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Abstract
Multisource cone-beam computed tomography (CT) is an attractive approach of choice for
superior temporal resolution, which is critically important for cardiac imaging and contrast
enhanced studies. In this paper, we present a filtered-backprojection (FBP) algorithm for triple-
source helical cone-beam CT. The algorithm is both exact and efficient. It utilizes data from three
inter-helix PI-arcs associated with the inter-helix PI-lines and the minimum detection windows
defined for the triple-source configuration. The proof of the formula is based on the geometric
relations specific to triple-source helical cone-beam scanning. Simulation results demonstrate the
validity of the reconstruction algorithm. This algorithm is also extended to a multisource version
for (2N + 1)-source helical cone-beam CT. With parallel computing, the proposed FBP algorithms
can be significantly faster than our previously published multisource backprojection-filtration
algorithms. Thus, the FBP algorithms are promising in applications of triple-source helical cone-
beam CT.

Index Terms
Computed tomography (CT); cone-beam; filtered-backprojection (FBP); helical scanning; triple-
source

I. Introduction
The recently introduced Siemens’ dual-source computed tomography (CT) allows much-
improved temporal resolution, and has received a major attention in the medical imaging
field. A natural extension of the dual-source system is a triple-source cone-beam CT
(CBCT) scanner for even better temporal resolution at an additional system cost. As a
follow-up to our previously published work on backprojection-filtration (BPF) based triple-
source CBCT, this paper presents an exact filtered-backprojection (FBP) algorithm for
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triple-source helical CBCT, which can be implemented using parallel-computing techniques
much more efficiently than the BPF counterpart.

Many exact and efficient methods were developed for spiral/helical cone-beam CT over past
years [1]–[15]. The focus loci range from specific to more general, and from single-source
scanning to multisource configurations. In 2002, Katsevich introduced an exact filtered-
backprojection (FBP) algorithm [1]. Then, Zou and Pan presented an exact backprojection-
filtration (BPF) algorithm [2]. These algorithms utilize projection data from a PI-arc based
on the so-called PI-line [16] and Tam–Danielsson window [16], [17]. The Katsevich FBP
algorithm uses a 1-D Hilbert transform of derivatives of differential projection data within a
window slightly larger than the Tam–Danielsson window. The merit of the Zou–Pan’s BPF
formula is that it uses only the data in the Tam–Danielsson window and accommodates
certain types of transverse data truncation.

To extend these results to the case of general scanning trajectories, Katsevich also presented
a general scheme for constructing inversion algorithms [3]. Ye et al. [4], [5] proved the
validity of the BPF formula in the case of a general scanning curve and derived a general
Katsevich-type FBP formula [6]. Pack et al. [7], [8] also introduced the BPF and FBP
formulas that can deal with discontinuous source curves. Other independent algorithms on
general CBCT were also reported [46], [47]. Chen [9] gave an alternative derivation of the
Katsvich cone-beam reconstruction formula based on the Tuy inversion formula [18]. Also,
based on the Tuy formula, Zhao, Yu and Wang [10], [11] unified the above FBP and BPF
formulas using appropriate operators.

Cardiac imaging and contrast enhanced studies are very important medical CT applications.
Rapid data collection and exact reconstruction are highly desirable in the clinical settings.
One approach to improve CT temporal resolution is to apply a half-scan technique [19]–
[21]. However, further reduction of the source angular range is not generally possible since
the data sufficiency condition [18] cannot be satisfied by a dataset less than a half-scan.
Another approach is to use a multisource system [21]–[27], [12]–[15]. Theoretically, higher
temporal resolution can be achieved as the number of sources becomes larger. The initial
experience with the commercial dual-source CT system has been very encouraging in
cardiac imaging and coronary angiography, which show that the dual-source CT generates
high quality images with ultra high temporal resolution, making functional evaluation of the
heart valves and myocardium clinically possible [23]–[26].

Unlike previous multisource systems that use either a circle scanning locus or an
approximate reconstruction algorithm [21], [22], for the first time we recently proposed a
generic design for exact triple-source helical CBCT [12]–[15]. Such an exact BPF
reconstruction algorithm for triple-source helical CBCT [14], [15] was developed based on
the Zhao window [12], [13] and the inter-helix PI-lines [12], [13]. The Zhao window is the
minimum detection window for triple-source helical CBCT, which is a counterpart of the
Tam–Danielsson window. Also, the role of the inter-helix PI-lines in triple-source helical
CBCT is similar to that of the PI-lines in single source helical CBCT.

In this paper, we present an exact FBP algorithm for triple-source helical CBCT. The
algorithm also uses data from the three inter-helix PI-arcs associated with the inter-helix PI-
lines and corresponding Zhao windows. In comparison with our previous triple-source BPF
algorithm, this triple-source FBP algorithm is advantageous in terms of image reconstruction
speed when the parallel implementation is in place. Therefore, this algorithm is technically
and clinically very attractive. The paper is organized as follows. In Section II, the FBP
formula is derived by the roadmap in [10]–[13], [48], [49] and the geometric relations
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specific to triple-source helical CBCT. Section III describes the simulation results. In
Section IV, relevant issues are discussed and conclusions are drawn.

II. FBP Formula for Triple-Source CBCT
Let a trajectory Γ be a piecewise differentiable curve in ℝ3 described by a(t), t ∈ ℝ, and f an
infinitely differentiable real integrable function with a compact support Ω ⊂ ℝ3\Γ. ℝ3\Γ is
the difference of sets ℝ3 and Γ. The cone-beam transform f along Γ is defined by

(1)

where θ is the direction of a ray emitted from the source a, 2 = {(x,y,z) ∈ ℝ3, x2 + y2 + z2

= 1}.

Let f(x) be an object density function to be reconstructed. Assume that this function is
smooth and vanishes outside the object cylinder

(2)

where Ro is the radius of the object cylinder and R the radius of the scanning cylinder. The
scanning cylinder refers to the cylindrical volume confined by the helices defined by (3).

In the Cartesian coordinate system (x,y,z), the triple-helix trajectories can be expressed as

(3)

where R stands for the distance from each X-ray source to the rotation axis (i.e., the z-axis),
h the pitch of each helix, and t the rotation angle. Fig. 1 illustrates the triple-source helical
CBCT configuration.

Previously, we defined the inter-helix PI-lines and extended the traditional Tam–Danielsson
window into the Zhao window in the case of triple helices [12], [13]. For convenience, here
we restate the Zhao window as follows: for each source aj(t), the corresponding Zhao
window is the region on the surface of the scanning cylinder bounded by the nearest helix
turn of ajmod3+1(t) and the nearest helix turn of a(j+1)mod3+1(t), j ∈ {1, 2,3}[12], [13]. More
specific definition of the Zhao Window is listed in Appendix II. Also, recall that an inter-
helix PI-line for aj(t) and ajmod3+1(t), j ∈ {1, 2, 3}, is the line that (1) intersects aj(t) at one
point and ajmod3+1(t) at the other point, (2) the absolute difference of the angular parameter
values at the two intersection points is less than 2π [12], [13]. The definition of inter-helix
PI-line is given in Appendix I. In fact, the inter-helix PI-lines are a type of R-lines [7], [28].
We already proved the existence and uniqueness properties of the inter-helix PI-lines, which
can be summarized as the following theorem [12], [13]:

Theorem 1
Through any fixed x ∈ Ω, there exists one and only one inter-helix PI-line for any pair of the
helices from the three helices defined by (3).

In the triple-helix case, there are three inter-helix PI-lines for a fixed x ∈ Ω and three
corresponding inter-helix PI-arcs whose end points are the intersection points of the inter-
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helix PI-lines with the corresponding helices. The three inter-helix PI-arcs represent the
source trajectory segments from which the sources illuminate the point x. Without loss of
generality, we assume that the sources and the detectors are translated upwards and rotated
counter-clockwise when being observed from the top. To describe the data completeness
condition for a fixed x ∈ Ω, we use the Orlov method, i.e., consider direction curves on the
unit sphere [29]. As shown in Fig. 2, the direction curves Cj, j ∈ {1, 2, 3}, on the unit sphere
centered at x ∈ Ω correspond to the source scanning angular ranges for x (refer to [12], [13]
for details). It is a property of the inter-helix PI-line for aj(t) and ajmod3+1(t) that the
intersection points represent the beginning position of the source illuminating x from aj(t)
and the end position of the other source illuminating x from ajmod3+1(t), j ∈ {1,2,3}[12],

[13]. We denote the intersection points as  and  respectively. For

brevity, we use the notations  and . Then, the inter-

helix P-line for  and  can be represented as . The intersection points 

and  are mapped onto the unit sphere for x as  and  respectively, for j ∈ {1, 2,3}, as

shown in Fig. 2.  and  are the start point and end point of Cj respectively. Next, we
define the inter-helix PI-intervals for x ∈ Ω. In fact, the inter-helix PI-arcs (refer to Fig. 7)
can be determined with (3) and the corresponding inter-helix PI-intervals. Denote the inter-

helix PI-interval of x ∈ Ω for aj(t) as , j ∈ {1,2,3}. For simplicity, we omit

the variable in the functions to use Ij,  directly instead of Ij(x),  and ,
respectively.

We introduce the Hilbert transform operator ℋβjk for j ∈ {1, 2, 3}, and k ∈ {1, 2, 3}. It will
become clear later that the index k determines the inter-helix PI line along which the
filtration is done. We define βjk = βjk(αj) ∈ 2 with αj · βjk = 0 for any given unit vector αj
∈ 2. Let

(4)

Then, we define the Hilbert transform ℋβjk, depending on the mapping αj ↦ βjk(αj) over
the projection space Γj × 2, as follows:

(5)

Next, the backprojection operator is defined as

(6)

where k ∈ {1,2,3}

(7)

and
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(8)

We list the following two properties of δ((x − aj(t)) · σ), which will be used in the derivation
of the FBP reconstruction formula:

(9)

and

(10)

Before stating the FBP reconstruction formula, we define

(11)

Theorem 2
[FBP reconstruction formula] Let Γj be a standard helix in ℝ3 parameterized by a function
aj(t) (3), t ∈ ℝ, and j ∈ {1,2,3}. Then, the inversion formula

(12)

holds for all x ∈ Ω, provided that the mapping 
satisfies the normalization condition

(13)

The normalization condition (13) holds for

(14)

The index k determines the inter-helix PI line along which the filtration is done.

Note that in (14),  occurs for the source aj(λj) only

at the position  or . In that case, , which should be ruled out by the

condition . Therefore, .
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Proof
In the following proof, we always assume j ∈ {1,2,3} and k ∈ {1,2,3}.

From [3], [48], [49], we have

(15)

Extending the right side of (14), we have

(16)

Note that

(17)

from (16) we have

(18)

Thus, the validity of (13) is equivalent to prove

(19)

Let us prove (19) for k = 1 first. Following from the continuity of a′j(t) and the change of
variable u = (x − aj(t)) · σ for each integrand, we have (20) shown at the bottom of the page,

where we have used  and

 since the given x ∈ Ω lies on the inter-helix PI-

segments  and . Equation (20) leads to (19). Derivations analogous to (20) have also
appeared in the literature [10], [11].

Similarly, we can prove for (19) for k = 2 and k = 3. That completes the proof of Theorem 2.
Although the above proof is based on Tuy’s formula, the same or similar results may be
derived from other classic and recent findings on exact cone-beam reconstruction [3], [31]–
[34], [46], [47].

Let us compare this FBP algorithm with our previous triple-source BPF algorithm [14], [15].
Both the algorithms are exact, based on the Zhao windows and the inter-helix PI-lines. It
was reported that the FBP algorithm has some merits [8], [32], [33] in comparison with the
BPF algorithm for single-source case. The triple-source FBP algorithm maintains these
merits in comparison with its BPF counterpart. The most attractive feature of the triple-
source FBP algorithm is its potential for practical applications when it is coupled with
parallel computing techniques [35], [36]. With serial computing techniques, the triple-source
FBP algorithm may be more computationally intensive than its BPF counterpart because the
filtering direction on the detector plane depends not only on the inter-helix PI-line but also
on the projection view while the filtering direction of the triple-source BPF algorithm just
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depends on the inter-helix PI-line. With pre-calculated interpolation weights and sufficient
parallel processors, both the FBP algorithm and the BPF algorithm can be greatly
accelerated for triple-source helical CBCT. As far as the computational efficiency is
concerned, FBP-type algorithms have an advantage over BPF algorithms in terms of data
flow. Qualitatively speaking, in the FBP framework each projection frame can be filtered,
backprojected and discarded immediately, while in the BPF framework the inverse Hilbert
filtering can only take place after the backprojection is done, and furthermore

(20)

a complicated rebining procedure is needed to convert the reconstructed image from the
inter-helix PI-line-associated system to the rectangular system. Clearly, the FBP scheme is
two steps faster than the BPF counterpart, given sufficient computing resources. On the
other hand, BPF algorithms have merits too. For example, BPF algorithms can support some
transverse truncation in the projection data while FBP cannot. The recently developed
interior reconstruction techniques have allowed exact reconstruction from purely local data
assuming knowledge on a subregion in the volume of interest [30], [50], [54]. These
promising techniques may be adapted for triple-source cardiac CT at much reduced radiation
dose. Better scattering correction methods may also be used for the same purpose.

Our proposed triple-source FBP algorithm has theoretical and practical values, because it is
an intermediate step towards a spatially invariant FBP method like the Katsevich helical
cone-beam algorithm in the single source case [1], suits better for parallel computation, and
also serves as the benchmark for development of approximate cone-beam algorithms in the
triple-source case. Our ultimate goal is to develop exact and efficient FBP algorithms in the
triple-source case. Because the FBP and BPF are quite different in the computational
structure, in the identical imaging geometry separate papers are published on reconstruction
methods in these formats; for example, BPF and FBP algorithms in the standard helical
scanning case by Katsevich [1] and Pan’s group [2], [32], BPF and FBP algorithms in the
general smooth curve scanning case by Wang’s group [5], [6]. We hope that this paper will
be the first one on the FBP algorithm in the triple-source case, and be followed by more
papers towards optimal imaging performance and highest computational efficiency.
Actually, we recently developed a spatially invariant FBP method in the triple-source saddle
scanning case [55].

III. Simulation Results

Let us consider the reconstruction on the inter-helix PI-line  for a fixed k ∈ {1, 2,
3}. The -axis is made along the inter-helix PI-line. Denote the object function at

 on the inter-helix PI-line as , where  and

 are the angular parameters of  and , respectively.
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The triple-source FBP algorithm can be implemented in the following steps.

Step 1) Differentiate each projection with respect to variable t, keeping the directions of
involved X-rays the same for each differentiation operation.

Step 2) For each , perform the Hilbert transform of the differentiated

projection data along the direction of the cone-beam projection of the  on the
corresponding detector plane.

Step 3) Backproject the filtered data at  on the inter-helix PI-line to obtain

.

Step 4) Transform the reconstructed image from the inter-helix PI-line based coordinate
system into the Cartesian coordinate system. The linear interpolation technique is used.
In fact, one does not necessarily need to backproject the filtered data onto the inter-helix
PI lines. One can directly backproject onto an image matrix and needs no rebinning.
This is one of the main advantages of FBP algorithms over BPF algorithms.
Backprojecting the filtered data onto the inter-helix PI lines is one of possible ways,
which is similar to backprojecting the filtered data onto the PI lines in [5].

In the simulation, three rectangular planar detectors were used. Fig. 3 shows a rectangular
planar detector corresponding to the source a1(t). The detector was so arranged that the line
through the source and the detector center intersected the z-axis and detector
perpendicularly. The parameters used in the simulation are listed in Table I. The filtered data
are backprojected onto 512 inter-helix PI-lines for a fixed endpoint. There were 512 fixed
endpoints for one reconstructed inter-helix PI-line surface, and 1536 reconstructed inter-
helix PI-line surfaces in total. Both the 3-D Shepp–Logan phantom [37] and Defrise disk
phantom [38] were used. These phantoms were respectively located at the center of the
global coordinate system x-y-z within the same spherical support.

Fig. 4 presents the reconstructed images of the 3-D Shepp–Logan phantom in the inter-helix
PI-line coordinates system. Fig. 5 gives the images reformatted into the Cartesian coordinate
system. Fig. 6 shows the results for the Defrise phantom in the Cartesian coordinate system.
All of the reconstructed images are in excellent agreement with the ideal phantom slices.

IV. Discussions and Conclusion
Although the symmetrical arrangement of triple sources is preferred, it is not a necessary
condition for deriving the triple-source FBP formula (12). For a more general configuration

(21)

where j ∈ {1, 2, 3} and 0 ≤ φ1 < φ2 < φ3< 2π, the triple-source FBP formula (12) still holds
exactly.

We can also extend the triple-source FBP formula (12) to perform exact reconstruction in
the case of (2N + 1) sources, N ∈ ℕ. Let (2N + 1)-source helical loci be

(22)

where φj ∈ [0, 2π), φk < φk+1, j ∈ {1, 2,…, 2N + 1} and k ∈{1, 2,∈, 2N}.
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First, let us extend the concept of the Zhao windows into the case of (2N + 1)-source helical
CB scanning. For the source aj(t), the corresponding Zhao window is the region on the
scanning cylinder bounded by the nearest helix turn of a(j+N−1)mod(2N+1)+1(t) and the nearest
helix turn of a(j+N)mod(2N+1)+1(t), j ∈ {1, 2,…,2N + 1}. (The definition of Zhao window is
given in the Appendix II). Then, we have the inter-helix PI-line for ai(t) and aj(t), i ≠ j, i ∈
{1, 2,…,2N + 1}, j ∈ {1, 2,…,2N + 1}, that intersects ai(t) at one point and aj(t) at another
point with the absolute difference of the angular parameter values at both the intersection
points less than 2π. The proofs of the existence and uniqueness properties of the inter-helix
PI-lines are analogous to the proof of Theorem 2 in [12], [13]. Similarly, we have the
backprojection operator for (2N + 1) sources

(23)

where j ∈ {1, 2,…, 2N+1}, and k ∈ {1, 2,…,2N+1}, N ∈ ℕ, and

(24)

Finally, let

(25)

then Theorem 3 can be extended to the following theorem for (2N + 1) sources.

Theorem 3
[(2N + 1)-source FBP reconstruction formula] Let Γj be a standard helix in ℝ3

parameterized by a function aj(t) (22), t ∈ ℝ, and j ∈ {1, 2,…, 2N + 1}, N ∈ ℕ. Then, the
inversion formula

(26)

holds for all x ∈ Ω, provided that the mapping 
satisfies the normalization condition:

(27)

The normalization condition (27) holds for
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(28)

for λj ∈ Ij and x · σ = aj(λj) · σ

Theorems 2 and 3 can also be extended to the cases of nonstandard helices in a similarly
fashion.

Clearly, the more sources are used, the better the temporal resolution can be achieved, but
the higher the system cost will be needed. How to place multiple sources and detectors
under the physical constraints is a major issue in the system development, especially when
more than two sources are used. Given the focus of this paper on the algorithm development,
we would like only to point out that X-ray sources would be made more compact, more
powerful and more cost-effective in the future to facilitate prototyping of multisource
systems, and will not discuss the related technical issues further. While we have
concentrated on the development of exact triple-source helical CBCT algorithms, we
recognize that approximate CBCT algorithms should not be overlooked. As Tang et al.
pointed out [44], [45], approximate CBCT algorithms have important merits in practical
applications. In reference to the classic and recent findings on approximate CBCT [21]–[27],
[39]–[45], the triple-source FBP algorithms presented in this paper may guide new
development of approximate reconstruction algorithms for triple-source CBCT in both
helical and circular scanning modes.

In conclusion, we have reported a triple-source FBP algorithm for helical CBCT. Our results
allow exact and efficient image reconstruction with ultra-high temporal resolution. With
adequate parallel computing hardware, our proposed triple-source FBP approach would run
much faster than the BPF counterpart. Therefore, the triple-source FBP algorithm should be
a good choice for practical helical CBCT. Our simulation results have verified our
formulation, demonstrating excellent image quality. Finally, we have extended our work
into the case of (2N + 1)-source helical CBCT to inspire or facilitate development of CT and
micro-CT systems along this multi-source direction.
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Appendix I

Inter-Helix PI-Lines and Inter-Helix PI-Arcs
The definition of inter-helix PI-lines for the triple-source case is as follows:

Definition
Let i, j ∈ {1, 2,3}, i ≠ j. aj(t) is defined by (21). The inter-helix PI-line between helices ai(t)
and aj(t) can be defined as a line such that

1. The line intersects the two helices at aj(ti) and aj(tj), respectively;

2. The rotation angles ti and tj corresponding to the two intersections satisfy the
following condition

(29)

For instance, if the three X-ray sources are symmetrically arranged, the three helices would
be equally spaced. Thus the phases of the helices are

(30)

Then, for the inter-helix PI-line between a1(t) and a2(t), the rotation angles at the
intersection points should satisfy

(31)

The inter-helix PI-lines for (2N + 1)-source can be defined in the same way.

As shown in Fig. 7, in the triple-source case there are three inter-helix PI-lines 

and  for x ∈ Ω. The corresponding inter-helix PI-arcs are the coarse solid curve-

segments  and .

Appendix II

A) Definition of Zhao Window for Triple-Source
Define Zhao Window as the region of the scanning cylinder surface that is bounded by the
helix turns {aj mod3+1(t) |(t−t0+2π/3) ∈ [−2π ⎣j/3⎦, 2π (1 − ⎣j/3⎦)]} and
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{a(j+1) mod3+1(t) |(t−t0 + 4π/3) ∈ [−2π ⎣j/2⎦, 2π (1 − ⎣j/2⎦)]}with aj(t0) as the vertex, j
∈ {1, 2, 3}. The symbol t0 is the angular parameter indicating the source position aj(t0).

Fig. 8(a) shows the Zhao Window for the source position a1(t0) in the triple-source case.
Fig. 9(a) shows the Zhao Window cone-beam projected onto the detector plane for triple-
source. It is assumed that the detector plane is parallel to the axis of the spiral and is tangent
to the spiral cylinder at the point opposite to the source.

B) Definition of the Zhao Window for (2N + 1)-Source
Define Zhao Window as the region of the scanning cylinder surface that is bounded by the
helix turns

and

with aj(t0)as the vertex, j ∈ {1,2, …, 2N + 1}. The symbol t0 is the angular parameter
indicating the source position aj(t0).

Fig. 8(b) shows the Zhao Window for the source position a1(t0) in the quintuple-source case.
Fig. 9(b) shows the Zhao Window cone-beam projected onto the detector plane for
quintuple-source.

Appendix III

Scattering Reduction
One concern with triple-source CT is that the improvement in temporal resolution may be
offset by the increment in scattering artifacts. In fact, there were similar arguments against
the dual-source system in comparison with the single-source counterpart prior to the
introduction of the Siemens Definition dual-source CT scanner. Actually, the Siemens dual-
source CT scanner has received a very positive market response, which is encouraging for
our proposed triple-source extension. Philosophically, we do not believe that the source and
detector technology will not be advanced to accommodate the triple source system sooner or
later.

The Siemens dual-source CT has been claimed to have a dose benefit because the second
detector is smaller, and the dose is reduced at the edge of the field-of-view. The dual-source
CT scanner can deliver double the power but it needs only half the dose for cardiac
applications—without any compromise in image quality [51]. It has been reported that cross
scatter is smaller with the decreased collimation z-width or the decreased object size for
dual-source CT [52]. These guidelines should be valuable for optimization of triple-source
CT.
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Furthermore, we underline that the height of the Zhao window for triple-source CT is of
only one third of the Tam-Danielsson window (please refer to Fig. 8(a) and Fig. 9(a) in
Appendix II). Theoretically, the total dose delivered to the object remains the same as in the
single-source case. For each source-detector pair of the triple source system, we have a
significantly smaller collimation in z-width, and the cross scattering effect should be
proportionally smaller. In practice, to decrease cross scattering and improve temporal
resolution, low or mediate pitch triple-source CT scanning may well be an optimal balance.

Another potential strategy is to utilize shutters so that at any time instant the object is only
exposed to one or two sources, since the shutters can be rapidly opened or closed in an
alternative fashion [53]. Other scattering correction methods may also be used for the same
purpose, such as the recently developed interior reconstruction techniques which have
allowed exact reconstruction from purely local data assuming knowledge on a subregion in
the volume of interest [50]. These promising techniques may be adapted for triple source CT
to improve temporal resolution significantly at an acceptable radiation dose level.
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Fig. 1.
Illustration of a triple-source helical cone-beam scanning. The three X-ray sources are
rotated around the z-axis along the helices a1(t), a2(t), and a3(t), respectively. The helices
a1(t), a2(t), and a3(t) are on a cylinder of radius R. An object to be reconstructed is confined
within a cylinder of radius R0, where radius R0 < R. Parameter h denotes the pitch of each
helix. The inter-helix distance along the z-axis is h/3 between neighboring helices.
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Fig. 2.
C1, C2, and C3 are direction curves on the unit sphere centered at the point x. These curves

indicate the directions from which x are illuminated.  and  are the start and end
positions of Cj, respectively, j ∈ {1,2,3}. The arrows are from the start to the end positions.
The dashed curves are on the back surface of the sphere, which would be invisible if the
sphere is opaque. The dotted lines are through the center of the sphere O. (a) A 3-D view,
and (b) the top view of the unit sphere.
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Fig. 3.
Detector plane and coordinate system for the triple-source FBP CBCT based on an inter-

helix PI-line. x – y – z is the 3-D fixed-coordinate system,  the 3-D rotated
coordinate system for the source a1(t),  the 1-D coordinate system for the inter-helix PI-

line , and u1 – v1 the 2-D coordinate system on the corresponding detector plane of

a1(t). The actual direction of the Hilbert filtering is along the cone-beam projection of 
on the detector plane, shown as the dashed–dotted line.
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Fig. 4.
Representative reconstruction results with the Shepp–Logan phantom in the inter-helix PI-

line based coordinate system. (a) and (b) Reconstructed slices  in inter-helix

PI-line based coordinates, where  was fixed, and  and  formed the vertical and

horizontal axes. Specifically,  was varied from  to , and  was from

−12.5 cm to 12.5 cm. The two images were reconstructed at  and −0.3m5π,
respectively. The display window is [0.99, 1.05]; (c) and (d) show the profiles along the

lines  in (a) and  in (b), respectively.
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Fig. 5.
Representative reconstruction results with the Shepp–Logan phantom in the Cartesian
coordinate system. (a)–(c) The reconstructed slices of the 3-D Shepp–Logan phantom at x =
0 cm, y = 0 cm, and z = −3.2 cm, respectively. These results are obtained by interpolating
the images in the inter-helix PI-line based coordinate system to Cartesian coordinates. The
display window is [0.99, 1.05]. Typical profiles are shown along the lines specified by (d) x
= 0 cm and z = 0 cm, (e) y = 0 cm and x = −3.2 cm, and (f) z = −3.2 cm and x = 0 cm.
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Fig. 6.
Representative reconstruction results with the Defrise phantom in the Cartesian coordinate
system. (a) A reconstructed image of the Defrise disk phantom at x = 0 cm with the display
window [0, 1]. Typical profiles are shown along the lines specified by (b) x = 0 cm and y =
0 cm, and (c) x = 0 cm and z = 0 cm.

Zhao et al. Page 21

IEEE Trans Med Imaging. Author manuscript; available in PMC 2010 May 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 7.

inter-helix PI-arcs (coarse solid curve-segments)  and  for x.
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Fig. 8.
Zhao Windows for the source position a1(t0) in the triple-source case (a) and quintuple-
source case (b). The region bounded by the coarse solid curved lines is the Zhao Window.
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Fig. 9.
Zhao Windows cone-beam projected onto the detector plane for triple-source (a) and
quintuple-source (b). The region bounded by the dark solid lines is Zhao Window. The
region bounded by the dark dashed lines is Tam-Danielsson Window. The light dotted lines
are the other two helices. u–vis the coordinate system on the detector plane.
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TABLE I

Parameters Used in the Simulation

Parameter Value

Scanning radius 75cm

Helix pitch 18cm

Radius of spherical object support 12.8cm

Distance from source to detector 100cm

Scanning range tj ∈ [−π,π]

Detector size 51.2cm×12cm

Number of detector rows 80

Number of detector per row 512

Number of projections per turn 1024

Image grid 256×256×256
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