

NIH Public Access

Author Manuscript

Biochemistry. Author manuscript; available in PMC 2011 May 25.

Published in final edited form as: *Biochemistry*. 2010 May 25; 49(20): 4308–4317. doi:10.1021/bi1002585.

Mutation of Asn28 disrupts the dimerization and enzymatic activity of SARS 3CL^{pro†}

Jennifer Barrila[‡], Sandra B. Gabelli[§], Usman Bacha[‡], L. Mario Amzel[§], and Ernesto Freire^{‡,*} [‡]Department of Biology, Johns Hopkins University, Baltimore, MD 21218

[§]Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205

Abstract

Coronaviruses are responsible for a significant proportion of annual respiratory and enteric infections in humans and other mammals. The most prominent of these viruses is the Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) which causes acute respiratory and gastrointestinal infection in humans. The coronavirus main protease, 3CL^{pro}, is a key target for broad-spectrum antiviral development due to its critical role in viral maturation and high degree of structural conservation among coronaviruses. Dimerization is an indispensable requirement for the function of SARS 3CL^{pro} and is regulated through mechanisms involving both direct and long-range interactions in the enzyme. While many of the binding interactions at the dimerization interface have been extensively studied, those that are important for long-range control are not well understood. Characterization of these dimerization mechanisms is important for the structure-based design of new treatments targeting coronavirus-based infections. Here we report that Asn28, a residue located 11 Å away from the closest residue in the opposing monomer, is essential for the enzymatic activity and dimerization of SARS 3CL^{pro}. Mutation of this residue to alanine almost completely inactivates the enzyme and results in a 19.2-fold decrease in the dimerization K_d . The crystallographic structure of the N28A mutant determined at a 2.35 Å resolution reveals the critical role of Asn28 in maintaining the structural integrity of the active site and in orienting key residues involved in binding at the dimer interface and substrate catalysis. These findings provide a deeper insight into complex mechanisms regulating the activity and dimerization of SARS 3CL^{pro}.

Keywords

SARS; SARS 3CL^{pro}; protease; SARS-CoV M^{pro}; Dimerization; Analytical Ultracentrifugation; Crystallography

Coronaviruses are prevalent human and veterinary pathogens that are associated with a variety of respiratory and enteric diseases. In recent years, a number of novel coronaviruses have been discovered, including the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), which causes a dangerous atypical pneumonia in humans (1–6). The lack of effective anticoronavirals emphasizes the urgent need for broad-spectrum inhibitors against these viruses in order to prepare for future outbreaks of highly virulent strains. Success in the design of a broad-spectrum inhibitor depends on the identification and characterization of a target

[†]Supported by the National Institutes of Health grant GM57144

^{*}Corresponding author: Department of Biology, Johns Hopkins University, 3400 North Charles, Baltimore, MD 21218; Phone: (410) 516-7743, Fax: (410) 516-6469; ef@jhu.edu.

Accession Numbers: Atomic coordinates and structure factors are deposited in the Protein Data Bank with accession code 3FZD.

which is essential for the viral life cycle and is highly conserved among all coronaviruses. The main viral protease, SARS 3CL^{pro}, shares a high degree of structural conservation with other coronavirus 3CL proteases, and plays a critical role in viral replication through the processing of two large polyproteins to produce a mature viral replicase complex (7,8). The functional importance of 3CL^{pro} in the viral life cycle and its high degree of structural conservation has made it one of the most promising targets for broad-spectrum coronavirus inhibitor development.

Structural studies performed with SARS $3CL^{pro}$ have demonstrated that the enzyme is a 68 kDa homodimer in solution (9–28). Each 34 kDa protomer is comprised of three structural domains and possesses an intact active site cavity formed by the first two domains of the protein. The catalytic residues lie within a chymotrypsin-like double β -barrel fold comprised of the first two domains of the protein (residues 1–184). These catalytic domains are connected by a long loop region (residues 185–200) to a third globular domain composed of five antiparallel α -helices (residues 201–306). The efficiency with which the enzyme is able to perform substrate catalysis is closely linked with its ability to dimerize (9–28). Extensive mutational analyses of residues located at the dimerization interface of SARS 3CL^{pro} have led to the identification of key interactions between the N-terminus of one protomer and the second and third domains of the opposing protomer which are critical for mediating dimer formation (9–28). Lai and coworkers demonstrated that complete disruption of the dimer interface with peptides derived from the N-terminus of the protein results in the inactivation of the protease, supporting the idea that the development of dimerization inhibitors is a promising drug design approach for this target (9,12).

We previously reported that dimerization is controlled not only through direct contacts at the dimer interface, but is also coordinated through long-range interactions (21). Specifically, it was determined that Serine 147, a highly conserved residue located over 9 Å away from the closest residue in the opposing monomer, is critical for maintaining proper enzymatic activity and dimerization of SARS 3CL^{pro} (21). Mutation of this residue to alanine completely interfered with the dimerization and activity of the protease. In the wild type structure, the side chain hydroxyl of Ser147 donates two hydrogen bonds to the backbone carbonyls of Ser144 and Cys117, as shown in Figure 1. These interactions are part of an intricate hydrogen bonding network surrounding the active site of the protein. We postulated that the interactions formed by the side chain of Ser147 are instrumental in maintaining the position of the critical loop defined by residues 139–147 with respect to the adjacent β -sheet, which contains residues Cys117 and Tyr126. Although the structural basis for this dramatic effect was not readily apparent based on the location of Ser147 within the structure of the wild type enzyme, two possible mechanisms were proposed. In the first mechanism, loss of the interaction between Ser147 and Ser144 may induce a repositioning of Phe140 which would disrupt the hydrophobic pocket formed by Phe140 and Tyr126 from the same chain and Met6 from the opposing chain. Met6 was previously shown to be important for the activity and dimerization of the protease (9). In the second mechanism, the loss of the hydrogen bonding interaction between the side chain of Ser147 and the backbone of Cys117 may result in the repositioning of the β -sheet on which Cys117 resides. This change will affect Tyr126 (located on the opposite end of the β sheet containing Cys117) thereby disrupting its aromatic stacking interaction with Phe140 of the same chain and the hydrophobic interaction with Met6 from the opposing chain. Alternatively, a combination of these two possibilities may also explain the diminished capacity of the S147A mutant to dimerize.

Based on the key interactions made by the side chain of Ser147 in wild type coronavirus, we hypothesized that Asn28, another highly conserved residue adjacent to the active site cavity, but ~11 Å away from the closest residue in the opposing monomer, may also be important in preserving enzymatic activity and dimerization of SARS 3CL^{pro} (21). Asn28 is a buried residue

that makes extensive interactions with both the catalytic loop and the beta sheet where Cys117 is located (Figure 1B), suggesting that this residue, like Ser147, may also play a central role in regulating the dimerization and activity of the protease. If so, disrupting the key interactions made by the side chain of Asn28 would likely result in severe losses in enzymatic activity and dimerization, despite the fact that Asn28 is not located at the dimerization interface. While Asn28 itself does not lie in a cavity that can be targeted with small molecule inhibitors, the elucidation of the network of interactions that control dimerization and activity of 3CL^{pro} provides new avenues for the development of novel allosteric inhibitors of the enzyme.

In this study, we determined that the interactions made by Asn28 are indeed important for maintaining both the enzymatic activity and dimerization of SARS 3CL^{pro}. Mutation of this residue to alanine rendered the enzyme almost completely inactive and resulted in a 19.2-fold decrease in the dimerization K_d . In order to elucidate the structural basis for the observed loss in activity and dimerization, a crystallographic structure of the N28A mutant was determined at a 2.35 Å resolution. The N28A structure revealed that the mutation induced significant rearrangements in and around the active site of the enzyme as compared to previously determined wild type SARS 3CL^{pro} structures. Specifically, the side chains of residues Cys145 and Cys117 flipped almost 180° from their locations in the wild type to form a novel disulfide bond in the structure of the N28A mutant. While a majority of the interactions at the dimer interface remained intact as compared to the wild type protease, no electron density was observed for residues Ser139-Phe140-Leu141, indicating that these residues are most likely disordered in the N28A structure. The disorder observed for these particular residues is significant given the recent finding that the Ser139-Phe140-Leu141 residues may be involved in an overlapping network linking catalysis and dimerization in the enzyme (27). The results presented here confirm that long-range interactions in SARS 3CL^{pro} are critical for maintaining its oligomeric state and activity, and provide additional evidence that dimerization and catalysis are linked through key residues which collectively regulate enzymatic function.

EXPERIMENTAL PROCEDURES

Cloning

cDNA encoding full-length SARS 3CL^{pro} (Tor2 strain, GenBank entry AY274119) was previously cloned into a pET 100 vector (Champion pET Directional TOPO Expression and Cloning Kit, Invitrogen) which carries an N-terminal polyhistidine tag, an enterokinase cleavage site for affinity tag removal, and ampicillin resistance (29). The N28A mutation was introduced using an *in vitro* site directed mutagenesis kit (QuickChange, Stratagene) with the pET-SARS 3CL^{pro} vector as the template. The sequences of the primers used to generate the N28A mutant were: 5' GGA ACT ACA ACT CTT <u>GCT</u> GGA TTG TGG TTG G 3' and the reverse complement. Following the PCR reaction carried out with Pfu turbo DNA polymerase (Stratagene), the parent template was degraded with a *DpnI* (Stratagene) digestion reaction for 1 hour at 37 °C. One shot TOPO10 competent cells (Invitrogen) were transformed with the PCR product for plasmid amplification. The plasmid was then purified and mutations confirmed by DNA sequencing.

Protein Expression and Purification

Recombinant wild type and N28A SARS $3CL^{pro}$ were expressed as a soluble fraction in BL21 Star DE3 *E. coli* competent cells (Invitrogen) and purified as previously described (21,29). Cells were grown in LB supplemented with ampicillin (50 µg/mL) at 37 °C, induced with 1 mM IPTG when the absorbance at 600 nm was between 0.8 and 1.0, and harvested after 4 hours. Cells were re-suspended in lysis buffer (50 mM potassium phosphate pH 7.8, 400 mM sodium chloride, 100 mM potassium chloride, 10% glycerol, 0.5% Triton-X, and 10 mM imidazole). The cells were broken by sonication on ice for short pulses of one second followed

by three seconds off for a total of 16 minutes. The cell debris was collected by centrifugation (20,000g at 4 °C for 45 min). The supernatant was filtered using a 0.45 µm pore size filter (Millipore) and applied directly to a nickel affinity column (HiTrap Chelating HP, Amersham Biosciences) that had been pre-equilibrated with binding buffer (50 mM sodium phosphate, 0.3 M sodium chloride, 10 mM imidazole, pH 8.0). The protease was eluted with a linear gradient of 50 mM sodium phosphate, 0.3 M sodium chloride, 250 mM imidazole, pH 8.0. After elution, the protein buffer was exchanged into a buffer containing 10 mM Tris-HCl pH 7.5, and loaded onto a O-sepharose anion exchange column (Amersham Biosciences). The protease was eluted with a gradient of a buffer consisting of 10 mM Tris-HCl, 1 M NaCl, pH 7.5. The buffer of the pooled fractions containing 3CL^{pro} was exchanged into 10 mM sodium phosphate, 10 mM NaCl, 1 mM TCEP, 1 mM EDTA, pH 7.4 and digested for 48 h at 4 °C with enterokinase (Invitrogen, 0.1 units per 112 µg of protease) to remove the N-terminal polyhistidine tag. The enterokinase was removed by incubation with EK-away resin according to the manufacturer's instructions (Invitrogen). The reaction mixture was passed through a nickel affinity column to remove undigested protease. The digested protein was run over a HiLoad 16/60 Superdex 75 column (Amersham Biosciences) equilibrated with 10 mM Tris-HCl, 0.1 M NaCl, 1 mM EDTA, 1 mM TCEP pH 7.4. Protease-containing fractions were concentrated to 10 mg/mL. Samples were more than 95% pure, as assessed by SDS-PAGE.

Kinetics

The catalytic activities of wild type and N28A SARS 3CL^{pro} were determined as previously described (16,21) using a fluorescence-based peptide cleavage assay with a commercially available fluorogenic substrate, Dabcyl-KTSAVLQSGFRKME-Edans (Genesis Biotech, Taiwan), which corresponds to the N-terminal auto-cleavage site of the protease. The change in fluorescence intensity was monitored in a Cary Eclipse fluorescence spectrophotometer (Varian) with 355 nm and 538 nm excitation and emission wavelengths respectively. The experiments were performed in 10 mM sodium phosphate, 10 mM sodium chloride, 1 mM EDTA, 1 mM TCEP, pH 7.4. Kinetic parameters such as $K_{\rm m}$ and $k_{\rm cat}$ were determined by initial rate measurement of substrate cleavage at 25 °C. The reaction was initiated by the addition of substrate such that final concentration varied from 1–80 μ M.

Differential Scanning Calorimetry

The heat capacities of wild type 3CL^{pro} and the N28A mutant were measured as a function of temperature with a highprecision differential scanning VP-DSC microcalorimeter (Microcal Inc., Northampton, MA). The experiments were performed in 10 mM sodium phosphate, 10 mM sodium chloride, 1 mM EDTA, 1 mM TCEP, pH 7.4. Protein samples and reference solutions were properly degassed and carefully loaded into the cells to avoid bubble formation. Thermal denaturation scans were performed with freshly prepared buffer-exchanged protease solutions using a temperature scan rate of 1 °C/min. Data was analyzed by software developed in this laboratory.

Analytical Ultracentrifugation

Sedimentation velocity and equilibrium experiments were conducted using a Beckman-Coulter XL-I analytical ultracentrifuge. Wild type and N28A samples were prepared by loading onto a HiLoad 16/60 Superdex 75 column (Amersham Biosciences) into 10 mM Tris-HCl, 0.1 M NaCl, 1 mM TCEP, 1 mM EDTA, pH 7.4. For sedimentation velocity experiments, reference (420 μ L) and sample (400 μ L) solutions were loaded into double-sector centerpieces and mounted in a Beckman An60Ti rotor. Experiments were performed at 20 °C and 0.5 mg/mL with a rotor speed of 50,000 rpm. Sample absorbance at 280 nm was monitored in a continuous mode with no delay and a step size of 0.003 cm without averaging. Multiple scans at different time points were fit to a continuous size distribution using SEDFIT version 9.3b (30). The c

(s) distribution in SEDFIT was exported to SEDPHAT where experimental values were corrected to $S_{20,w}$ (31). A partial specific volume of 0.7310 cm³/g for wild type 3CL^{pro} and 0.7314 cm³/g for the N28A mutant were used in all calculations based on the amino acid sequence of the protein. The solvent density and viscosity were calculated using SEDNTERP (Philo, J. website http://www.jphilo.mailway.com/default.htm). Sedimentation equilibrium experiments were performed in the same buffer as sedimentation velocity experiments at 0.25, 0.5, and 1 mg/mL (7.4 μ M, 14.8 μ M and 29.5 μ M).

Reference ($120 \ \mu$ L) and sample ($110 \ \mu$ L) solutions were loaded into six sector centerpieces and mounted in a Beckman An60Ti rotor. Samples were equilibrated at 20 °C and three speeds: 15,000 rpm, 20,000 rpm and 25,000 rpm. Sample absorbance at 280 or 250 nm was collected in step mode with a step size of 0.001 cm and 10 replicates at each radial position. The program WinMatch (Biotechnology-Bioservices Center, University of Connecticut) was used to determine when samples reached equilibrium. Equilibrium was attained for all samples between 24 and 30 hours. All samples were visually inspected for clarity to ensure no precipitation had occurred during the runs. Dissociation constants were determined by global fitting of multiple concentrations and rotor speeds in SEDPHAT using the monomer-dimer equilibrium model (32).

Crystallization, Structure Determination and Refinement

To obtain crystals of the SARS 3CL^{pro} N28A mutant, a condition used to crystallize wild type SARS 3CL^{pro} was used as a starting condition (13). The best crystals grew in hanging drop experiments with a 500 μ L reservoir solution containing 1.0 M sodium malonate (pH 7.0), and 5–6% isopropanol. The drop was made using 2 μ L of reservoir solution and 2 μ L of the protein solution (6 mg/mL protein in 10 mM Tris-HCl pH 7.4, 0.1 M NaCl, 1 mM EDTA, 1 mM TCEP). Crystals grew within 1–3 days at room temperature as clusters which were then separated into single crystals for diffraction.

The structure of N28A SARS-3CL^{pro} was determined by molecular replacement with the program AMoRe (33) using wild type SARS 3CL^{pro} as a search model (PDB ID 2BX4 (18)). Crystals belonged to the P2₁2₁2 space group with cell dimensions: a = 105.9 Å, b = 44.8 Å and c = 54.2 Å. One protease monomer was present per asymmetric unit. The dimer was generated through 2-fold crystallographic symmetry. For the final crystal structure refinement, data were collected from a crystal flash-frozen using 20% glycerol as cryoprotectant at beam line X6A at the National Synchrotron Light Source, Brookhaven National Laboratory. The final model was refined to a 2.35 Å resolution with an R-value of 21.7% (R_{free}= 27.7%). Intensity data were integrated, scaled, and reduced to structure factor amplitudes with the HKL2000 suite (34), as summarized in Table 2. Restrained refinement of the models was performed using REFMAC (35). Manual building was carried out using O (36) and water molecules were placed with Arp-WARP (37). The stereochemistry of the model was checked and analyzed using PROCHECK and MolProbity (38). The coordinates for the structure of N28A SARS 3CL^{pro} have been deposited in the Protein Data Bank (PDB ID 3FZD).

RESULTS AND DISCUSSION

Asn28 is absolutely conserved in 3CL^{pro} amino acid sequences derived from various coronavirus species (Figure 1C) suggesting that it plays an essential role in the activity of this enzyme. In existing crystallographic structures, Asn28 is located 11 Å away from the closest residue in the opposing monomer. However, the side chain of Asn28 makes a number of key interactions to residues within and surrounding the active site of SARS 3CL^{pro}, as shown in Figure 1 (**Panels A and B**). In order to investigate the importance of this residue in maintaining the enzymatic activity and oligomeric state of SARS 3CL^{pro}, Asn28 was mutated to alanine

and the recombinant protein expressed, purified and analyzed in the same manner as the wild type enzyme.

The N28A mutation drastically reduces the enzymatic activity of SARS 3CL^{pro}

The enzymatic activity of the N28A mutant was characterized using a fluorescence-based cleavage assay to determine the Michaelis constant (K_m) and the catalytic rate constant (k_{cat}) as previously described (21,29,39). The results of the cleavage assay are shown in Figure 2A and summarized in Table 1. The N28A mutant had a K_m of 67.83 ± 6.62 µM, which is comparable to the value of 56.42 ± 9.18 µM we previously determined for the wild type enzyme with the same substrate (21), suggesting that the mutation did not interfere with the ability of the enzyme to bind the substrate. However, a large decrease in the value of k_{cat} was observed relative to the wild type enzyme. The k_{cat} for N28A was $0.012 \pm 0.001 \text{ sec}^{-1}$, which is a 54-fold decrease relative to the wild type value of $0.643 \pm 0.051 \text{ sec}^{-1}$. This value is, however, higher than the k_{cat} observed for the monomeric S147A mutant which was $0.004 \pm 0.001 \text{ sec}^{-1}$ (21).

The N28A mutant is folded

Thermal denaturation of the N28A mutant was performed using differential scanning calorimetry in order to examine the effect of the mutation on the stability of the protein. Figure 2B shows the temperature dependence of the heat capacity function of wild type $3CL^{pro}$ versus the N28A mutant in 10 mM sodium phosphate, 10 mM NaCl, 1 mM EDTA, 1 mM TCEP (pH 7.4). The denaturation transition for wild type $3CL^{pro}$ is centered at $56.50 \pm 0.1^{\circ}C$ at a protein concentration of 0.2 mg/mL (5.9 μ M) and temperature scanning rate (1°C/min). Like the wild type protease, the N28A calorimetric scans were irreversible due to precipitation, so a full thermodynamic analysis could not be performed. The N28A mutation had a similar effect on the denaturation transition for the protease as the previously reported S147A mutation (21). A downward shift in T_m of 1.8 °C was observed as compared to the wild type enzyme (the S147A mutation the curve, Δ H, was similar to that of the wild type, indicating that there were no major structural rearrangements which occurred due to the mutation. These results confirmed that the N28A mutant is folded and indicate that the mutation did not significantly affect the overall stability of the protein.

Asn28 is important for the dimerization of 3CL^{pro}

The effect of the mutation on the oligomeric state of SARS 3CL^{pro} was evaluated using sedimentation velocity and sedimentation equilibrium ultracentrifugation. The data were analyzed using the programs SEDFIT (30) and SEDPHAT (32), and all experimental sedimentation coefficient values were converted to S20,w in SEDPHAT. A sedimentation velocity profile of N28A at 20 °C, 50,000 rpm and a concentration of 0.5 mg/mL is shown in Figure 3 (Panels A, B, and C). Two peaks are observed in the continuous sedimentation distribution profile. The first peak is centered at 2.8S and the second at 3.8S, corresponding to the monomeric and dimeric species, respectively. These peaks are slightly shifted from their positions in the sedimentation profile for the wild type enzyme which are at 2.6S and 4.1S, respectively (shown in Figure 3D). In addition, the peaks are not well separated, which may indicate that the kinetic rate constant for self-association in the mutant may differ from the wild type enzyme, which sediments in two well-separated peaks. Although Asn28 is located far away from the dimerization interface, mutation of this residue to alanine has a detrimental effect on the ability of the protease to dimerize, although the effect does not appear as drastic as that previously observed with the S147A mutant which predominantly exists as a monomer in solution (21).

Sedimentation equilibrium ultracentrifugation was performed with the N28A mutant at three protein concentrations (0.25, 0.5, and 1 mg/mL) and three rotor speeds (15,000 rpm, 20,000 rpm, and 25,000 rpm) at 20 °C in order to evaluate the dissociation constant for the mutant. The data was globally analyzed using the monomer-dimer self-association model in the program SEDPHAT (32). Figure 3 (**Panels E and F**) shows the results of the wild type and N28A data sets at 0.5 mg/mL. The residuals are well-dispersed and fit well to the monomer-dimer model. The K_d obtained was 25.0 ± 5.1 µM, which is a 19.2-fold decrease compared to the wild type enzyme which we determined to have a K_d of 1.3 µM under the same conditions (21).

Crystallographic Structure of N28A SARS 3CL^{pro}

The results obtained from the kinetic and ultracentrifugation experiments indicate that Asn28 is important for the activity and oligomeric state of SARS 3CL^{pro}. To investigate the structural basis for the low activity and the decrease in dimerization observed with this mutant, the crystallographic structure of N28A 3CL^{pro} was determined at a 2.35 Å resolution(13). The best crystals grew in hanging drop experiments with a 500 μ L reservoir solution containing 1.0 M sodium malonate (pH 7.0), and 5–6% isopropanol. Drops were made using 2 μ L of reservoir solution and 2 μ L of protein solution (6 mg/mL). Crystals grew within 1–3 days at room temperature as clusters which were then separated into individual crystals for the diffraction experiments.

The structure of N28A SARS 3CL^{pro} was determined by molecular replacement using wild type SARS 3CL^{pro} (PDB ID 2BX4 (18)) as a search model. The final model, comprising residues 3–138 and 142–301, was refined to a 2.35 Å resolution with an R-value of 21.7% (R_{free}= 27.7%). The N28A mutation did not cause any large changes in the overall tertiary organization of SARS 3CL^{pro} as shown in Figure 4A. The N28A structure aligns well with that of the wild type enzyme (PDB ID 2BX4 (18)), with an r.m.s.d. of 0.555 Å over 271 Cα atoms. Inspection of the catalytic domains in the region surrounding the N28A mutation revealed that significant structural changes occur in and around the active site. One of the most striking consequences of the N28A mutation is the formation of a novel disulfide bond between the catalytic residue Cys145 and residue Cys117 as depicted in Figure 5. This disulfide bridge is absent in crystal structures of the wild type enzyme obtained under identical conditions (see for example (13)). The side chains of both residues flip almost 180° from their positions in the wild type protein to form the only disulfide bond found in the protein. The drastic loss in enzymatic activity measured for N28A in the kinetic experiments is likely due to the new orientation of the side chain of Cys145, which points away from the active site cavity which would be expected to hinder substrate catalysis. Some or all of the interactions made by the side chain of Asn28 observed in the wild type protease (Figure 1B) appear to be essential for directing the side chain of Cys145 into the active site cavity and Cys117 in the opposite direction. In addition to the loss in hydrogen bonding interactions made by the side chain of Asn28, structural rearrangements due to the change in van der Waals volume due to the mutation to the smaller alanine residue may also contribute to this effect. The formation of this disulfide bridge appears to be related to the loss of enzyme activity as suggested by experiments (not shown) in which enzyme activity was observed to increase as the concentration of a reducing agent in solution was increased.

Residues on the catalytic loop containing Cys145 also show a number of structural changes with respect to the wild type structure. The side chain of Ser147 shifts from the position it is typically found within the wild type structure so that it is no longer in position to interact with the main chain atoms of Ser144 and Cys117 in the N28A mutant, as shown in Figure 6. The oxyanion hole formed by the backbone amides of Ser144 and Gly143 is completely collapsed. Moreover, electron density for residues 139–141 was not visible in the $2F_0$ - F_c electron density

map of the N28A mutant, indicating that this portion of the loop is likely disordered. Disorder in this loop is significant due to the fact that these residues are located at the dimer interface (Figure 4B) and a significant decrease in dimerization for this mutant was observed in the ultracentrifugation experiments. In wild type 3CL^{pro} structures, Phe140 stacks with Tyr126 of the same monomer, which in turn makes a hydrophobic interaction with the side chain of Met6 of the opposing monomer; mutation of Phe140 to alanine has been observed to completely disrupt the catalytic activity of the enzyme and reduces dimerization to almost half that of the wild type (26). The side chain of Ser139 donates a hydrogen bond to the backbone carbonyl of Gly2 of the opposing chain. Previous studies performed with an S139A mutant showed a slightly diminished propensity for the enzyme to dimerize (21,26)).

Additional residues located at the dimer interface were inspected for any structural rearrangements which could explain the decrease in the enzyme's propensity to dimerize. Figure 7 shows an overlay of the dimer interface of wild type SARS 3CL^{pro} (PDB ID 2BX4 (18)) and the N28A mutant. The only major change observed in the positions of the first fourteen residues of the N-terminus was a rotation in the side chain of Phe3. This residue has been mutated previously (26) and shown to have no effect on the oligomeric state of the enzyme; although the mutation did severely affect enzymatic activity. Similarly, only very small changes in the positions of the remaining residues at the interface are observed. While the possibility exists that the additive effect of these small changes results in the diminished capacity of the enzyme to dimerize, the most notable change observed is the lack of electron density for residues 139–141.

Since the only major structural change observed at the dimer interface of the N28A mutant is the disordering of the Ser139-Phe140-Leu141 loop, there is a strong possibility that the loss of the interactions made by one or all of these residues is linked to the decrease in dimerization observed in the analytical ultracentrifugation experiments. Recently published crystallographic structures of SARS 3CL^{pro} monomeric mutants provide additional support for this possibility (27,40). Shi et al. (27) proposed the idea that the link between dimerization and catalysis in SARS 3CL^{pro} lies in an overlapping network of residues which are involved in both catalysis and dimerization, and that a loss in the capability of the protease to dimerize leads to the trapping of key catalytic residues in a collapsed state, rendering the enzyme unable to efficiently perform catalysis. Specifically, the authors demonstrated that mutation of Arg298 (located at the C-terminus of the protein) resulted in a completely inactive and monomeric enzyme. In the wild type, Arg298 interacts with Met6 of the same chain, which in turn sits in a hydrophobic pocket with Phe140 and Tyr126 of the opposing chain. When the crystallographic structure of the monomeric R298A mutant was determined, a 40-degree rotation was observed between the catalytic domains and the third domain, despite the finding that all three domains retained their overall architecture. Inspection of the catalytic domains in the mutant reveals that a key catalytic loop has a changed conformation. In particular, residues Ser139-Phe140-Leu141 switched from their standard loop conformation in the wild type structure to form a short 3_{10} helix in the structure of the mutant. Moreover, a comparison of this structure to other known wild type structures revealed that a similar 310-helix is present in wild type structures with protomers in a catalytically inactive conformation and has also since been observed in the structure of another monomeric SARS 3CL^{pro} mutant (40).

The N28A crystallographic structure presented in this work provides additional support to the hypothesis that the region of the catalytic loop containing residues 139–141 may indeed be a part of an intricate overlapping network of interactions which is responsible for regulating both dimerization and catalysis in SARS 3CL^{pro}. Furthermore, the dual role of these residues in both dimerization and catalysis also explains how residues located in regions of the protein close to the active site cavity and away from the dimerization interface, such as Asn28 and Ser147, affect the oligomeric state of the protein. Perturbation of key interactions which affect

the conformation of these key loop regions may largely affect the oligomeric state of the protein despite the fact that the residues involved are not located directly at the dimer interface.

The fundamental importance of long-range interactions in protein structure and function has been demonstrated in a wide variety of proteins (21,41-46). It has become increasingly clear that long-distance communication is not solely restricted to proteins falling into the category of traditional allosteric systems, but instead a common occurrence in many globular proteins. Long range interactions regulate processes important for ligand binding, enzyme catalysis, protein folding and oligomerization (41). For a number of these proteins, it has been shown that dynamic intramolecular networks exist that can be perturbed through the introduction of a single point mutation (21,41,42 45,46). Clarkson et al. showed that point mutations made to the serine protease inhibitor Eglin c altered the side-chain dynamics of a contiguous series of residues as far as 13 Å away from the point of mutation (41). Ornithine decarboxylase, a validated drug target for African sleeping sickness, has also displayed evidence of long-range energetic coupling between the active site of the enzyme (formed at the dimer interface) and individual residues located in distal regions of the interface ($\sim 15 - 20$ Å away) which play key roles in enzyme function without largely affecting dimer formation (42). The characterization of these integrated networks is essential to understanding major contributors to protein stability and function, and can be advantageous to consider when performing structure-based drug design under conditions in which competitive inhibitors cannot be developed.

Conclusions

Asn28 is a conserved residue located adjacent to the active site of SARS 3CL^{pro}. Mutation of this residue to an alanine drastically reduced enzymatic activity and resulted in a 19.2-fold drop in the dimerization K_d as measured by sedimentation equilibrium ultracentrifugation. Crystallographic analysis of the mutant revealed large changes within the active site cavity of the protein, specifically in the movement of the catalytic residue, Cys145, which moved from its original position in the wild type enzyme to form a novel disulfide bond with the side chain of Cys117, that also made a large shift from its original position in the wild type protein. This large change is likely the cause for the decrease observed in the k_{cat} value of the mutant protein with respect to the wild type enzyme. Residues 139–141 were disordered in the crystal structure and were the only residues at the dimer interface of the protein to display largely significant changes, indicating that the change in conformation of these residues may be the cause of the 19.2-fold drop in the dimerization K_d . These results support our recent finding that dimerization of the SARS 3CL^{pro} is regulated through long-range cooperative interactions and that dimerization and catalysis are linked through key residues which maintain the structural integrity of the enzyme.

ABBREVIATIONS

SARS	Severe Acute Respiratory Syndrome
SARS Co-V	Severe Acute Respiratory Syndrome Coronavirus
3CL ^{pro}	3C-Like Protease
SDS-PAGE	Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis
DSC	Differential Scanning Calorimetry
IPTG	Isopropyl-beta-D-thiogalactopyranoside
ТСЕР	Tris(2-carboxyethyl)phosphine hydrochloride
EDTA	Ethylenediaminetetraacetic acid

ΕK

Enterokinase

Acknowledgments

Beamline X6a of the National Synchrotron Light Source funded by the National Institute of General Medical Service is gratefully acknowledged.

REFERENCES

- Drosten C, Gunther S, Preiser W, van der Werf S, Brodt H-R, Becker S, Rabenau H, Panning M, Kolesnikova L, Fouchier RAM, Berger A, Burguiere A-M, Cinatl J, Eickmann M, Escriou N, Grywna K, Kramme S, Manuguerra J-C, Muller S, Rickerts V, Sturmer M, Vieth S, Klenk H-D, Osterhaus ADME, Schmitz H, Doerr HW. Identification of a Novel Coronavirus in Patients with Severe Acute Respiratory Syndrome. N. Engl. J. Med 2003;348:1967–1976. [PubMed: 12690091]
- Guan Y, Zheng BJ, He YQ, Liu XL, Zhuang ZX, Cheung CL, Luo SW, Li PH, Zhang LJ, Guan YJ, Butt KM, Wong KL, Chan KW, Lim W, Shortridge KF, Yuen KY, Peiris JSM, Poon LLM. Isolation and Characterization of Viruses Related to the SARS Coronavirus from Animals in Southern China. Science 2003;302:276–278. [PubMed: 12958366]
- 3. Kuiken T, Fouchier RA, Schutten M, Rimmelzwaan GF, van Amerongen G, van Riel D, Laman JD, de Jong T, van Doornum G, Lim W. Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. The Lancet 2003;362:263–270.
- 4. Peiris J, Lai S, Poon L, Guan Y, Yam L, Lim W, Nicholls J, Yee W, Yan W, Cheung M. Coronavirus as a possible cause of severe acute respiratory syndrome. The Lancet 2003;361:1319–1325.
- van der Hoek L, Pyrc K, Berkhout B. Human coronavirus NL63, a new respiratory virus. FEMS Microbiology Reviews 2006;30:760–773. [PubMed: 16911043]
- Woo PCY, Lau SKP, Chu C-m, Chan K-h, Tsoi H-w, Huang Y, Wong BHL, Poon RWS, Cai JJ, Luk W-k, Poon LLM, Wong SSY, Guan Y, Peiris JSM, Yuen K-y. Characterization and Complete Genome Sequence of a Novel Coronavirus, Coronavirus HKU1, from Patients with Pneumonia. J. Virol 2005;79:884–895. [PubMed: 15613317]
- Thiel V, Ivanov KA, Putics A, Hertzig T, Schelle B, Bayer S, Weissbrich B, Snijder EJ, Rabenau H, Doerr HW, Gorbalenya AE, Ziebuhr J. Mechanisms and enzymes involved in SARS coronavirus genome expression. J Gen Virol 2003;84:2305–2315. [PubMed: 12917450]
- Ziebuhr J, Snijder EJ, Gorbalenya AE. Virus-encoded proteinases and proteolytic processing in the Nidovirales. J Gen Virol 2000;81:853–879. [PubMed: 10725411]
- 9. Wei P, Fan K, Chen H, Ma L, Huang C, Tan L, Xi D, Li C, Liu Y, Cao A, Lai L. The N-terminal octapeptide acts as a dimerization inhibitor of SARS coronavirus 3C-like proteinase. Biochemical and Biophysical Research Communications 2006;339:865–872. [PubMed: 16329994]
- Chou C-Y, Chang H-C, Hsu W-C, Lin T-Z, Lin C-H, Chang G-G. Quaternary Structure of the Severe Acute Respiratory Syndrome (SARS) Coronavirus Main Protease. Biochemistry 2004;43:14958– 14970. [PubMed: 15554703]
- 11. Chen S, Chen L, Tan J, Chen J, Du L, Sun T, Shen J, Chen K, Jiang H, Shen X. Severe Acute Respiratory Syndrome Coronavirus 3C-like Proteinase N Terminus Is Indispensable for Proteolytic Activity but Not for Enzyme Dimerization: BIOCHEMICAL AND THERMODYNAMIC INVESTIGATION IN CONJUNCTION WITH MOLECULAR DYNAMICS SIMULATIONS. J. Biol. Chem 2005;280:164–173. [PubMed: 15507456]
- Ding L, Zhang X-X, Wei P, Fan K, Lai L. The interaction between severe acute respiratory syndrome coronavirus 3C-like proteinase and a dimeric inhibitor by capillary electrophoresis. Analytical Biochemistry 2005;343:159–165. [PubMed: 15935325]
- Hsu M-F, Kuo C-J, Chang K-T, Chang H-C, Chou C-C, Ko T-P, Shr H-L, Chang G-G, Wang AH-J, Liang P-H. Mechanism of the Maturation Process of SARS-CoV 3CL Protease. J. Biol. Chem 2005;280:31257–31266. [PubMed: 15788388]
- 14. Shi J, Wei Z, Song J. Dissection Study on the Severe Acute Respiratory Syndrome 3C-like Protease Reveals the Critical Role of the Extra Domain in Dimerization of the Enzyme: DEFINING THE

EXTRA DOMAIN AS A NEW TARGET FOR DESIGN OF HIGHLY SPECIFIC PROTEASE INHIBITORS. J. Biol. Chem 2004;279:24765–24773. [PubMed: 15037623]

- 15. Shi J, Song J. The catalysis of the SARS 3C-like protease is under extensive regulation by its extra domain. FEBS Journal 2006;273:1035–1045. [PubMed: 16478476]
- Kuo C-J, Chi Y-H, Hsu JT-A, Liang P-H. Characterization of SARS main protease and inhibitor assay using a fluorogenic substrate. Biochemical and Biophysical Research Communications 2004;318:862–867. [PubMed: 15147951]
- 17. Fan K, Wei P, Feng Q, Chen S, Huang C, Ma L, Lai B, Pei J, Liu Y, Chen J, Lai L. Biosynthesis, Purification, and Substrate Specificity of Severe Acute Respiratory Syndrome Coronavirus 3C-like Proteinase. J. Biol. Chem 2004;279:1637–1642. [PubMed: 14561748]
- Tan J, Verschueren KHG, Anand K, Shen J, Yang M, Xu Y, Rao Z, Bigalke J, Heisen B, Mesters JR. pH-dependent Conformational Flexibility of the SARS-CoV Main Proteinase (Mpro) Dimer: Molecular Dynamics Simulations and Multiple X-ray Structure Analyses. Journal of Molecular Biology 2005;354:25–40. [PubMed: 16242152]
- Hsu W-C, Chang H-C, Chou C-Y, Tsai P-J, Lin P-I, Chang G-G. Critical Assessment of Important Regions in the Subunit Association and Catalytic Action of the Severe Acute Respiratory Syndrome Coronavirus Main Protease. J. Biol. Chem 2005;280:22741–22748. [PubMed: 15831489]
- Lai L, Han X, Chen H, Wei P, Huang C, Liu S, Fan K, Zhou L, Liu Z, Pei J, Liu Y. Quaternary Structure, Substrate Selectivity and Inhibitor Design for SARS 3C-Like Proteinase. Current Pharmaceutical Design 2006;12:4555–4564. [PubMed: 17168761]
- Barrila J, Bacha U, Freire E. Long-Range Cooperative Interactions Modulate Dimerization in SARS 3CLpro. Biochemistry 2006;45:14908–14916. [PubMed: 17154528]
- 22. Graziano V, McGrath WJ, Yang L, Mangel WF. SARS CoV Main Proteinase: The Monomer-Dimer Equilibrium Dissociation Constant. Biochemistry 2006;45:14632–14641. [PubMed: 17144656]
- 23. Chen H, Wei P, Huang C, Tan L, Liu Y, Lai L. Only One Protomer Is Active in the Dimer of SARS 3C-like Proteinase. J. Biol. Chem 2006;281:13894–13898. [PubMed: 16565086]
- Graziano V, McGrath WJ, DeGruccio AM, Dunn JJ, Mangel WF. Enzymatic activity of the SARS coronavirus main proteinase dimer. FEBS Letters 2006;580:2577–2583. [PubMed: 16647061]
- 25. Yang H, Yang M, Ding Y, Liu Y, Lou Z, Zhou Z, Sun L, Mo L, Ye S, Pang H, Gao GF, Anand K, Bartlam M, Hilgenfeld R, Rao Z. The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. PNAS 2003;100:13190–13195. [PubMed: 14585926]
- 26. Chen S, Zhang J, Hu T, Chen K, Jiang H, Shen X. Residues on the Dimer Interface of SARS Coronavirus 3C-like Protease: Dimer Stability Characterization and Enzyme Catalytic Activity Analysis. J Biochem. 2008 mvm246.
- 27. Shi J, Sivaraman J, Song J. Mechanism for Controlling Dimer-monomer Switch and Coupling Dimerization to Catalysis of the SARS-CoV 3C-Like Protease. J. Virol. 2008 JVI.02680-02607.
- 28. Zhong N, Zhang S, Zou P, Chen J, Kang X, Li Z, Liang C, Jin C, Xia B. Without its N-Finger, SARS-CoV Main Protease can Form a Novel Dimer through its C-Terminal Domain. J. Virol. 2008 JVI. 02612-02607.
- Bacha U, Barrila J, Velazquez-Campoy A, Leavitt SA, Freire E. Identification of Novel Inhibitors of the SARS Coronavirus Main Protease 3CL^{pro}. Biochemistry 2004;43:4906–4912. [PubMed: 15109248]
- Schuck P. Size-Distribution Analysis of Macromolecules by Sedimentation Velocity Ultracentrifugation and Lamm Equation Modeling. Biophys. J 2000;78:1606–1619. [PubMed: 10692345]
- 31. Schuck P. On the analysis of protein self-association by sedimentation velocity analytical ultracentrifugation. Analytical Biochemistry 2003;320:104–124. [PubMed: 12895474]
- 32. Vistica J, Dam J, Balbo A, Yikilmaz E, Mariuzza RA, Rouault TA, Schuck P. Sedimentation equilibrium analysis of protein interactions with global implicit mass conservation constraints and systematic noise decomposition. Analytical Biochemistry 2004;326:234–256. [PubMed: 15003564]
- Navaza J. AMoRe: an automated package for molecular replacement. Acta Crystallographica A 1994;50:157–163.

- Otwinowski Z, Minor W. Processing of X-ray diffraction data collected in oscillation mode. Methods in Enzymology 1997;277:307–326.
- CCP4. The CCP4 Suite: Programs for Protein Crystallography. Acta Crystallographica D 1994;50:760–763.
- 36. Jones T, Zou J, Cowan S, Kjelgaard M. Improved methods for binding protein models to electron density maps and the location of errors in these models. Acta Crystallographica A 1991;42:110–119.
- Perrakis A, Harkiolaki M, Wilson K, Lamzin V. ARP/wARP and molecular replacement. Acta Crystallogr D Biol Crystallogr 2001;57:1445–1450. [PubMed: 11567158]
- Laskowski R, MacArthur M, Moss D, Thornton J. PROCHECK: a program to check the sterochemical quality of protein structures. J. Appl. Cryst 1993;26:283–291.
- Bacha U, Barrila J, Gabelli SB, Kiso Y, Mario Amzel L, Freire E. Development of Broad-Spectrum Halomethyl Ketone Inhibitors Against Coronavirus Main Protease 3CLpro. Chemical Biology & Drug Design 2008;72:34–49. [PubMed: 18611220]
- 40. Chen S, Hu T, Zhang J, Chen J, Chen K, Ding J, Jiang H, Shen X. Mutation of Gly-11 on the Dimer Interface Results in the Complete Crystallographic Dimer Dissociation of Severe Acute Respiratory Syndrome Coronavirus 3C-like Protease: CRYSTAL STRUCTURE WITH MOLECULAR DYNAMICS SIMULATIONS. J. Biol. Chem 2008;283:554–564. [PubMed: 17977841]
- 41. Clarkson MW, Lee AL. Long-range dynamic effects of point mutations propagate through side chains in the serine protease inhibitor eglin c. Biochemistry 2004;43:12448–12458. [PubMed: 15449934]
- Myers DP, Jackson LK, Ipe VG, Murphy GE, Phillips MA. Long-range interactions in the dimer interface of ornithine decarboxylase are important for enzyme function. Biochemistry 2001;40:13230–13236. [PubMed: 11683631]
- Ohtaka H, Schon A, Freire E. Multidrug resistance to HIV-1 protease inhibition requires cooperative coupling between distal mutations. Biochemistry 2003;42:13659–13666. [PubMed: 14622012]
- Perez-Jimenez R, Godoy-Ruiz R, Parody-Morreale A, Ibarra-Molero B, Sanchez-Ruiz JM. A simple tool to explore the distance distribution of correlated mutations in proteins. Biophys Chem 2006;119:240–246. [PubMed: 16239060]
- 45. Rajagopalan PT, Lutz S, Benkovic SJ. Coupling interactions of distal residues enhance dihydrofolate reductase catalysis: mutational effects on hydride transfer rates. Biochemistry 2002;41:12618– 12628. [PubMed: 12379104]
- 46. Spudich G, Lorenz S, Marqusee S. Propagation of a single destabilizing mutation throughout the Escherichia coli ribonuclease HI native state. Protein Sci 2002;11:522–528. [PubMed: 11847275]
- Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera - A Visualization System for Exploratory Research and Analysis. J. Comput. Chem 2004;25:1605–1612. [PubMed: 15264254]
- Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res 1994;22:4673–4680. [PubMed: 7984417]
- 49. DeLano, W. The PyMOL Molecular Graphics System, 0.99 ed. San Carlos, CA: DeLano Scientific LLC; 2007. http://www.pymol.org
- Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein engineering 1995;8:127–134. [PubMed: 7630882]

Barrila et al.

С

	•••• ••••			
	5	15	25	35
SARS HCoV TOR2	SGFRKMAFPS	GKVEGCMVQV	TCGTTTL <mark>N</mark> GL	WLDDTVYCPR
HCoV HKU1	SGIVKMVSPT	SKIEPCIVSV	TYGSMTL <mark>N</mark> GL	WLDDKVYCPR
HCoV NL63	SGLKKMAQPS	GCVERCVVRV	CYGSTVL <mark>N</mark> GV	WLGDTVTCPR
HCoV OC43	SGIVKMVNPT	SKVEPCVVSV	TYGNMTLNGL	WLDDKVYCPR
HCoV 229E	AGLRKMAQPS	GFVEKCVVRV	CYGNTVLNGL	WLGDIVYCPR
SARS Civet007	SGFRKMAFPS	GKVEGCMVQV	TCGTTTL <mark>N</mark> GL	WLDDTVYCPR
Bat CoV HKU9-2	AGLTRMAHPS	GLVEPCVVKV	SYGSMTL <mark>N</mark> GV	WLDNFVMCPR
TGEV Miller M6	SGLRKMAQPS	GLVEPCIVRV	SYGNNVL <mark>N</mark> GL	WLGDEVICPR
PEDV	AGLRKMAQPS	GVVEKCIVRV	CYGNMALNGL	WLGDIVMCPR
MHV A59	SGIVKMVSPT	SKVEPCIVSV	TYGNMTLNGL	WLDDKVYCPR
Bovine Alpaca	SGIVKMVNPT	SKVEPCIVSV	TYGNMTLNGL	WLDDKVYCPR
Giraffe US/OH3-TC/20	SGIVKMVNPT	SKVEPCIVSV	TYGNMTL <mark>N</mark> GL	WLDDKVYCPR
IBV	SGFKKLVSPS	SAVEKCIVSV	SYRGNNL <mark>N</mark> GL	WLGDTIYCPR
FIPV	SGLRKMAQPS	GVVEPCIVRV	AYGNNVLNGL	WLGDEVICPR

Figure 1. Location of Asn28 within the catalytic domains of wild type SARS 3CL^{pro}

(A) SARS 3CL^{pro} catalytic domains (residues 8–184) [pdb file 2BX4 (18)] are depicted in ribbon representation. The loop containing residues 140–147 is colored red and the β -sheet containing residues 111-128 in yellow. Residues Asn28, His41, Cys145, and Ser147 are shown as sticks and colored by atom type with carbon in green, nitrogen in blue, oxygen in red and sulfur in yellow. (B) Key residues surrounding Asn28 are depicted as sticks and colored by atom type as in (A). Hydrogen bonding interactions made by Asn28 and Ser147 were calculated using Chimera (47) and are indicated by black dotted lines. (C) Asn28 is highly conserved among coronavirus 3CL proteases. The sequence alignment of fourteen coronavirus 3CL proteases was produced using ClustalW (48). The first forty residues are shown. Asn28 is highlighted in yellow in each of the sequences. Genbank accession numbers for protein sequences are as follows: SARS-CoV (TOR2 strain): AAP41036; HCoV HKU1 (genotype A): AY597011; HCoV NL63: AY567487; HCoV OC43: AY903460; HCoV 229E: AF304460, SARS Civet (palm civet isolate 007): AAU04645; Bat CoV (strain HKU9-2): AAZ41328; TGEV (Miller M6 strain): ABG89299, PEDV: NP_598309; MHV A59 (A59 strain):

NP_045298; BCV Alpaca (Alpaca strain): ABI93997; Giraffe CoV (strain US/OH3-TC/2006); IBV: AAY24431; FIPV: ABI14447.

Figure 2. Enzymatic activities of wild type SARS 3CLpro versus the N28A mutant (A) The enzymatic activities of wild type $3CL^{pro}$ (•) and N28A (\blacktriangle) were determined at 25° C with an enzyme concentration of 1 μ M in 10mM sodium phosphate, 10mM NaCl, 1mM EDTA, 1mM TCEP (pH 7.4). The initial velocity (μ M per second) is plotted as a function of substrate concentration. (B) Thermal denaturation of wild type (black) and N28A (red) SARS $3CL^{pro}$ as determined by differential scanning calorimetry. Excess heat capacity is plotted as a function of temperature. Calorimetric scans for both proteins were performed at identical concentrations (0.2 mg/mL) at a scanning rate of 1°C per minute.

Barrila et al.

Page 16

Figure 3. Sedimentation velocity and sedimentation equilibrium ultracentrifugation of N28A at 0.5 $\rm mg/ml$

(A) Sedimentation velocity absorbance trace of N28A SARS 3CL^{pro} at 280 nm. The sedimentation of the N28A mutant was carried out with a Beckman Coulter XL-I analytical ultracentrifuge at 20°C and 50,000 rpm. (B) Residuals of the experimental fit of N28A SARS 3CL^{pro} at 0.5 mg/ml (14.8 μ M). The continuous sedimentation coefficient distributions at 0.5 mg/ml of (C) N28A SARS 3CL^{pro}, and (D) wild type SARS 3CL^{pro}. Sedimentation equilibrium ultracentrifugation of (E) wild type SARS 3CL^{pro} and (F) N28A SARS 3CL^{pro} at 0.5 mg/ml. Sedimentation equilibrium experiments with wild type and mutant SARS 3CL^{pro} were carried out at 20 °C at concentrations of 0.25 mg/ml, 0.5 mg/ml, and 1 mg/ml in six-channel centerpieces and globally analyzed in SEDPHAT (32). Data at 0.5 mg/mL (14.8 μ M) is shown for both wild type and N28A. The lower graph in each panel shows the raw data at 15,000 rpm (Δ), 20,000 rpm (\circ), and 25,000 rpm (\Box) and the corresponding global fits displayed in a solid line. The upper graphs in each panel show the residuals for the given fits.

Barrila et al.

Figure 4. Alignment of the N28A and wild type SARS 3CL^{pro} structures

(A) A structural alignment of wild type SARS 3CL^{pro} (PDB ID 2BX4 (18)) and the N28A mutant (this work) is shown. Both proteins are depicted as monomers in ribbon representation and are colored by domain. Domain 1 (residues 3-100) is shown in blue for wild type 3CL^{pro} and cyan for N28A; Domain 2 (residues 101–183) is shown in yellow for wild type and orange for N28A; the loop region is shown in grey for wild type and black for N28A; Domain 3 (residues 201-301) is shown in purple for wild type and green for N28A. The r.m.s.d. for the alignment was 0.555 Å over 271 Ca atoms. The alignment was performed using the program Pymol, version 0.99 (49). (B) Close-up of the region surrounding residues 139-141 in the aligned wild type and N28A SARS 3CLpro structures shown in (A). No electron density for these residues is observed for the N28A structure. Only one protomer of the dimer is shown for clarity. The aligned structures of wild type SARS 3CLpro and N28A 3CLpro are shown in ribbon representation with the wild type and N28A mutant colored as in (A). (C) Close-up of the same region shown in (B), except depicting the entire N28A dimer in ribbon representation. Only the aligned monomer of wild type 3CL^{pro} is shown for clarity. Colors of subunits are the same as in (A). (D) Close-up of the same region shown in (B) and (C), with the other monomer of N28A depicted in surface representation. Domains colored as in (A). In panels (B)-(D), two arrows point to the locations of Gly138 and Asn142 in theN28A structure, which are the two residues flanking the region of the catalytic loop that is disordered in the N28A structure (residues 139–141).

Figure 5. Disulfide bond formation between Cys145 and Cys117 in the N28A mutant (A) An overlay of the active sites of the N28A mutant and wild type SARS $3CL^{pro}$ showing the structural changes observed in residues Cys145 and Cys117 in the mutant protein. The proteins are shown in ribbon representation and colored teal (WT) and purple (N28A). Side chains are shown as sticks and colored by atom type with nitrogen in blue, oxygen in red, sulfur in yellow, and carbon in teal and purple for the wild type and mutant, respectively. (B) $2F_o - F_c$ electron density map of the N28A mutant showing the electron density between the catalytic residue Cys145 and Cys117 contoured to 1 sigma. Cys145 and Cys117 are colored by atom type with sulfur in yellow, and carbon in teal or purple for the wild type and mutant,

respectively. (C) A different view of (B) showing the electron density between Cys145 and Cys117, indicating the existence of a disulfide bond.

Figure 6. Ser147 interactions in the structures of wild type SARS $3 CL^{pro}$ and N28A SARS $3 CL^{pro}$

Hydrogen bonding interactions made by Ser147 within the active sites of (**A**) wild type SARS $3CL^{pro}$ (PDB ID 2BX4 (18)) and (**B**) N28A SARS $3CL^{pro}$ (this work, PDB ID 3FZD) are depicted with black dotted lines. Hydrogen bonding interactions were calculated using the program Chimera (47). Structures shown were aligned in PyMol (version 0.99) (49). The r.m.s.d. for the alignment was 0.555 Å over 271 C α atoms.

Figure 7. Comparison of the wild type and N28A SARS 3CL^{pro} dimer interfaces (A) Overlay of wild type SARS 3CL^{pro} [PDB ID 2BX4 (18)] and N28A SARS 3CL^{pro}. The proteins are shown in ribbon representation and are colored yellow for the wild type and blue for the N28A mutant. Residues at the dimer interface are shown as spheres. (B) Overlay of the first fourteen residues of the N-terminus of the proteins. Residues are shown in stick representation and are colored by atom type with nitrogen in blue, oxygen in red, sulfur in tan and carbon in dark blue or yellow for the wild type or N28A proteins, respectively. (C) Chain A of residues at the dimer interface. Residues are displayed in stick representation and colored by atom type as in (B). Residues involved in binding at the dimer interface were calculated by the program Ligplot (50).

Table 1

Summary of Kinetics, Structural Stability and Dimerization Data

Protein	$K^{m(\mu)a}$	$k_{\rm cat}({ m sec}^{-1})a$	$k_{\mathrm{cat}}K_m^a$ (mM ⁻¹ · sec ⁻¹	$\mathbf{I}_{\mathbf{m}}\left(\circ\mathbf{C} ight)\mathbf{p}$	$^{(0)}_{\rm m} {}^{\rm m}_{\rm C} p$	$K_d(\mu M)^c$
ΤW	56 ± 9	0.64 ± 0.05	11.4	56.50 ± 0.03	0	1.3 ± 0.8
N28A	68 ± 7	0.012 ± 0.001	0.176	54.75 ± 0.02	-1.75	25 ± 5

^αKinetic values were obtained by global non-linear least squares fit of initial rate measurements at increasing substrate concentrations at 1 μM enzyme concentration.

b Structural stability values were obtained by fitting excess heat capacity versus temperature data using software from this laboratory.

^c Dimerization Kd values were calculated from the global analysis of sedimentation equilibrium data at concentrations of 0.25 mg/mL (7.4 µM), 0.5 mg/ml (14.8 µM), and 1 mg/mL (29.5 µM) for each protein using the monomer-dimer self-association model using the program SEDPHAT (32).

Barrila et al.

Table 2

Data Collection and Refinement Statistics for N28A SARS 3CLpro

Data collection	
Space group	P21212
Cell dimensions <i>a</i> , <i>b</i> , <i>c</i> (Å)	105.9, 44.8, 54.2
Resolution (Å)	50.00-2.35
	(2.43-2.35) ^a
$R_{\rm sym}$ or $R_{\rm merge}$	0.073(0.578)
Ι/σ	22.7 (1.9)
Completeness (%)	99.9 (99.6)
Redundancy	5.3 (4.4)
X-ray Source	X6A
Wavelength (Å)	0.9537
Refinement	
Resolution (Å)	50.0-2.35
No. reflections	10,705
R _{work} / R _{free}	0.217/0.277
	(0.276/0.307)
No. atoms	
Protein	2,322
Water	99
B-factors	
Protein (Å ²)	34.19
Water (Å ²)	46.34
R.m.s. deviations	
Bond lengths (Å)	0.009
Bond angles (°)	1.1

 a Parenthesis indicate values for the highest resolution shell.