and B activity and a substantial
reduction in α4β2 nAChR availability in the thalamus and putamen (accompanied by an overall
up-regulation of these receptors).

This group of findings demonstrates a number of ways in which smoking might enhance
neurotransmission through cortico-basal ganglia-thalamic circuits (Alexander et al., 1990) (in
addition to demonstrating direct effects of chronic nicotine exposure on nAChR availability)
(Fig. 1). Given that the thalamus (Groenewegen et al., 1999; Herrero et al., 2002; Sommer,
2003) and ventral striatum/Nac (Groenewegen et al., 1999; Herrero et al., 2002) function as
relay centers for information and for paralimbic and motor processing in the brain, the net
effect of smoking may be to enhance neurotransmission along cortico-basal ganglia-thalamic
loops originating in prefrontal and paralimbic cortices. Neurotransmission through these
circuits may be stimulated directly by the interconnected (Sherman, 2001; Sillito and Jones,
2002) nAChR-rich thalamus and visual systems, and/or indirectly through effects on MAO
inhibition and DA release in the ventral striatum/NAc (as well as through nicotine stimulation
of excitatory glutamatergic input to the dopamine system (Mansvelder et al., 2002)). In the
thalamus, for example, nicotine has direct agonist action on excitatory thalamocortical
projection neurons and local circuit neurons, although nicotine also stimulates GABAergic
interneurons, so that the relationship between nicotine stimulation and thalamocortical
stimulation may be complex (Clarke, 2004). There is mixed evidence as to whether or not
nicotine stimulates corticothalamic neurons (Clarke, 2004).

Enhancement of neurotransmission through prefrontal and paralimbic cortico-basal ganglia-
thalamic circuits may account for the most commonly reported cognitive effect of cigarette
smoking, namely improved attentional performance (Newhouse et al., 2004), and also related
effects, such as improvements in reaction times (Hatsukami et al., 1989; Pritchard et al.,
1992; Shiffman et al., 1995), arousal (Parrott and Kaye, 1999), motivation (Powell et al.,
2002), and sustained attention (Rusted et al., 2000). Prefrontal (including both dorsolateral and
ventrolateral) (Duncan and Owen, 2000; Rees and Lavie, 2001; Smith and Jonides, 1999) and
ACC (Carter et al., 1999; Duncan and Owen, 2000; Peterson et al., 1999; Smith and Jonides,
1999) cortices are reported to activate during attentional control tasks (especially visuospatial
tasks) (Pessoa et al., 2003). Cigarette smoking may enhance attentional control through direct
stimulation of nAChRs within these structures or perhaps through subcortical stimulation of
nAChRs in the thalamus and via DA release and/or MAO inhibition in the basal ganglia.

In addition to improvement in attention, smoking improves withdrawal symptoms, such as
depressed mood, anxiety, and irritability in tobacco dependent smokers (Cohen et al., 1991;
Parrott, 2003), and all of these effects depend (at least in part) on the expectations of the smoker
(Perkins et al., 2003). Though nicotine administration generally results in increased activity
along prefrontal and paralimbic brain circuits, it is interesting that both increased and decreased
ACC activation during cognitive task performance has been reported (see Section 2.2). ACC
activity has been associated with anxiety and mood, with increased activity being associated
with greater anxiety (Chua et al., 1999; Kimbrell et al., 1999) and decreased activity being
associated with depressed mood (Drevets et al., 1997). This combination of findings suggests
a potential interaction between expectation of the effects of smoking (e.g. mood improvement,
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anxiety reduction, or decreased irritability) and direction of ACC activity change during
cognitively demanding tasks. Perhaps smokers who expect to and do have anxiety alleviation
from smoking have deactivation or decreased activation of the ACC while performing
cognitive tasks, while those who expect to and do experience mood improvement from smoking
have increased activation of the ACC.

In addition to these primary effects of nicotine and smoking, other functional imaging studies
reviewed here focus on smoking-related states, such as cue-induced cigarette craving. Such
studies are part of a large body of literature examining cue-induced craving for addictive drugs.
Studies specific for cigarette cues/craving reveal that exposure to visual cigarette cues
immediately activates mesolimbic (ventral tegmental area, amygdala, and hippocampus) and
visuospatial cortical attention areas of the brain, and acutely (over a 30 min time period) activate
paralimbic regions (ACC and OFC), and that this cue-induced activation may be diminished
by a course of bupropion treatment. These results are similar to those of functional imaging
studies for drugs other than tobacco (Goldstein and Volkow, 2002; Miller and Goldsmith,
2001). and it has been posited that at least some of the activations seen with cigarette-related
cues (cortical attention areas and OFC) are associated with an expectation of smoking in the
non-treatment seeking subjects who participated in these studies (Wilson et al., 2004).

In summary, functional brain imaging studies of nicotine/cigarette smoking have demonstrated
a link between nicotine/cigarette administration and brain circuitry that mediates visuospatial
attentional processing and withdrawal symptoms. Future studies utilizing newer PET tracers
and enhanced MRI techniques will undoubtedly further elucidate the brain mediation of
tobacco dependence, and may accelerate the development of targeted smoking cessation
therapies.
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Fig. 1.
Simplified representation of cortico-basal ganglia-thalamic brain circuitry that mediates effects
of nicotine/smoking on attentional control, craving, mood and anxiety. Potential targets for
nicotine/smoking to enhance attention (and improve craving, mood, and anxiety) include: (1)
direct stimulation of nicotinic acetylcholine receptors (nAChRs) in cortex, (2) stimulation of
the nAChR-rich thalamus and basal ganglia (which function as relay stations for this circuitry),
(3) activation of dopaminergic mesolimbic reward pathways originating in the ventral
tegmental area and projecting to the striatum, and (4) monoamine oxidase (MAO) inhibition
in the basal ganglia. NAc = nucleus accumbens; VTA = ventral tegmental area.
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