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Abstract

A critical assumption in utilizing labeled antibodies is that the conjugation reaction has no deleterious

effects on antibody avidity. This study demonstrates that this assumption need not hold true and
presents a methodology to quantitatively determine the degree of inactivation and/or changes in
antibody-antigen binding that can occur with conjugation. Fluorescein isothiocyanate, FITC, was
conjugated to a mouse monoclonal antibody (Fc125) against hemagluttinin (HA) using varying
fluorophore:protein (F:P) labeling ratios. Antibody binding, as a function of the F:P labeling ratio,
was evaluated using a kinetic ELISA assay and analyzed using global fitting. A two parameter

adjustment of the antibody concentration and the maximum rate were sufficient to describe the rate
changes. The concentration parameter dominated the rate changes consistent with the hypothesis that

the coupling reaction inactivated an increasing fraction of the antibody population with a smaller
change (~15 % at the highest F:P ratio) in antibody-antigen binding. An optimal F:P ratio that

minimized both inactivation and unlabeled antibody was calculated. This procedure can be utilized

to prepare functional, labeled antibody reagents with defined activity and can aid in quantitative
applications in which the stoichiometry and functionality of the labeled antibody is critical.
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Introduction

The coupling of fluorescent moieties to antibodies to create labeled antibody reagents, first
reported by Coons and collaborators over 60 years ago, has become a routine and important
procedure in the biological sciences and medicine [1;2]. Often, a succinimidyl-ester functional
group is attached to a fluorophore core and this functionality confers reaction specificity with
primary amines to form fluorophore-antibody conjugates. The presence of multiple primary

amines, especially primary amines in the antibody active site, can result in fluorophore
conjugation that changes antigen binding characteristics and in the extreme, completely

inactivates the antibody [3;4]. Steric hindrance and the absence of additional reactive sites on
the fluorophore are presumed to limit the degree of antibody modification by the conjugation

reaction. Furthermore, as commercial protein labeling Kits state, antibodies react with
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fluorophores at different rates and retain biological activity at different degrees of fluorophore
labeling (FluoReporter FITC Protein Labeling Kit, Molecular Probes, Invitrogen). Thus,
protocols may inadvertently recommend a suboptimal fluorophore to protein ratio for the
specific coupling reaction of interest [5;6;7]. Moreover, the coupling reaction results in a
population of antibodies having a distribution in labeling where the number of fluorescence
molecules per antibody is variable and best described by the labeling distribution [8;9]. Finally,
there is a limit to the number of fluorescence molecules that can be attached to an antibody.
The presence of multiple fluorophores in close proximity can decrease fluorescence via
quenching mechanisms; increased labeling may produce a reagent that is dimmer then one with
less labeling [6;7;10;11;12;13;14].

Previous optimization studies identified problems related to under and over antibody labeling
including decreases in fluorescence due to too few or many fluorophores, non specific staining,
and loss of antibody-antigen specificity [8;9;15;16;17;18;19]. To further understand the role
of derivitization in antibody function, an anti-hemaglutinin (HA) monoclonal antibody (Fc125)
coupled to fluorescein was evaluated. A microplate kinetic ELISA assay was used to
quantitatively evaluate antibody-antigen binding [20;21;22;23;24;25]. A Michaelis-Menten
model was used to evaluate ELISA rate data as a function of antibody concentration. One
strategy to avoid deleterious effects is to reduce the level of labeling. Decreasing the mean
number of fluorophore molecules per antibody is hypothesized to decrease the number of
antibodies having a deleteriously high number of fluorophores, but may create a significant
proportion of unlabeled antibodies. Analysis is developed here to optimally label an antibody
sample that takes into consideration these trade-offs. This analysis may be useful in evaluating
other antibody conjugations.

Materials and Methods

Antibody and Antigen Preparation

Fc125 anti-HA monoclonal antibodies were prepared from ascites by precipitation with 60%
saturated ammonium sulfate followed by affinity purification using a solid-phase protein A
adsorbent (UltraLink immobilized protein A, Pierce). FluoReporter FITC Protein Labeling Kit
(Molecular Probes) was used to label Fc125. The amount of FITC labeled dye (Component A)
was varied (reaction volume 1, 3, and 10 pL) and the corresponding fluorophore:protein (F:P)
ratio, based on Aygp and A4g4 absorption readings, was calculated according to the labeling kit
instructions including the recommended correction factors for the absorbance of the dye at 280
nm (1.9, 3.7, 7.4, respectively).

Influenza virus (strain A2/Japan/305/57) was obtained from Charles River Laboratories. The
virus was cultivated in specific pathogen free (SPF) chicken eggs and purified by centrifugation
in a sucrose gradient. Viral envelope protein was extracted by mixing 1 ml viral suspension (2
mg protein / ml) with 1 ml 15% n-octyl-p-D-glucopyranoside (Calbiochem) in PBS (final
detergent concentration, 7.5%) and incubating at 23 °C for 30 min. [26]. The suspension was
centrifuged at 20,000 x g for 60 min. to remove virus cores, and the supernatant dialyzed into
0.1% n-octyl-p-D-glucopyranoside in PBS. Aliquots of envelope protein (0.5 mg/ml) were
stored at -80 °C. Hemagglutinin (HA) represented ~50% of the envelope protein, based on gel
electrophoresis.

Kinetic ELISA

Viral envelope protein was diluted to 1 pg/mL in phosphate buffered saline, PBS, and used to
coat 96 well immunoassay microplates (Immulon 4 HBX), 100 pl/well, and overnight
incubation at 4 °C. The plates were washed (3X) with PBS-Tween20 (0.05%) and blocked
with 1% bovine serum albumin, BSA, in PBS. The plates were washed again, and dilutions of
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either labeled or unlabeled Fc125 antibody were added to the wells and incubated for 60
minutes at room temperature. The plates were washed, and detection antibody (alkaline
phosphatase labeled goat anti mouse 19G2b, Southern Biotech), diluted 1:500 in PBS-BSA,
was added to the wells, and incubated for 60 minutes. P-nitrophenyl phosphate substrate
solution (Southern Biotech) was prepared according to the manufacturer. The plates were
washed and substrate solution (100 pl) was added to the wells. OD4g5 was measured on a plate
reader (SpectraMax 250, Molecular Devices) at 1 minute intervals for 15 minutes and the rate
was determined from the plot of OD g5 vs. time; linearity was verified for every determination.
Each dilution of primary antibody was evaluated in triplicate.

The data were fit to a two shared parameter, globally linked Michaelis-Menten kinetics model
using commercial software (SigmaPlot v11.0). Antibody avidity and inactivation, measured
by changes in the ODy4g5 kinetic ELISA rate as a function of antibody concentration, [Ab],
were modeled using

Rate=« * Rpnax /(1+Ky/2/(B = [ Ab])) Equation 1

where the maximum rate, Rmax, and antibody concentration at Rmax/2, Ky, are globally
shared parameters linked by vectors a.and . The binding characteristics of the native antibody
were defined by setting the appropriate vector components to one indicating that the shared
parameters are not modified; the global fitting vectors are of the form [1, a4, ay, ..., a,] and
[1, B1, B2, ..., Bn] Where the first entries of both vectors correspond to the native antibody and
n is the number of different antibody conjugates studied. A change in rate can occur when there
is a change in antibody binding to its substrate and/or a change in the concentration of active
antibody. We hypothesize that antibody modifications that result in shifts in K1/2 to higher
values are due to antibody inactivation, a decrease in the concentration of functional antibody,
while a decrease in Ryax represents a decrease in avidity. This hypothesis is consistent with
the Kinetic components of the kinetic ELISA. The kinetic ELISA consists of three distinct
kinetic steps governed by mass action [25]. The first step is the binding of the antigen to the
antibody; the second step is the binding of the enzyme linked anti-antibody; the third step is
the reaction step that produces the product/readout that follows a Michaelis-Menten equation
typical of enzyme kinetics. Changes in antibody avidity would manifest in the first, rate limiting
step by a change in the amount of antigen-antibody complex produced.

The kinetic ELISA assay was used to evaluate each of the antibody preparations. Figure 1
shows the dependence of the ELISA rate as a function of Fc125 antibody concentration.
Increasing the number of fluorophores per antibody molecule reduced the binding of Fc125
antibody to the antigen, HA. Specifically, higher F:P ratios results in a rightward shift of the
rate curve, indicating that higher concentrations of the labeled antibody preparation are
required to achieve a given rate in the kinetic ELISA assay. These findings can be explained
by three possibilities. First, Rmax may change as a function of fluorophore coupling. Second,
fluorophore coupling may change the concentration at Rynax/2, Kq/2. Third, both changes in
Rmax and K1/, occur. To identify the origin of the rightward shifts in the rate curves, global
fitting of the data was used to calculate global linking vectors o and 3 for the shared parameters
Rmax and Ky, respectively. Each component of the linking vectors a and B is specific for an
individual rate curve. For the linked data set, Ryax and Ky were determined to be 361.8 +/-
6.6 MOD4gs/min and 0.013 +/- 0.000 pg/ml, (fitted value +/- std. error) respectively. The global
linking vectors were o = [1, 0.98 +/- 0.02, 0.91 +/- 0.02, 0.84 +/- 0.02] and § =[1, 0.82 +/-
0.04,0.79 +/- 0.04, 0.57 +/- 0.03] (fitted value +/- std. error). All fitted values were significant
at the p < 0.0001 level. Figure 2 shows that with increasing F:P ratio both o.and  decrease,

Anal Biochem. Author manuscript; available in PMC 2011 July 15.



1duosnuey Joyiny vd-HIN 1duosnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Viraetal.

Page 4

indicating that both Riax and Ky, were modified, compared to the native antibody, following
the coupling reactions. For each fluorophore added, linear regression indicates that the o and
p factors decrease by 0.02 and 0.06, respectively; however, the factor modifying Kq,/[Ab],
B, has a three-fold greater influence per added fluorophore. Therefore, the dominant effect of
fluorophore conjugation is to reduce the concentration of functional antibody.

To determine if an optimal F:P ratio exists that maximizes both antibody avidity and degree
of labeling following fluorophore conjugation, Poisson statistics were used. Under the
hypothesis that the F:P ratio, A, represents a Poisson average, the fraction of unlabeled
antibodies, F(0,1) is given by F(0,1) = e*. This hypothesis is supported both theoretically and
experimentally. Theoretically, the distribution that best describes discrete, low probability
events is the Poisson distribution; a protein may have on order 100 potential sites of which <
10 are labeled. Experimentally, support for the Poisson distribution requires demonstrating
both discrete labeling and that the amount of each species follows the Poisson distribution; a
distribution characterized by only one parameter, the Poisson average. Mass spectrometry work
demonstrates that FITC labeling of protein leads to heterogeneous labeling with 0, 1, 2, 3, or
n, FITC molecules per protein [27;28]. A Poisson distribution of labeled proteins was
demonstrated using Cy3 labeled anti EGFR antibody [29]. This single molecule imaging study
analyzed the distribution of the fluorescence intensity of the antibody labeled with different
F:P ratios and found that the percentage of each species observed was in agreement with that
expected from a Poisson distribution. In Figure 3A both the fractional decrease in functional
antibody, the B linking vector, and the fraction of unlabeled antibody, F(0,A) are plotted as a
function of the F:P ratio. In Figure 3B, the difference between these two curves is shown. The
maximum difference, representing optimal labeling, occurs at a F:P ratio of ~2.8; a range of
F:P from ~1.6 to 5.0 is within +/- 10% of the optimum and indicated by the dotted lines in
Figure 3B. There is a broad range of F:P ratios that minimizes the fraction of unlabeled antibody
while still preserving the functionality of the labeled antibody. Preparation of FITC labeled
Fc125 anti-HA antibody with a F:P ratio of ~ 3 (Figure 3B) minimizes the unlabeled antibody
(~ 6 %, Figure 3A) with an ~ 20% reduction in functional antibody (Figure 2, ) and minimal
change in avidity (~ 6 % decrease in Rpmay, Figure 2, ).

Discussion

The goal of this study was to quantitatively evaluate antibody binding properties as a function
of the degree of labeling, the F:P ratio. Fc125 anti-HA antibody was labeled with fluorescein
isothiocyanate at different F:P ratios and the conjugated antibodies were evaluated using a
kinetic ELISA assay. Global fitting of the kinetic data indicates that the dominant effect of
conjugation is to reduce the concentration of functional antibody. Using Poisson statistics, an
optimal F:P ratio was determined for this combination of antibody (Fc125) and fluorophore
(FITC). The strategy presented is general, and could be applied to other antibody conjugates
created with standard labeling procedures.

Problems with under and over conjugated antibodies were previously identified and include
reagents that are too dim and/or reagents that produce a large non-specific background [30;
31]. The literature “rule of thumb” is that F:P ratios between 2 — 5 or 2 — 8, depending upon
the fluorophore, are “optimal” [5;6;8;9;30;32;33;34]. In this study, the optimal F:P ratio, ~1.6
-5, is in agreement with previous estimates but developed using a new minimization metric.
Since the use of conjugated antibodies is ubiquitous in biology, biotechnology, and medicine,
understanding the influence of F:P ratio on the performance of these reagents is important. For
example, in a clinical application, fluorescently labeled antibodies with different F:P ratios
have been implicated in image clarity reduction and false negative results in tests for the
presence of antigen [35]. The protein annexin V coupled to multiple N-hydroxysuccinimide
esters of hydrazinonicotinic acid and FITC have reduced functionality and behave differently
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from their underivatized form [36]. A quantitative procedure that evaluates both reduced
functionality and inactivation as a function of conjugation is useful in characterizing labeled
reagents.

Global fitting is an extension of non-linear least squares fitting that is used to analyze multiple
data sets simultaneously by sharing parameters across fits. The advantage of this approach is
that parameters can be held in common between different data sets and help in creating “over
determined” parameters, a prerequisite for adequate minimization. This fitting approach has
been described for over 25 years [37;38], is incorporated in most commercial programs, but
it’s use in fitting dose response data has been limited to only a few reports [39;40;41]. With
an appropriate fitting routine for evaluating the globally linked kinetic ELISA data set,
optimized labeling can be quantitatively determined when both the inactivated and unlabeled
fractions are known. Antibody inactivation may occur when conjugation takes place within
the active site; active site protection has previously been shown to produce an improved
antibody preparation [42]. Since labeling protocols rarely include active site protection,
conjugation dependent losses are expected unless the antibody has no conjugation reactive site
within the active site. The shiftin Ky o is used to quantitatively evaluate the inactivated fraction.
Antibody conjugation is hypothesized to follow Poisson statistics based on the report that
Annexin V conjugated with FITC follows Poisson statistics [43].

The ability to optimize the properties of a conjugated reagent has benefits in addition to efficient
use of the reagent. There are biological determinations where the characterization of the labeled
reagent, as described here, is important. Labeled antibodies are used in fluorescence resonance
energy transfer (FRET) studies. The relationship between FRET and the concentration of donor
and/or acceptor is a metric used to evaluate clustering and domain behaviors [44;45]. The
presence of unlabeled antibody alters the interpretation of antibody concentration dependent
FRET while the presence of multiply labeled antibodies directly influences the magnitude of
the FRET signal. The characterization may also be important when antibodies are used in
routine, but quantitative, determinations where there may be a need to control batch to batch
variability in their production.

Conclusion

Optimal antibody conjugation is important for both efficient and quantitative uses of these
reagents. In this example, coupling FITC to a mouse monoclonal anti-HA antibody (Fc125)
has a minor effect on the avidity but at higher levels of conjugation inactivates a significant
fraction. Inactivation and changes in binding properties may occur during any antibody
conjugation. This study presents a novel technique for analyzing these effects and establishes
a new metric for evaluating conjugation reactions.
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Figure 1.

Kinetic ELISA of Fc125 antibody. Fluorophore:Protein dependent rightward shift in the
concentration dependent kinetic ELISA rate. The entire data set was fit using Equation 1. The
shared parameters, Rmax and Kq», are the best fit values for the entire data set (361.8 +/- 6.6
MODggs/min and 0.013 +/- 0.000 pg/ml, (fitted value +/- std. error) respectively) while the
component values for the vectors a and p are specific to each curve (o =[1, 0.98 +/- 0.02, 0.91
+/- 0.02, 0.84 +/- 0.02] and B = [1, 0.82 +/- 0.04, 0.79 +/- 0.04, 0.57 +/- 0.03] (fitted value +/-
std. error).
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Figure 3.

A: Conjugation dependent changes in the functional (o) and unlabeled fractions (m). The
unlabeled fraction was calculated using Poisson statistics and the functional fraction is the
global linking vector, B.

B: The difference between the functional and unlabeled fractions has a maximum at a
Fluorophore:Protein ratio of ~3 representing the optimum conjugation level. The dotted lines
represent the +/- 10% range about the optimum and corresponds to a F:P ratio of ~ 2 — 5.
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