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Genotypic interpretation systems (GISs) for darunavir and tipranavir susceptibility are rarely tested by the
use of independent data sets. The virtual phenotype (the phenotype determined by Virco [the “Vircotype”]) was
used to interpret all genotypes in Québec, Canada, and phenotypes were determined for isolates predicted to
be resistant to all protease inhibitors other than darunavir and tipranavir. We used multivariate analyses to
predict relative phenotypic susceptibility to darunavir and tipranavir. We compared the performance charac-
teristics of the Agence Nationale de Recherche sur le Sida scoring algorithm, the Stanford HIV database
scoring algorithm (with separate analyses of the discrete and numerical scores), the Vircotype, and the
darunavir and tipranavir manufacturers’ scores for prediction of the phenotype. Of the 100 isolates whose
phenotypes were determined, 89 and 72 were susceptible to darunavir and tipranavir, respectively. In multi-
variate analyses, the presence of I84V and V82T and the lack of L10F predicted that the isolates would be more
susceptible to darunavir than tipranavir. The presence of I54L, V32I, and I47V predicted that the isolates
would be more susceptible to tipranavir. All GISs except the system that provided the Stanford HIV database
discrete score performed well in predicting the darunavir resistance phenotype (R2 � 0.61 to 0.69); the R2 value
for the Stanford HIV database discrete scoring system was 0.38. Other than the system that provided the
Vircotype (R2 � 0.80), all GISs performed poorly in predicting the tipranavir resistance phenotype (R2 � 0.00
to 0.31). In this independent cohort harboring highly protease inhibitor-resistant HIV isolates, reduced
phenotypic susceptibility to darunavir and tipranavir was rare. Generally, GISs predict susceptibility to
darunavir substantially better than they predict susceptibility to tipranavir.

HIV-infected patients harboring multidrug-resistant virus
face limited protease inhibitor (PI) treatment options. Studies
suggest that approximately 10% of HIV-infected patients ini-
tiating therapy experience triple-class treatment failure (18),
although this rate may be declining as the treatment options
improve (4). For those patients given therapy prior to the
availability of highly active antiretroviral therapy, the rate of
triple-class resistance exceeds 20% (25a).

Approved in June 2005, tipranavir is a nonpeptidic PI spe-
cifically developed for the management of patients harboring
PI-resistant virus. In clinical trials, the use of tipranavir re-
sulted in a virologic response superior to that achieved with the
comparator PIs (11). However, tipranavir requires twice-daily
dosing and coadministration with 200 mg of ritonavir and food
and has many drug-drug interactions and an adverse side effect

profile. Patients given tipranavir have increased rates of he-
patotoxicity, hyperlipidemia, rash, and therapy discontinuation
than patients receiving a comparator PI; and the use of
tipranavir has been linked to intracranial hemorrhage (1).

In June 2006, the U.S. Food and Drug Administration ap-
proved twice-daily darunavir coadministered with 100 mg
ritonavir for use by treatment-experienced adults. The use of
darunavir resulted in a virologic response superior to that
achieved with the comparator PIs in patients harboring PI-
resistant virus (2, 16). In those pivotal studies, darunavir had a
side effect profile similar to that of the comparator PIs, other
than a lower incidence of diarrhea.

While darunavir and tipranavir are both active against iso-
lates highly resistant to PIs, they have not been compared
directly in clinical studies, although one analysis suggests that
darunavir may have more activity (12). Given the lack of clin-
ical data, the interpretation of genotypic resistance test results
is often used to choose between darunavir and tipranavir.

Over 20 genotypic interpretation systems (GISs) have been
developed to interpret the complex patterns of amino acid
substitutions seen with PI-associated resistance (14, 15, 20),
but their performance characteristics have rarely been com-
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pared. Given the complexity of PI-associated resistance, a phe-
notype can be determined to better characterize resistance,
although clinical data in support of such a strategy are limited
(17). For drugs for which limited clinical data are available,
such as darunavir and tipranavir, the phenotype may provide a
more reliable measure of the activity of a drug, as the pheno-
type measures in vitro susceptibility to specific drugs and the
genotype analyzes the sequence information of the virus and
infers drug resistance from the mutations present.

In the study described here we compared the ability of sev-
eral of the most commonly used GISs (those of the Agence
Nationale de Recherche sur le Sida [ANRS] and the Stanford
HIV database, the Virco system for the determination of the
virtual phenotype [Vircotype], and the darunavir and tiprana-
vir manufacturers’ scores) to predict the phenotypes for resis-
tance to darunavir and tipranavir for a set of highly resistant
clinical isolates and developed a model that may be used to
predict the relative susceptibility to darunavir and tipranavir
(4a, 21, 23; www.hivfrenchresistance.org/; Virco).

(This study was presented at the 5th International AIDS
Society [IAS] Conference on HIV Pathogenesis, Treatment,
and Prevention, 19 to 22 July 2009, Cape Town, South Africa
[abstr. WEPEB202].)

MATERIALS AND METHODS

In the province of Québec, Canada, all genotypic resistance tests are per-
formed centrally and the interpretation of the results is provided by Virco. These
results are referred to as the Vircotypes. For establishment of these Vircotypes
(the Virco HIV-1 resistance genotypes), the genotype-phenotype pairs available
within the company’s database are used to predict the phenotype on the basis of
the patient’s genotype. In Québec, per protocol, a phenotype (the antivirogram
phenotype) is determined for isolates predicted to be resistant to all PIs other
than darunavir and tipranavir on the basis of the Vircotype.

For the present study, we included isolates collected from January 2007
through July 2008 for which the genotype, Vircotype, and phenotype were avail-
able. For each isolate included in the study, a score was generated for each GIS
of interest for darunavir and tipranavir. For the ANRS system, the score was
categorized as 0 for susceptible, 1 for intermediate, and 2 for resistant. For the
Stanford HIV database algorithm, we analyzed both the five-way discrete score
and the numerical score (e.g., from 0 to 60�) produced by the algorithm. The
discrete score was categorized as 0 for susceptible, 1 for potentially low-level
resistance, 2 for low-level resistance, 3 for intermediate resistance, and 4 for
high-level resistance. Both ANRS and the Stanford HIV database occasionally
update their scoring systems. We used the versions publicly available in Septem-
ber 2008. The Vircotype was categorized as 0 for susceptible/maximal response,
1 for reduced response, and 2 for resistant/minimal response, on the basis of the
cutoffs for darunavir and tipranavir established by Virco in September 2008 and
applied to all the isolates. We used the current darunavir manufacturer’s score,
based on the number of the 11 mutations present in a given isolate, and the
weighted tipranavir manufacturer’s score, which includes 19 mutations of interest
(4a, 23).

We plotted each score versus the natural log of the fold change in suscepti-
bility, as this transformation to the fold change led to the best linear correlation
between the two variables. We compared the predictive ability of each score with
an R2 calculation.

For the real phenotype, we used the clinical cutoffs (CCOs) established by
Virco (the darunavir CCO1 is a 10-fold change, the darunavir CCO2 is a 40-fold
change, the tipranavir CCO1 is a 3-fold change, and the tipranavir CCO is a
10-fold change). We constructed models to predict relative phenotypic suscep-
tibility to darunavir and tipranavir. We performed forward stepwise multivariate
logistic regression with the Akaike information criterion (AIC), used for variable
entry, to predict which isolates had increased susceptibility to darunavir com-
pared to their susceptibility to tipranavir (and increased susceptibility to tiprana-
vir compared to their susceptibility to darunavir), on the basis of the CCO for
each drug. We performed 2,500 bootstrap replicates of this AIC model selection
technique to estimate the proportion of times that the AIC would select given
mutations (6, 26). We limited the number of mutations in each darunavir-versus-

tipranavir and tipranavir-versus-darunavir comparison and model to 8 and 5,
respectively, to limit overfitting.

RESULTS

During the study period, approximately 4,200 genotypic re-
sistance tests were performed in Québec; among the isolates
evaluated in those tests, 55% presented reduced susceptibility
to at least one drug. One hundred isolates were resistant to all
PIs, excluding darunavir and tipranavir, and phenotypic resis-
tance testing was performed with those isolates.

Of those 100 isolates, the majority were susceptible to both
drugs; 89 were susceptible to darunavir and 72 were susceptible
to tipranavir (Table 1). Two isolates had intermediate suscep-
tibility to darunavir and nine were fully resistant. For tiprana-
vir, 20 isolates were reported to have intermediate susceptibil-
ity and 8 were fully resistant. Only two isolates were resistant
to both darunavir and tipranavir.

As expected, the 100 isolates were highly PI resistant. They
had a median of 12.0 (interquartile range [IQR] � 10.0, 14.0)
PI-associated mutations and median numbers of 1.0 (IQR �
0.0, 2.0) and 4.0 (IQR � 3.0, 6.0) darunavir and tipranavir
mutations, respectively, according to the IAS-USA mutation
list (13). Figure 1 displays the frequency of amino acid changes
at various positions in the protease sequences of the isolates.
On the basis of the IAS-USA mutation list, the most frequent
darunavir resistance-conferring mutations were I84V, L33F,
and V32I, which occurred at frequencies of 42%, 32%, and
15%, respectively. The most frequent tipranavir resistance-
conferring mutations were at L90M, M36I, and I54V, which
occurred at frequencies of 67%, 62%, and 52%, respectively.

For darunavir, all GISs except the Stanford HIV database
discrete score algorithm performed similarly well in predicting
the darunavir resistance phenotype (R2 � 0.61 to 0.69; Fig. 2);
the Stanford HIV database discrete score was less predictive
(R2 � 0.38). The category “intermediate resistance” from the
Stanford HIV database algorithm encompasses a wide range of
numerical scores (from 30 to 59), and 46 of the 100 isolates
were categorized as having intermediate resistance. Compari-
son of Fig. 2b and Fig. 2c shows that a substantial amount of
discriminatory ability was lost by using the discrete category
rather than the numerical score for this group, as the fold
change appeared to increase with higher scores within the
intermediate resistance group.

In general, the GISs for tipranavir performed poorly (Fig. 3).
The interpretation produced by the ANRS system was not

TABLE 1. Profile of phenotypic resistance to darunavir and
tipranavir among 100 PI-resistant isolates

Tipranavir
susceptibilitya

No. of isolates with the following
darunavir susceptibilityb

Sensitive Intermediate Resistant

Sensitive 67 2 3
Intermediate 16 0 4
Resistant 6 0 2

a Tipranavir fold change cutoffs were �3 for sensitive, 3 to �10 for interme-
diate, and �10 for resistant.

b Darunavir fold change cutoffs were �10 for sensitive, 10 to �40 for inter-
mediate, and �40 for resistant.
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significantly associated with the natural log of the fold change
(R2 � 0.00; P � 0.62). The Stanford HIV database scores (both
the discrete and the numerical scores) and the tipranavir man-
ufacturer’s scores were minimally predictive of the fold change
(R2 � 0.18 to 0.33). Interestingly, the Vircotype was unique in
its ability to predict the tipranavir fold change (R2 � 0.80).

In bootstrap analyses, the presence of I84V and V82T and
the lack of L10F were the most robust predictors that isolates
would be more susceptible to darunavir than tipranavir (Table
2). I84V was selected in 97% of the bootstrap models and had
a mean odds ratio of 1.5 (95% confidence interval [CI], 1.2,
1.8) for relative darunavir susceptibility. That is, isolates with
I84V were 50% more likely to be less resistant (on the basis of
the phenotypic cutoffs) to darunavir than to tipranavir than the
typical isolate within the cohort. V82T was selected in 86% of
the models and had a mean odds ratio of 1.6 (95% CI, 1.3, 2.1).
The lack of L10F was selected in 82% of the bootstrap models,
with its lack being associated with a mean odds ratio of 1.4
(95% CI, 1.2, 1.6).

The presence of I54L, V32I, and I47V predicted that the
isolates would be more susceptible to tipranavir than da-
runavir (Table 3). I54L was selected in 99% of the models
and had a mean odds ratio of 2.0 (95% CI, 1.5, 2.7) for
predicting relative tipranavir susceptibility over relative da-
runavir susceptibility. V32I was selected in 94% of the mod-
els and had a mean odds ratio of 1.4 (95% CI, 1.1, 1.9), and
I47V was selected in 88% of the models and had a mean
odds ratio of 1.7 (95% CI, 1.2, 2.7).

When these mutations occurred together, the combined
presence of I84V and V82T and the lack of L10F resulted in an
odds ratio of 2.8 (95% CI, 1.6, 5.0) for relatively greater da-
runavir susceptibility than tipranavir susceptibility. The pres-
ence of I54L, V32I, and I47V together predicted that the
isolates would be more susceptible to tipranavir than to da-
runavir and had an odds ratio of 4.4 (95% CI, 2.7, 7.3).

DISCUSSION

Various studies have evaluated the performance character-
istics of different GISs in predicting susceptibility to first-gen-
eration PIs by the use of independent data sets (8, 10, 19).
However, the performance of GISs with an independent data
set for darunavir and tipranavir has rarely been evaluated.
Independent data sets are important for the evaluation of
GISs, as a score created on the basis of a given data set will
always perform well due to some degree of model overfitting.
Even if a portion of the data set is used as a training data set
and the remainder is used as a validation data set, the similar-
ities of the treatment histories and other patient characteristics
between the training and the validation data sets will likely also
lead to the overly good performance of a given scoring system.

Within our collection of highly PI-resistant HIV isolates, the
GISs performed well in predicting phenotypic susceptibility to
darunavir. However, the Stanford HIV database discrete score
performed less well, as it appeared that the intermediate re-
sistance category was too broad and included isolates with a
wide range of fold changes. The suggestion that there was a
misclassification in the intermediate group is supported by the
findings presented in Fig. 2b, in which there is a wide range of
phenotypes in the intermediate category, and also by the fact
that the numerical score performed quite well and had an R2

value of 0.68, consistent with the R2 values of the other GISs
tested. The Stanford HIV database numerical score is readily
available on the website when one enters a genotype into the
web-based system, but clinicians frequently focus only on the
discrete score when interpreting a genotype. Given these re-
sults, we would encourage clinicians to be sure to review the
numerical score when deciding on the use of darunavir. Addi-
tionally, as a result of the findings of this study and others, the
authors of the Stanford HIV database have revised their scores
for darunavir to attempt to better predict darunavir suscepti-
bility.

FIG. 1. Frequency of mutations by protease position (n � 100). T, position of IAS-USA major tipranavir resistance-conferring mutation; D,
position of IAS-USA major darunavir resistance-conferring mutation (13).
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We found that the ability of the GISs to interpret tipranavir
susceptibility was generally poor. GISs make qualitative judg-
ments of susceptibility on the basis of the available clinical and
laboratory data. As new results become available, the system is
updated to incorporate the new data. The relative lack of
publicly available clinical information on tipranavir may help
explain the poor performance of rules-based GISs. Another
possible explanation is that the development of genotypic re-
sistance to tipranavir may be inherently more complex than the
development of genotypic resistance to darunavir because sev-
eral diverse pathways can lead to resistance to tipranavir. For

instance, IAS-USA lists 21 resistance-conferring mutations for
tipranavir and 11 for darunavir (13). With this complexity, it
may be more difficult to create a rules-based algorithm for
tipranavir. Our finding is consistent with the findings of others,
who have also found that GISs do not perform well in evalu-
ating tipranavir susceptibility (22).

The superior performance of the Vircotype for predicting
phenotypic resistance to tipranavir was surprising. In previous
studies, the virtual phenotype has not outperformed rules-
based GISs in predicting the virologic response or phenotypic
resistance (9, 25). However, Virco’s access to a large pool of

FIG. 2. Correlation between genotypic interpretation scores and natural log of fold change for darunavir (DRV). (a) ANRS score versus
natural log of the darunavir fold change; (b) Stanford HIV database (HIVDB) discrete score versus natural log of the darunavir fold change; (c)
Stanford HIV database numerical score versus natural log of the darunavir fold change; (d) Vircotype versus natural log of the darunavir fold
change; (e) darunavir score versus natural log of the darunavir fold change.
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proprietary data for tipranavir may have allowed the Vircotype
to have superior performance. In addition, the algorithm that
Virco uses to correlate genotypic resistance to phenotypic re-
sistance may be superior to rules-based algorithms in predict-

ing phenotypic resistance for a drug with as complex a pattern
of resistance as tipranavir.

We found the presence of I84V and V82T and the lack of
L10F to be associated with relative susceptibility to darunavir

FIG. 3. Correlation between genotypic interpretation scores and natural log of fold change for tipranavir (TPV). (a) ANRS score versus natural
log of the tipranavir fold change; (b) Stanford HIV Database discrete score versus natural log of the tipranavir fold change; (c) Stanford HIV
Database numerical score versus natural log of the tipranavir fold change; (d) Vircotype versus natural log of the tipranavir fold change; (e)
tipranavir score versus natural log of tipranavir fold change.

TABLE 2. Mutations most strongly associated with relative
darunavir susceptibility versus tipranavir susceptibility

Mutation Mean odds ratio
(95% CI)

% of
models

Mean rank
in models

82T 1.6 (1.3, 2.1) 86 2.5
84V 1.5 (1.2, 1.8) 97 1.9
Lack of 10F 1.4 (1.2, 1.6) 82 3.3

TABLE 3. Mutations most strongly associated with relative
tipranavir susceptibility versus darunavir susceptibility

Mutation Mean odds ratio
(95% CI)

% of
models

Mean rank
in models

54L 2.0 (1.5, 2.7) 99 1.5
47V 1.7 (1.2, 2.7) 88 2.3
32I 1.4 (1.1, 1.9) 94 2.3
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compared to the level of susceptibility to tipranavir. The im-
portance of V82T as an important predictor of relative da-
runavir susceptibility is not surprising, as V82T is a signature
mutation for resistance to tipranavir and has not been associ-
ated with decreased darunavir susceptibility (7). On the basis
of the tipranavir manufacturer’s score, the presence of V82T
alone is sufficient for reduced tipranavir susceptibility (10).
I84V has been associated with decreased susceptibility to both
darunavir and tipranavir in clinical studies (4a, 23), but in a
number of scoring systems, I84V is given more weight in
tipranavir resistance scores than in darunavir resistance scores
(4a, 21, 23). I84V was also shown to be one of the first muta-
tions to emerge during in vitro passage experiments with
tipranavir (4a). L10F is a relatively common PI-associated mu-
tation and has not been considered an important mutation
conferring resistance to darunavir or tipranavir. The lack of the
L10F mutation was unexpectedly associated with relative da-
runavir susceptibility, and its relevance should be confirmed by
additional studies. It may be that the L10F is a proxy for other
resistance-associated mutations that together affected the rel-
ative susceptibilities of these two new-generation PIs.

Not surprisingly, the presence of I54L was an important
predictor of relative tipranavir susceptibility. It has been asso-
ciated with an improved virologic response to tipranavir and
has been given a negative weighting (the inverse of resistance)
within the tipranavir manufacturer’s score, while it not consid-
ered an important mutation for darunavir resistance (4a, 23).
The emergence of V32I as an important mutation predicting
relative tipranavir susceptibility is also consistent with the find-
ings of previous work (4a, 13, 23). On the other hand, I47V has
been associated with decreased responses to both darunavir
and tipranavir, and its validity as a predictor of relative tiprana-
vir susceptibility should be explored within other independent
data sets. Again, this mutation may simply be a marker for
other associated mutations that are present within our cohort.

The validation of GISs can be performed through genotype-
clinical outcome correlation studies or with correlations with
phenotypic resistance testing, as was done in this study. We did
not have access to clinical data, which was a limitation of the
study. Another limitation of the study is the limited number of
clinical isolates that were available, which may not have al-
lowed us to detect some important mutations for darunavir and
tipranavir resistance.

Genotypic resistance testing does not routinely sequence
gag, while the Antivirogram phenotype assay incorporates only
a portion of the C terminus of gag. Mutations in gag not only
have been associated with restored replicative capacity but also
have been independently associated with protease resistance
(3). The clinical utility of evaluating gag during resistance test-
ing has not been established, and since the currently available
interpretation algorithms do not include gag mutations, we
cannot speculate how the results of our study would have
varied had these mutations been included. Nonetheless, our
results do reflect the results that can be obtained by using the
interpretation tools currently available to the clinician.

In patients harboring virus with extensive resistance to PIs, the
choice of the PI to be used for salvage therapy is usually darunavir
or tipranavir. By generating rules for predicting relative darunavir
susceptibility versus relative tipranavir susceptibility, we attempt
to provide guidance to clinicians for when one drug may be more

active than the other, although additional studies are needed to
validate the mutations selected by our models. Additionally, the
activities of other drugs in the background regimen (especially
etravirine, which cannot be coadministered with tipranavir) and
the tolerability of the drugs will also be a factor in the selection
of the appropriate PI (www.accessdata.fda.gov/drugsatfda_docs
/label/2009/022187s002lbl.pdf). Furthermore, with the availability
of a new class of agents, for some, the requirement for PIs in
salvage therapy is less obvious (24).

In conclusion, for the set of isolates with high-level resis-
tance to PIs evaluated in the present study, it was reassuring
that the majority retained susceptibility to both darunavir and
tipranavir. GISs effectively predict susceptibility to darunavir.
However, other than use of the Vircotype, GISs cannot be
relied upon to predict phenotypic susceptibility to tipranavir,
but specific mutations may predict which isolates have relative
tipranavir susceptibility over relative darunavir susceptibility.
However, due to darunavir’s ease of use and the fact that it
retains activity even against highly resistant isolates, the role of
tipranavir in salvage therapy will remain limited and tipranavir
might be considered for use only in patients harboring the
subgroup of isolates with the pattern of mutations that favor
the use of tipranavir over darunavir.
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