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Abstract
Increased Type I IFNs or IFN-I have been associated with human systemic lupus erythematosus.
Interestingly augmenting or negating IFN-I activity in murine lupus not only modulates systemic
autoimmunity, but also impacts lupus nephritis, suggesting that IFN-I may be acting at the level of
the end-organ. We find resident renal cells to be a dominant source of IFN-I in an experimental model
of autoantibody-induced nephritis. In this model, augmenting IFN-I amplified antibody-triggered
nephritis, whereas ablating IFN-I activity ameliorated disease. One mechanism through which
increased IFN-I drives immune-mediated nephritis might be operative through increased recruitment
of inflammatory monocytes and neutrophils, though this hypothesis needs further validation.
Collectively, these studies indicate that an important contribution of IFN-I toward the disease
pathology seen in systemic autoimmunity may be exercised at the level of the end-organ.

The presence of self-reactive anti-nuclear Abs is a key characteristic in the development of the
autoimmune disease, systemic lupus erythematosus (SLE).5 The deposition of anti-nuclear
Abs, anti-glomerular Abs and related immune complexes within the end organs such as the
kidney, play a significant role in the development of nephritis and death. Of the multiple
cytokines implicated in disease progression, much research has focused on the key role of type
I IFNs (IFN-I), particularly in human SLE. Early studies by Preble et al. (1,2) demonstrated
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that α was detectable in the serum of SLE patients. In addition, it has been shown that sera
from patients with SLE can stimulate normal PBMCs to produce IFNα (3,4). More recently,
several groups have demonstrated the presence of an IFN-I gene expression signature in the
peripheral blood of patients with SLE, with some suggesting a correlation with disease severity
and end organ disease (5–9). Whether the presence of this signature is a cause or a consequence
of disease is yet to be determined. In this context, murine studies have been particularly
informative.

First, negating IFN-I activity in the NZB/129 and B6.lpr strains ameliorated most of the
component lupus phenotypes (10–12), though some exceptions have been noted (13). Second,
deliberate administration of IFN-I, or the in vivo delivery of TLR ligands that trigger IFN-I
production, augment various lupus phenotypes (11,14–18). Interestingly, whereas
antichromatin and other serum autoantibody levels were barely or modestly impacted in several
of these studies, the severity of renal disease was significantly influenced in all of the above
studies (15–20). Collectively, these findings suggest that one important mechanism through
which IFN-I might be contributing to lupus pathogenesis is by directly impacting end organ
disease. However, this hypothesis has not been directly tested.

The present work addresses the above hypothesis that IFN-I might directly modulate immune-
mediated nephritis in lupus, based on studying a closely related experimental model, anti-
glomerular basement membrane (GBM) nephritis. Though the initiating triggers differ in
experimental anti-GBM disease and spontaneous lupus nephritis, both disease settings appear
to share downstream effector mechanisms, as we have recently reviewed (21). Importantly, of
25 different molecules that have been examined for their functional relevance in two disease
scenarios, all impacted both diseases concordantly, suggesting that the experimental anti-GBM
model might be a reliable and useful tool for studying spontaneous lupus nephritis. We have
previously reported that different inbred strains develop differing degrees of nephritis
following challenge with anti-GBM sera (22,23). In this communication, we examine how anti-
GBM Ab-induced nephritis is affected by negating or augmenting IFN-I activity in an inbred
strain that is modestly sensitive to nephritis, C57BL/6 (B6).

Materials and Methods
Reagents and mice

All mice were bred in the University of Texas Southwestern Medical Center. Breeding pairs
for C57BL/6J (B6) mice were originally obtained from The Jackson Laboratory.
B6.IFNAR−/− mice (lacking the common receptor for Type I IFNs) were obtained from Dr.
Michel Aguet (ISREC Foundation, Epalinges, Switzerland) (24). The care and use of
laboratory animals conformed to the National Institutes of Health guidelines and all
experimental procedures conformed to an institutional animal care and use committee approved
animal protocol.

Anti-GBM serum and disease induction
Anti-GBM serum was prepared as described previously (22). In brief, renal cortices of B6 mice
were minced and then passed through sieves of decreasing pore size (150, 106, and 63 µm).
Glomeruli were obtained from the finest sieve, washed in cold PBS and sonicated for 7 min.
The glomerular sonicate was sent to the Lampire Laboratories for the generation of anti-GBM
sera in rabbits. The specific binding of the immune rabbit sera to glomerular basement
membrane was confirmed by direct immunofluoresence using frozen mouse kidney sections,
and its efficacy in precipitating nephritis was tested in B6 and 129/sv mice, as described
previously (23). Mice were presensitized with rabbit IgG (2.5 mg/ml with CFA, 100 µl/20g
body weight) via the peritoneal cavity. Five days postinjection, mice were injected anti-GBM
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serum IV (170 µl/20g body weight). Blood and 24-h urine samples were collected before (day
0) and 14 days after induction of disease. In studies where this was combined with IFN-
adenovirus (ADV), anti-GBM serum was administered IV at 130 µl/20g body weight to ensure
the detection of any augmentation of disease. Prior trials using a lower dose of anti-GBM serum
(100 µl/20g) did not have any effect with this combination.

IFN-ADV and IFN
IFN-I was deliberately administered to two cohorts of mice. In cohort 1, IFN-I (Universal type
I IFN, no. 11200–2 PBL Laboratories) was injected i.p. at 10,000 U per mouse on days −4, 0,
4, 8, and 12 (where day 0 represents the day of rabbit Ig injection), as described previously
(25). Mice in cohort II were administered IFN-I, using adenoviral delivery on D0 of the anti-
GBM disease induction protocol. The IFN adenovirus (IFN-ADV) or control (ADV) was
purchased from Q-Biogene. This was repeated twice and the data combined for analysis of
renal disease. Ad5.CMV-mIFN-α expresses the murine IFNα5 gene under the control of the
Cytomegalovirus-IE promoter/enhancer. Ad5.Null contains an empty expression vector and
was used as a control (ADV). One × 109 IFN-ADV or ADV particles were injected, as
previously described (14).

Assessment of renal disease
Mice were caged in metabolic cages and urine was collected over a 24 h period. Protein was
measured using the Coommassie Plus Protein Assay kit (Pierce) as per the manufacturer’s
instructions. BSA (Pierce) was used as a standard. Blood urea nitrogen (BUN) was assessed
using the Quanti-Chrom Urea Assay Kit (BioAssay). Following euthanasia, kidneys were fixed
in formalin and embedded in paraffin for blinded analysis by an independent pathologist
(X.J.Z.), as previously described (22). The severity of GN was graded using the following
guidelines set by the World Health Organization, based on light microscopy: 0, normal; 1, mild
increase in mesangial cellularity and matrix; 2, moderate increase in mesangial cellularity and
matrix, with thickening of the GBM; 3, focal endocapillary hypercellularity with obliteration
of capillary lumina and a substantial increase in the thickness and irregularity of the GBM; and
4, diffuse endocapillary hypercellularity, with segmental necrosis, crescents, and hyalinized
end-stage glomeruli. Tubular interstitial nephritis was graded on a 0–4 scale, as described
(22).

Cell preparation and flow cytometry
Kidneys were prepared as described previously (18,26). In brief, they were minced and
resuspended into 0.75 ml PBS. Cells were spun down and the supernatant was kept at −20°C
for cytokine analysis. Cells were resuspended in digestion buffer, consisting of collagenase (1
mg/ml) and DNase (1 µg/ml) in RPMI Complete Media and incubated at 37°C for 30 min.

Cells were centrifuged and filtered through a 70-µM mesh and then mixed 1:1 with 40% Percoll
solution. This was centrifuged at 3000 rpm for 20 min at room temperature with the brake off.
The loose pellet was washed, counted, and resuspended in staining buffer. Analysis of myeloid
subtypes was based upon analyses described by Geismann and colleagues, Taylor and
colleagues and Soos et al. (27–29). Peripheral polymorphonucleocytes (neutrophils) were
CD11b+, Neu 7/4+ Gr1+++, highly granular, and CD62L+, whereas the inflammatory monocyte
population is Gr1+CD11b+Neu7/4+ (Fig. 4c) as described previously (18,26). The
Gr1−CD11b+ population was further characterized using the markers CD11c and F4/80
because an earlier report by Soos et al. (29) has described a complex network of interstitial
dendritic cells throughout the kidney. The majority of these cells have been described as
expressing CD11b, F4/80, and CD11c, and the use of a GFP transgenic demonstrated that they
were also CX3CR1+. The strategy of our gating system is shown in Fig. 4c. Eluted leukocytes
were enumerated using Sphero AccuCount particles (Spherotech), as per manufacturer’s
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instructions. Acquisition and analysis was completed using a BD LSR II with Diva software,
and FlowJo 7.2 for Windows (Tree Star).

Cytokine multiplex analysis
The supernatants from kidney were analyzed using 22-plex murine cytokine assay with the
Bio-Plex cytokine assay kit (Bio-Rad) as per the manufacturer’s protocol at BIIR Luminex
Core, Dallas.

Assaying IFN-I protein and message
Kidneys were dissected out, chopped finely with a razor blade, and suspended in PBS. Kidney
cells were spun to a pellet at 1100 rpm at 4°C for 6 min. The supernatant, enriched in interstitial
fluid or “renal plasma”, was stored frozen at −20°C in aliquots until analysis. IFN-I protein
was detected using an ELISA kit from PBL as per the manufacturer’s protocol. The kit
measures the following subtypes: IFNaA, IFNα1, IFNα4, IFNα5, IFNα6, and IFNα9, with a
detection range between 12.5–5000 pg/ml. RNA message was analyzed using Applied
Biosystems Taqman Gene Expression Assays using primers for IFNα4 (Mm00833969_s1),
IFNα5 (Mm00833976_s1), IFNβ1 (Mm00439546_s1), B2M (Mm00437762_m1), and CD45
(Mm01293570_m1, specific for a region outside the extra-cellular receptor splicing area).
Absolute MAX QRT-PCR mix from Thermo Scientific was used for amplification, as per the
manufacturer’s instructions. An ABI 7300 Real Time System, using Applied Biosystems
Sequence Detection Software, Version 1.2.3 was used for amplification and analysis. The
message levels of IFN-I genes were expressed after normalization to corresponding CD45 and
B2M expression levels.

Statistical analyses
Results are expressed as the arithmetic mean ± SEM (SE). Study groups were analyzed for
normal distribution using Kolmogorov-Smirnov test. Comparisons between two groups
passing normality were assessed using the parametric Student t test, those that did not pass the
normality test were assessed using the Mann-Whitney U test. Groups were compared using 1
or 2 way ANOVA with either Bonferroni or Dunn’s post hoc analyses for parametric and
nonparametric data respectively. Correlations between two variables (Fig. 1, B and C) were
calculated using Spearman’s rank non-parametric 2-way analyses, with rho, ρ and the
probability, p, shown within the graph. Analyses were completed using InSTAT version 3.0
and Prism 5.0 for Windows (GraphPad Software) or Mcrosoft Excel.

Results
Resident renal cells may be the predominant source of IFN-I in immune nephritis

Nonautoimmune prone B6 mice were injected with rabbit anti-GBM Abs. As reported
previously, B6 mice exhibit modest disease following anti-GBM Ab challenge (22). To
determine whether disease was associated with increased IFN-I expression, kidneys from these
mice were extracted and assessed for levels of soluble IFN-I in the renal interstitial fluid or
“plasma” 14 days later. Although the secreted levels were low, the anti-GBM Ab assault was
associated with a significant increase in IFN-I (Fig. 1A) and the levels of this cytokine trended
with the levels of proteinuria and azotemia (Fig. 1, B and C), although this did not reach
statistical significance, (p = 0.08 and p = 0.11, respectively). Because the elevated IFN-I may
have been derived from infiltrating leukocytes or resident renal cells, and because the ELISA
detects a number of IFN-I subtypes, we next analyzed IFN-I message levels in infiltrating vs
resident kidney cells using real time PCR. Resident kidney cells were magnetic bead sorted
away from infiltrating leukocytes with 99% purity, using CD45 beads. Message from the
CD45+enriched and CD45−cell populations were standardized to both CD45 and B2M message
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levels for mRNA analysis. We specifically assayed the message levels of IFN-β1, IFNa4, and
IFNa5, because highly specific PCR primers for these IFN-I genes could readily be designed.
Interestingly, increased IFNα4 (p = 0.007) but not IFNα5 or IFNβ1 message was noted in
CD45− resident renal cells (Fig. 1, D–F), following anti-GBM challenge. In contrast, analysis
of mRNA in CD45+ leukocytes did not reveal any increase in IFN-I message (Fig. 1, G–I).
Moreover, a significant decrease in the level of IFNa4 was observed in the CD45+ leukocyte
population following anti-GBM challenge (Fig. 1G). This was repeated in a separate
experiment using 129 mice. Interestingly, while IFNa4 mRNA was increased in CD45− renal
cells following treatment with anti-GBM, consistent with the results from theB6 mice, there
was no detectable change in expression in the infiltrating CD45+ leukocyte population
following treatment (data not shown). Collectively, these findings indicate that intrarenal IFN-
I is increased in anti-GBM disease, and arises predominantly from resident (CD45−) renal cells,
rather than the infiltrating (CD45+) leukocytes.

Systemic IFNα administration amplifies experimental immune nephritis if administered
chronically

To examine the effect of exogenous IFNα on anti-GBM induced disease, a first cohort of mice
were injected at 4 day intervals with recombinant IFNα, over the 14 day anti-GBM challenge/
follow-up period. Analysis of proteinuria and BUN following anti-GBM assault revealed a
modest increase in the IFN-I injected mice, although this was not significant (Fig. 2, A and
B). Examination of renal pathology also demonstrated that recombinant IFN-I administered
intermittently had no effect on anti-GBM induced disease (Fig. 2C). The grade of tubular and
interstitial nephritis and the percentage of glomerular crescents were also unaffected by
intermittent treatment with IFN-I (data not shown). Examination of serum at the end of the
study (day 14) showed that IFN levels were rather low following intermittent administration
(ranging from undetectable to 25 pg/ml).

Because the levels of serum IFNα following intermittent administration of recombinant IFN-
I were low, we next used an adenoviral vector system for sustained delivery of IFNα. Serum
levels at the end of the study using this system averaged 240 pg/ml for IFN-ADV alone, and
380pg/ml for IFN-ADV plus anti-GBM (Fig. 3A). Interestingly, a combination of the control
ADV vector and anti-GBM Ab resulted in low, but detectable levels of serum IFNα. Analysis
of protein in the urine demonstrated a significant increase following combined exposure to
IFN-ADV and anti-GBM Ab (Fig. 3B), compared with mice receiving either alone. This was
also accompanied by a visible increase in BUN (Fig. 3C), though not significant.

Blinded analysis of renal histology by an independent pathologist demonstrated a significant
increase in glomerulonephritis, tubulo-interstitial nephritis, and glomerular crescent formation
after anti-GBM/IFN-ADV, compared with the controls (Fig. 3, D–F). No other single or
combination treatment group demonstrated a significant increase in disease.

Next, leukocyte infiltration into the kidney was assessed using flow cytometry. Analyses
demonstrated that a combination of sustained IFNα administration and anti-GBM Ab injection
resulted in a significant increase in the percentage of CD45+ leukocytes within the kidney (9.65
± 2.34, IFN-ADV plus anti-GBM compared with 3.39 ± 0.21, ADV plus anti-GBM; Fig. 4A,
top). The overall numbers of leukocytes within the kidney showed a moderate, but
nonsignificant increase, which suggests a loss of renal cells possibly due to the disease (Fig.
4A, bottom). An alternative reason for the disparity between the percentage infiltrate and total
cell numbers is that the processing procedures of the kidney (collagenase and percoll, see
Materials and Methods) may have created variability between samples. However, leukocyte
infiltration does appear to be real, because additional assays on IFN-ADV treated B6 mice
published previously have shown minimal infiltration following ADV or IFN-ADV treatment
alone (18).
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Further analyses on the CD45+ population suggested a moderate increase in B and T
lymphocyte infiltration and a significant increase in the myeloid population in the IFN-ADV
plus anti-GBM group (Fig. 4B). Gating strategies for analyzing the myeloid lineage are shown
in Fig. 4C. Cells were gated on CD11b (CD19−CD3−) and initially through Neu7/4 and Gr1
which showed that both Gr1+ inflammatory monocytes and neutrophils increased in response
to the combination of IFN-ADV and anti-GBM (11- and 3-fold greater numbers than anti-
GBM alone for Gr1 plus monocytes and neutrophils respectively, data not shown and Fig.
4D), The Gr1− CD11b+ population was further subgated using CD11c and F4/80 as described
in the Materials and Methods (Fig. 4C, bottom). The CD11c− F4/80low population, together
with the CD11c+ F4/80low population showed a significant expansion in response to anti-GBM
plus IFN-ADV (Fig. 4E). Analyses of surface receptor expression showed a surprising decrease
in MHC II expression in response to IFN-ADV. This was an IFN-specific response because
the IFN-ADV alone had a similar effect (Fig. 4F). However, surface CD86 expression was
increased following a combination of IFN-ADV and anti-GBM in both the CD11c+ and
CD11c− F4/80low populations which was not due to IFN-ADV (Fig. 4G).

Analysis of CD69 positivity in multiple cell types suggested trends in activation following
IFNα administration independent of an anti-GBM insult (Fig. 4H). This may not be a surprise
because CD69 is expressed very early on lymphocytes following activation from multiple
challenges, including IFNα (30–32). Further analysis of CXCR4 expression, a molecule we
have found to be important in the pathogenesis of lupus nephritis (33), also demonstrated an
increase in activation in multiple cell types following the administration of IFN-ADV and anti-
GBM Abs (Fig. 4I). Overall, this data demonstrates that while IFNα can mediate activation
across multiple cell types, these effects are not necessarily associated with the development of
disease. In particular, increased expression of CXCR4 and CD86 occur preferentially in mice
exposed to anti-GBM and IFN-ADV, which develop nephritis.

Analyses of the renal interstitial fluid or plasma using a multiplex cytokine luminex assay
demonstrated small nonsignificant increases in the myeloid attractant chemokines MCP-1 and
keratinocyte chemoattractant (KC, Groα, CXCL1) (Fig. 5A) and the proinflammatory
cytokines IL-12p40 and G–CSF (Fig. 5B) following IFN-ADV treatment alone. The elevation
in these specific mediators was significantly higher in mice treated with a combination of anti-
GBM and IFN-ADV (Fig. 5, A and B). Other cytokines and chemokines that were detected in
the kidney, but exhibited no change following treatment were IL-1α, IL-1β, IL-6, IL-9, IL-13,
and eotaxin (data not shown). In addition, MIP-1α, MIP-1β, IL-10, IL-2, IL-3, IL-4, IL-5, IFN-
γ, GM-CSF, IL-17, and IL-12p70 were expressed at low or undetectable levels and did not
increase following any treatment (data not shown). Examination of IFNα in the renal interstitial
fluid demonstrated that although there is detectable IFNα following ADV plus anti-GBM, this
is no different from the levels in the anti-GBM alone mice, in contrast to the observations in
the sera (Fig. 5C). In addition, there does not seem to be any effect of ADV alone in any other
measure of renal disease.

IFNAR elimination ameliorates anti-GBM disease
Because intrarenal IFN-I was up-regulated in anti-GBM disease (Fig. 1), we next asked whether
IFN-I was playing an essential role in mediating anti-GBM disease. To test this, we used an
IFNAR-deficient strain lacking the common receptor for Type IIFN, on the B6 background
(B6.IFNAR−/−). Following challenge with the anti-GBM Abs, the significant increase in
proteinuria observed in the B6 control strain was absent in the knockout mice (Fig. 6A). Anti-
GBM challenge increased BUN in both B6 and B6.IFNAR−/−mice (Fig. 6B). However, the
induced level of BUN was significantly less in the knockout animals compared with the levels
in the B6 controls. Likewise, the degree of GN and glomerular crescent formation in
IFNAR−/− mice following anti-GBM challenge was lower in the knockouts compared with the
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B6 controls (Fig. 6, C and D). These initial findings were reproduced in an additional study,
as detailed in the legend. Overall, the deficiency of IFNAR ameliorated all aspects of the renal
disease following the immune challenge, indicating that the up-regulated IFN-I during the
course of anti-GBM induced nephritis was playing an essential role in the pathogenesis of this
disease.

Ablating IFN-I activity does not appear to dampen systemic immune responses
We reasoned that the reduced anti-GBM-induced renal disease observed in B6.IFNAR−/− mice
may relate either to reduced systemic xenogenic immune response to the administered rabbit
Ig or to reduced local inflammatory events within the kidneys. To distinguish between these
possibilities, we next examined the serum levels of anti-rabbit xenogenic immune response in
the anti-GBM challenged B6.IFNAR−/− mice and B6 controls. B6.IFNAR−/− mice did not
exhibit reduced anti-rabbit alloimmune response, indicating that the reduced disease in these
mice is not simply the consequence of reduced systemic adaptive immune responsiveness to
the administered anti-GBM Abs (data not shown).

Discussion
Several studies in human SLE have pointed to the strong association of elevated IFN-I with
disease. In addition, the published studies reveal that elevated IFN-I is often associated or
correlated with various end-organ disease manifestations in SLE, including nephritis and
cutaneous symptoms (34–36). Reports have also demonstrated a pivotal role for IFNα in pure
cutaneous lupus where the disease is limited to the skin (37). Other studies have shown that
IFNα is detectable in the CSF of SLE patients with neuropsychiatric syndromes (38). Moreover,
hepatitis and malignant melanoma patients treated with IFN-I have a tendency to develop
neurological disorders (38). In the above human SLE studies, the degree to which various end
organ disease manifestations are dictated by local expression of IFN-I within the end-organs
has not been ascertained.

Similarly, in murine lupus, we and others have reported that increased IFN-I is associated with
more severe disease (11,14–18), though exceptions have been noted (13). Whereas ablating
the IFNAR ameliorates systemic lupus and lupus nephritis in polygenic models of lupus (10–
12), deliberate administration of IFN-I or TLR ligands that elicit IFN-I production, invariably
augment disease (11,14–18). Again, in all of these studies, it is not clear whether the observed
change in renal disease is due to the direct impact of IFN-I on the end-organs, or they simply
follow as a consequence of changes in autoantibody titers and/or leukocyte function. The
present study contributes a novel perspective to this important question. This is the first
demonstration that the bulk of IFN-I expressed in a targeted end-organ (in any autoimmune
disease) is generated by resident cells in the organ, as opposed to infiltrating leukocytes.
Moreover, infiltrating leukocytes appear to down-regulate their IFNa4 mRNA expression in
this strain, perhaps in a compensatory role to the inflammatory environment.

Primary candidate receptors responsible for the production of type I IFN include antiviral
immune receptors, RIG-I and Mda-5, and the intracellular TLRs. Although TLR7 and TLR9
are not expressed by renal cells, Anders and colleagues (39–41) have shown that TLR3 is
expressed by multiple cells within the kidney, and it is increased in response to an inflammatory
challenge. Furthermore, this group has also demonstrated that viral triphosphate RNA (3-P
RNA), a non-TLR agonist, aggravates lupus nephritis in MRLlpr mice, increasing systemic
IFNα (42). Furthermore, 3-P RNA binds directly to glomerular and tubular epithelial cells,
possibly activating the cells through RIG-I. Moreover, we have shown previously that
costimulation of TLR3, facilitates anti-glomerular Ab-elicited nephritis (43). Therefore, it is
possible that TLR3 is up-regulated and activated by cellular debris from the initial

Fairhurst et al. Page 7

J Immunol. Author manuscript; available in PMC 2010 May 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



inflammation that ensues following the anti-GBM challenge. Further work is necessary to test
this hypothesis.

Given that the experimental anti-GBM nephritis model closely parallels spontaneous lupus
nephritis in terms of their downstream effector mechanisms (21), it is tempting to speculate
that IFN-I might be playing a similar role in engendering end-organ disease in spontaneous
lupus nephritis. Studies are in progress to directly ascertain whether this is also true in
spontaneous lupus nephritis. Determining whether resident renal cells are the major source of
IFN-I in lupus nephritis could have important diagnostic and therapeutic implications.

A second novel contribution of this study is the demonstration that altering IFN-I levels can
directly alter the degree of renal disease following an anti-glomerular Ab-mediated assault.
Whereas ablating IFN-I activity altogether ameliorates immune nephritis, the deliberate
administration of IFN-I amplifies end-organ disease. Moreover, following a combination of
systemic IFN-I and anti-GBM serum (Fig. 4), we observed a leukocyte infiltration pattern in
the assaulted kidney akin to our previous observations in two different spontaneous models of
SLE (18,26). Specifically, an increase in the numbers of inflammatory monocytes, neutrophils
and activated CD4+ T cells within the kidney appears to be a key feature of severe nephritis
associated with elevated IFN-I. Moreover, following treatment with IFNα and anti-GBM, we
detected a significant increase in the chemokine MCP-1, which is known to be associated with
disease pathogenesis in multiple murine models and in human disease (44–49). Increased levels
of MCP-1 mRNA and protein have been detected within the NZB/W strains and inhibition of
MCP-1 ameliorates the disease progression in both the NZB/W and MRLlpr SLE strains,
decreasing the myeloid recruitment into the kidney (44–46,48,50). In addition MCP-1 is
increased in sera and kidney of patients with SLE, correlating with disease activity
manifestations (47,49). In addition, both keratinocyte chemoattractant and G–CSF were
significantly higher within the kidney following combined treatment with anti-GBM and
IFNα. These molecules are primarily responsible for the recruitment of neutrophils into the
site of inflammation. In addition, G–CSF has been found to increase nephritis upon low dose
administration in the MRLlpr strain, and it may drive the differentiation of monocytes into
dendritic cells; both of these findings thus place it as an important mediator in disease
progression (51,52). IL-12p40 was also increased in diseased mice treated with the combination
of IFNα and anti-GBM. We and others have previously demonstrated an elevated production
of IL-12, which is important for T cell activation and proliferation, across multiple murine
lupus models (53–57).

Importantly, all of these changes appear to be occurring at the level of the end-organ, because
parallel changes were not observed in the degree of systemic immune responsiveness to the
administered rabbit Ig (data not shown). Given the local expression of IFN-I within the end-
organs (rather than infiltrating leukocytes), and its apparent association with disease severity
in immune nephritis, it is important to carefully evaluate the role of renal-expressed IFN-I in
spontaneous lupus nephritis.

We propose that the anti-GBM model of experimentally induced nephritis offers an accessible
snapshot into the pathogenesis of spontaneous lupus nephritis, offering us the means to assess
the initiation and progression of disease within a defined time frame. Specifically, in the 2-wk
experimental model of nephritis, the anti-GBM challenge is targeting the kidney directly via
exogenous kidney-specific autoantibodies. The immune response, which leads to nephritis,
appears to parallel events that take place in spontaneous models, including a requirement for
T cells and myeloid infiltration. However, eventually the inflammation is resolved in
nonautoimmune prone strains, which is likely due to the clearance of the immune complexes
within the kidney, in the absence of an additional challenge. This is unlike the nephritis in
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spontaneous models, where there is a continuous cycle of inflammatory challenge, with the
endogenous Abs and immune complexes persisting far beyond a 2 wk period.

We have previously described a multistep model in which at least three genetically determined
pathways lead to the development of SLE (58–60). The first stage of disease development
results in a loss of tolerance to nuclear Ags and the production of autoantibodies, as exemplified
by Sle1. This is not sufficient to drive full disease pathology. The second pathway or checkpoint
involves the peripheral dysregulation in innate and/or adaptive immunity, including myeloid
cell hyperactivity or up-regulated TLR expression, as exemplified by Sle3 and Yaa. The third
pathway or checkpoint dictates the severity of end organ damage, once pathogenic
autoantibodies are formed.

The reported findings indicate that at least the third pathway or checkpoint that is operative
within the end organs is susceptible to IFN-I driven amplification. Whether IFN-I has the
capacity to drive any of the other checkpoints in lupus development warrants further
investigation. The suggestion that locally produced IFN-I could be critical in driving end-organ
pathology in autoimmunity could have profound implications toward our understanding of
how IFN-I contributes to SLE, and how we manage it clinically.
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FIGURE 1.
Anti-GBM administration stimulates the production of IFN-I within the kidneys. B6 mice were
injected with anti-GBM sera on day 5 (after presensitization with rabbit Ig on day 0). On day
14, total renal cells were extracted into a single cell suspension in PBS. The resulting
supernatant from the untreated and anti-GBM challenged mice was assessed for IFNα protein,
by ELISA (A). Shown in B and C are the correlation profiles of renal IFN-I levels with 24-h
proteinuria or BUN levels in both groups of mice. The experiment was repeated, with the data
combined in Fig. 1, A–C, with a final mouse number of 16 per group. In a separate study,
CD45− resident renal cells were isolated using magnetic bead sorting and assessed for type I
IFN mRNA (IFNa4, IFNa5, IFNb1) expression by real time PCR (D–F). CD45+ leukocytes
were also assessed for IFN message expression (G–I; IFNa4, IFNa5, IFNb1). Units are fold
change relative to the normalized expression level observed in control untreated mice. Each
dot represents data obtained from an individual mouse.
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FIGURE 2.
The impact of intermittent recombinant IFNα in anti-GBM disease. Recombinant IFNα was
administered to a cohort of anti-GBM injected B6 mice on days −4, 0, 4, 8, and 12, as detailed
in Materials and Methods. Twenty-four hour proteinuria was assessed (A), together with BUN
(B). Glomerulonephritis was assessed blinded (C), using the WHO classification scheme. The
placebo group received PBS.
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FIGURE 3.
IFN-ADV delivery significantly amplifies anti-GBM induced nephritis. Mice were injected on
day 0 with IFN-ADV, ADV, and/or anti-GBM Abs, as indicated. Serum IFNα (A; all
comparisons shown, p < 0.001), Proteinuria (B) and BUN (C) were assessed on day 14
following challenge. Kidneys were assessed for histological nephritis as described in methods
(D–F). Shown p values pertain to 1-way ANOVA with post hoc analyses comparing to the
IFN-ADV plus anti-GBM injected group of mice. The experiment was repeated three times,
with data combined for B and C; serum IFNα and renal pathology was acquired from two
independent experiments (*, p < 0.05; **p < 0.01; ***p < 0.001).
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FIGURE 4.
Analysis of leukocyte infiltration into the kidney. Mice were injected on day 0 with IFN-ADV,
ADV, and/or anti-GBM Abs, as indicated. Leukocyte infiltration into the kidney was assessed
on day 14 (A) using flow cytometry. The frequency of various leukocyte subpopulations is
shown in B. Myeloid subpopulations were also assessed (gating shown in C, statistics in D).
These included inflammatory monocytes (Neu7/4+,Gr1+, CD11b+, SSClow),
polymorphonucleocytes (Neu7/4+Gr12+CD11b+, SSChigh and the Gr1−CD11b+ population.
This latter population was further analyzed for CD11c and F4/80 expression (gating in C,
statistics in E), with the expression of MHC II (F) and CD86 (G) shown for each treatment
group. Activation was detected using a variety of markers, including CD69 on multiple cell
types (H). In addition, the expression level of CXCR4 was also assessed on the different cell
types (I). The p value depicted pertains to ANOVA analysis with Bonferroni post hoc
comparisons of the IFN-ADV plus aGBM group to ADV plus aGBM (*, p < 0.05; **p < 0.01;
***p < 0.001) and IFN-ADV to IFN-ADV plus aGBM (#, p < 0.05; ##, p < 0.01).
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FIGURE 5.
Analysis of cytokines and chemokines within the kidney. Mice were injected as described in
Fig. 4. Kidneys were minced and re-suspended in PBS. Cytokine and chemokine analysis of
the samples was completed using the Luminex bead array system. Levels of IFNα in the kidney
supernatant were examined using an ELISA, as described in the Materials and Methods. The
p value depicted pertains to ANOVA analysis with Bonferroni post hoc test comparisons of
the IFN-ADV plus aGBM group to ADV plus aGBM (*, p < 0.05; **, p < 0.01; ***, p < 0.001).
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FIGURE 6.
Deletion of the IFNAR receptor significantly reduces anti-GBM nephritis. B6 and
B6.IFNAR−/− mice were injected with anti-GBM sera. Twenty-four hour proteinuria (A), BUN
(B), and renal pathology (C and D) were assessed at the end of the study, on day 14. Shown
p values pertain to comparisons of the day 14 data from the B6.IFNAR−/− mice against
corresponding data from the B6 controls, using Student’s t test or the Mann-Whitney U test
(1). The fraction of mice with severe GN (score >2) in the different study groups were compared
using the Fisher’s exact test (2). The findings were reproduced in an additional study in which
B6.IFNAR−/− mice had reduced proteinuria (2.3 mg/24 h vs 5.2 mg/24 h, p < 0.01, n = 4–5
per group) and reduced BUN (32 mg/dL vs 166 mg/dL, p < 0.03), compared with anti-GBM
challenged B6 controls.
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