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Diffusion of the Reaction Boundary of Rapidly Interacting Macromolecules
in Sedimentation Velocity
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Dynamics of Macromolecular Assembly, Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging
and Bioengineering, National Institutes of Health, Bethesda, Maryland
ABSTRACT Sedimentation velocity analytical ultracentrifugation combines relatively high hydrodynamic resolution of macro-
molecular species with the ability to study macromolecular interactions, which has great potential for studying dynamically
assembled multiprotein complexes. Complicated sedimentation boundary shapes appear in multicomponent mixtures when
the timescale of the chemical reaction is short relative to the timescale of sedimentation. Although the Lamm partial differential
equation rigorously predicts the evolution of concentration profiles for given reaction schemes and parameter sets, this approach
is often not directly applicable to data analysis due to experimental and sample imperfections, and/or due to unknown reaction
pathways. Recently, we have introduced the effective particle theory, which explains quantitatively and in a simple physical
picture the sedimentation boundary patterns arising in the sedimentation of rapidly interacting systems. However, it does not
address the diffusional spread of the reaction boundary from the cosedimentation of interacting macromolecules, which also
has been of long-standing interest in the theory of sedimentation velocity analytical ultracentrifugation. Here, effective particle
theory is exploited to approximate the concentration gradients during the sedimentation process, and to predict the overall,
gradient-average diffusion coefficient of the reaction boundary. The analysis of the heterogeneity of the sedimentation and diffu-
sion coefficients across the reaction boundary shows that both are relatively uniform. These results support the application of
diffusion-deconvoluting sedimentation coefficient distributions c(s) to the analysis of rapidly interacting systems, and provide
a framework for the quantitative interpretation of the diffusional broadening and the apparent molar mass values of the effective
sedimenting particle in dynamically associating systems.
INTRODUCTION
In the last decade, sedimentation velocity analytical ultracen-

trifugation (SV) has reemerged as a powerful technique for

the study of interacting macromolecules. It has unique poten-

tial for the detection of size, shape, composition, and thermo-

dynamic equilibrium constants of complexes in slow or rapid

chemical equilibrium with their free constituent species. In

particular, SV is well suited to address the often most diffi-

cult problem of establishing the number and stoichiometry

of multiple coexisting complexes, and to determine the reac-

tion scheme. At the same time, the hydrodynamic and spec-

tral resolution provides the virtue of SV being relatively

robust against the presence of many kinds of impurities

and aggregates. The technique has been reviewed, for

example, in references (1–5).

SV has a long history spanning almost a century of

theoretical and practical application to protein interactions.

Driven by increased interest in the study of protein interac-

tions, the last decade brought many significant advances,

especially in the computational modeling of SV. The under-

lying partial differential equation (PDE) of SV, the Lamm

equation, can now be solved sufficiently fast and precise

so that it can be used for fitting by nonlinear regression of

experimental raw data sets on ordinary laboratory computers.

This brought the modern techniques of directly and globally
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fitting the equations for the sedimentation/diffusion/reaction

PDE of certain reaction schemes to experimental data (6–9),

as well as the determination of diffusion deconvoluted,

high-resolution sedimentation coefficient distributions (10),

size-and-shape distributions (11), and multisignal sedimen-

tation coefficient distributions for multicomponent systems

(12).

Despite this computational progress, many phenomena

have remained less well understood on a biophysical level.

As has been pointed out by Gilbert and Jenkins already

50 years ago, systems of interconverting species with instanta-

neous reactions on the timescale of sedimentation migrate very

differently from populations of noninterconverting species

(13), in ways perhaps unexpected and nonintuitive (14). Of

course, any behavior is captured in the solutions to the partial

differential equations of sedimentation, but this alone is insuf-

ficient for understanding the mechanisms of coupled transport.

It also does not help us to understand rules for how the system

parameters relate to each other when the system is exhibiting

a certain phenomenology. However, such knowledge is

important in the development of robust experimental designs

and methodology for data analysis, and, in particular, to fully

exploit the unique potential of SV in the study of multicompo-

nent interactions.

To this end, we have recently introduced the effective

particle theory (EPT) that explains, in a simple physical

picture, the basic rules that govern the formation of sedimen-

tation boundary patterns of multicomponent mixtures (i.e.,
doi: 10.1016/j.bpj.2010.03.004
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the division of the sedimenting system into a slowly migrating

single-component undisturbed boundary and a rapidly

migrating reaction boundary containing a mixture of all

species) (15). EPT highlights, for the first time, the existence

of a phase transition in parameter space, where the singularity

occurs that the entire reacting system sediments in a single

boundary, the latter sedimenting with a velocity unequal to

any of the species’ velocities. When crossing this phase tran-

sition line, the constituent of the slow boundary switches. EPT

also describes how the asymmetry of the individual free

species’ velocities translates into an asymmetry of this phase

transition line in the parameter space of loading concentra-

tions. EPT provides simple quantitative expressions for the

amplitudes and velocities of all boundary components, as

well as the phase transition. This facilitates data analysis

approaches based on modeling the isotherms of boundary

patterns as a function of loading concentration (15,16), and

enables the extension of this approach to more complex inter-

action schemes. The experimental observables of SV across

the parameter space of loading concentrations, as predicted

by EPT, as well as the molecular mechanism of coupled reac-

tion and sedimentation for given parameters, can be visual-

ized in the effective particle explorer tool of the software

SEDPHAT (a biophysical data analysis software for interact-

ing systems (17)).

However, with its basis in considerations of mass balance

of the reaction boundary, EPT is only concerned with the

sedimentation coefficients and amplitudes of the sedimenta-

tion boundaries. It does not address the questions of the

detailed boundary shape. In particular, the diffusive proper-

ties of the reaction boundaries constitutes an area that has, so

far, remained comparatively poorly explored. Yet, it is of

high practical interest, as deconvolution of diffusion affords

highly increased hydrodynamic resolution. Again, the basic

computational recipe provided by the sedimentation/diffu-

sion/reaction PDE equations provides a rigorous predictive

tool for the evolution of concentration gradients given

a certain parameter set, but it does not satisfactorily explain

the relationships between the observables throughout the

parameter space of loading concentrations. In particular,

the set of Lamm PDEs of reacting systems does not define

the magnitude of the average diffusion coefficient of the

reaction boundary, or the variation across the reaction

boundary from this average value.

The constant bath approximation, originally developed by

Krauss et al. (18) and later rediscovered by Urbanke et al.

(19), predicts that reaction boundaries diffuse with a single,

weight-average diffusion coefficient. This is consistent with

the observation that c(s) distribution of noninteracting

species (10) can model concentration profiles from reacting

systems remarkably well (9). Even though qualitatively the

results of the constant bath theory are very good, and the

accuracy of the predicted sedimentation coefficients is excel-

lent, the predictions for the diffusion coefficient are less

successful (9). Further, the constant bath approximation
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cannot be applied well throughout the whole parameter

space of loading concentrations (9) due to the neglect of co-

sedimentation of both free components in the reaction

boundary.

This work explores a different approach to arrive at an

approximate analytical expression for the diffusion proper-

ties of the reaction boundaries. It is physically motivated,

and exploits the relationships arising in EPT to approximate

the concentration gradients in the reaction boundary. We

show that this compares well with best-fit diffusion coeffi-

cients to reaction boundaries from exact solutions of the

sedimentation/diffusion/reaction PDE. Finally, the conse-

quences for diffusional deconvolution with sedimentation

coefficient distribution c(s) and size-and-shape distributions

are discussed.
THEORY

Let us consider a bimolecular reaction of A þ B 4 AB in

instantaneous equilibrium characterized by the mass action

law cAB ¼ KcAcB with association equilibrium constant K
(or equilibrium dissociation constant KD ¼ 1/K). Let us

choose the nomenclature of A and B such that A is the slower

sedimenting species. The initial loading concentrations of A

and B are cAtot,0 and cBtot,0, respectively, and are uniform

throughout the sample cell.

Lamm equations

The propagation of the system after start of centrifugation at

the angular velocity u is given by the Lamm PDE, which can

be written generally as

vck

vt
þ 1

r

v

vr

�
ckskw2r2 � Dk

vck

vr
r

�
¼ qk; (1)

with k denoting the species A, B, and AB, sk and Dk the

species’ sedimentation and diffusion coefficients, and

ck(r,t) the local radial and time-dependent concentration of

the species (14). The value qk denote the reaction fluxes

that have the constraint from mass conservation qA ¼
qB ¼ �qAB. The absence of hydrodynamic nonideality

(i.e., a concentration-dependence of sk and Dk) is assumed

in the following. Equation 1 can be solved numerically

with the software SEDPHAT for given parameter sets, but

this does not further illuminate the physical processes of

sedimentation.

For rapid self-associating systems, to simplify the Lamm

PDE and to eliminate the reaction fluxes, it is customary to

condense all species’ equations into a single PDE in terms of

total local concentration and concentration-dependent, locally

weight-averaged sedimentation coefficient and gradient-

average diffusion coefficient, respectively. It is possible to

express the Lamm PDE of heterogeneous associations simi-

larly in terms of constituent concentrations cAtot(r,t) ¼
cA(r,t) þ cAB(r,t) and cBtot(r,t) ¼ cB(r,t) þ cAB(r,t),



vcAtot

vt
þ 1

r

v

vr

�
sAtotðcA; cBÞcAtotu

2r2 � DAtotðcA; cBÞ
vcAtot

vr
r

�
¼ 0

vcBtot

vt
þ 1

r

v

vr

�
sBtotðcA; cBÞcBtotu

2r2 � DBtotðcA; cBÞ
vcBtot

vr
r

�
¼ 0

(2)

FIGURE 1 Schematic representation of the concentration gradients in the

reaction boundary. (A) Concentration profiles of free A (100 kDa, 7 S, red),

free B (200 kDa, 10 S, blue), and complex (13 S, black) species during

the sedimentation of the interacting system A þ B 4 AB in the limit of

instantaneous reaction, for the conditions at equimolar loading concentrations

at KD shown in (9). For clarity, only the concentration profiles from time-

points 300 s and 1500 s (thin lines) and 3000 s (bold lines) are superimposed.

The vertical dashed lines and the range highlighted in red indicate the radial

range that covers 10–90% of the reaction boundary at 3000 s. The dotted

diagonal lines are linear approximations of the gradients in the reaction

boundary. (B) Schematics of the boundary structure described in EPT, with

the division of the secondary component into the undisturbed boundary

with concentration cY,undist and the cosedimenting free fraction cY,co, as

well as the concentration of the free species of the dominant component cX

and the complex cAB in the reaction boundary. All quantities cY,undist, cY,co,

cX, and cAB, as well as the question of which component plays the role of

dominant and secondary component X and Y, are analytically predicted in

EPT as a function of loading concentration, equilibrium constant, and all

species s values. We may assign a finite boundary width Dr to the reaction

boundary, and approximate it as a constant gradient.
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with the local weight-average sedimentation and gradient

average diffusion coefficients

sAtotðcA; cBÞ ¼
sA þ cBKsAB

1 þ cBK
;

DAtotðcA; cBÞ ¼
DA þ DABK

�
cB þ cA

vcB

vr

�
vcA

vr

��1�

1 þ K

�
cB þ cA

vcB

vr

�
vcA

vr

�� ;

(3)

and the symmetrical expressions

sBtotðcA; cBÞ ¼
sB þ cAKsAB

1 þ cAK
;

DBtotðcA; cBÞ ¼
DB þ DABK

�
cA þ cB

vcA

vr

�
vcB

vr

��1�

1 þ K

�
cA þ cB

vcA

vr

�
vcB

vr

�� (4)

(note that a detailed derivation is in the Supporting Material).

A typical set of concentration gradients evolving during the

sedimentation of an interacting system is shown in Fig. 1 A.

The boundary pattern exhibits a division into an undisturbed

boundary that consists entirely of either free A or free B, and

the reaction boundary that exhibits coupled migration of all

free and complex species (13,15).

Effective particle theory

The propagation of the undisturbed boundary is trivial,

except for the question which component provides this

undisturbed boundary, and the question of the concentration

in the undisturbed boundary. In EPT (15), this component is

denoted the secondary component, abbreviated as Y, and the

component that is not secondary is termed dominant, and

abbreviated as X. Y is equal to A for cBtot,0 < c*Btot,0 and

Y is equal to B for cBtot,0 > c*Btot,0, with the phase transition

c�Btot;0ðcAtot;0Þ ¼ cAtot;0 þ
ðsB � sAÞ

2KðsAB � sBÞ

�
 

1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 4cAtot;0KðsAB � sBÞ

ðsAB � sAÞ

s !
:

(5)

The undisturbed boundary vanishes at the phase transition

point cBtot,0 ¼ c*Btot,0. The concentration of the undisturbed

boundary is
cY;undist ¼ cYtot;0 � cAB

�
1þ ðsAB � sYÞ

KcYðsAB � sYÞ þ ðsX � sYÞ

�
:

(6)

The reaction boundary contains mixtures of free X and

complex AB at the initial equilibrium concentration (i.e.,

cosedimenting cX,co ¼ cX,0), as well as free Y at the
Biophysical Journal 98(11) 2741–2751
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concentration cY,co ¼ cY,0 – cY,undist . They sediment as an

ergodic system, where the fractional time molecules X and

Y spend being bound or free are equal to their population

fractions, and such that the time-average velocities of mole-

cules X and Y are equal, assuming a value

sA/B ¼
cXsX þ cABsAB

cX þ cAB

: (7)

This can be illustrated best in a movie (20). EPT is only

concerned with the total fluxes arising from the sedimenta-

tion of the reaction boundary and the undisturbed boundary,

and the concentration profiles are thus approximated as step-

functions, as illustrated in Fig. 1 B. EPT does not make state-

ments regarding the boundary shape or diffusion.
Diffusion coefficients of the reaction boundary

If the components are instantaneously linked by the mass-

action law at all times, it should be possible to approximate

the diffusive broadening of the reaction boundary by a single

diffusion coefficient of the system, DA.B. We expect that

both components contribute to diffusion, and that the magni-

tude of DA.B is weighted by each component’s fluxes. Thus,

it is hypothesized that the average diffusion coefficient

should take the form of a gradient average

DA/B ¼
DXtotvcX=vr þ DYtotvcY=vr

vcX=vr þ vcY=vr
: (8)

It is noted that exact expressions for DAtot and DBtot are

available in Eqs. 3 and 4. Their evaluation requires knowl-

edge of the concentration gradients vcA/vr and vcB/vr,

similar to Eq. 8.

We can make use of the knowledge of the concentration

differences in EPT to approximate the concentration gradi-

ents. As visualized by the dotted lines in Fig. 1 A, a linear

concentration increase across a radial range Dr may serve

at least as a first approximation. This leads to vcX/vr z
cX,0/Dr, vcY/vr z (cY,0 – cY,undist)/Dr, and vcXY/vr z
cAB/Dr. Inserted in Eqs. 3, 4, and 8, the boundary width

Dr cancels out, and yields
DA/Bz

cX;0

DXcX;0 þ DABcAB

cX;0 þ cAB

þ ðcY;0 � cY;undistÞ
DYðcY;0 � cY;undistÞ þ DABcAB

ðcY;0 � cY;undistÞ þ cAB

cX;0 þ ðcY;0 � cY;undistÞ
: (9)
One may further use the Svedberg equation to define an

‘‘apparent molar mass’’ of the effective particles in the reac-

tion boundary of

MA/B ¼
sA/BRT

DA/Bð1� yrÞ: (10)
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Sedimentation coefficient distributions

The sedimentation coefficient distribution c(s) describes the

evolution of the experimental signal profiles a(r,t) as a super-

position of Lamm equation solutions c1(s,M,r,t) of noninter-

acting species (10),

aðr; tÞy
Z

cðsÞc1ðs;MðsÞ; r; tÞds; (11)

where M(s) is usually calculated as a function of s value

following the power-law

MðsÞzk
�
ðf =f0Þw; r; h

�
s3=2; (12)

and typically fit with the average frictional ratio (f/f0)w as an

adjustable fitting parameter (21), although other relation-

ships are possible and available in the ultracentrifugal data

analysis software SEDFIT (17).

Analogously, the size-and-shape distribution is

aðr; tÞy
Z

cðs;MÞc1ðs;M; r; tÞdsdM; (13)

although it is usually calculated in a more convenient form of

c(s,f/f0) (11).

Both Eqs. 11 and 13 are discretized and phrased into

a linear least-squares problem for the calculation of the distri-

bution. High-resolution distributions can be calculated

conveniently on desktop computers, using established com-

putational tools that yield a mathematically well-defined

best-fit solution for this linear least-squares fit (22). As the

analysis is ill posed, it must be combined with regularization

techniques to avoid detail not warranted by the data. All

data analysis was done with the software SEDFIT, using

maximum entropy or Tikhonov regularization. (Note that

Eq. 13 can generally not be solved accurately with Demeler’s

2DSA method (23), which may be considered a heuristic

approach motivated by Eq. 13, as shown in (22).)

RESULTS

The performance of the approximation Eq. 9 was by calculating

exact Lamm equation solutions via Eq. 1 for a variety of condi-
tions, and by extracting estimates for the diffusion coefficients

from these boundary profiles. In the absence of hydrodynamic

nonideality, this can be accomplished through fitting the

concentration profiles with the c(s) model.

Broadening of the reaction boundary arises not only

from diffusion, but also from the heterogeneity of the
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sedimentation coefficient distribution, as predicted in the

asymptotic boundaries by Gilbert-Jenkins theory (13).

Even though the range of s values is very narrow, except

for conditions close to the phase transition line (15) (see

below), the exquisite sensitivity of SV to the polydispersity

of s values makes this an important contribution. The poly-

dispersity of the s values in the reaction boundary can be

captured by modeling the concentration profiles with

a continuous c(s) distribution across the range from approx-

imately sB to sAB.

Polydispersity results in exponentially time-dependent

broadening of the boundary. This is independent of the diffu-

sive, i.e., the
ffiffi
t
p

-dependent, component of the reaction

boundary broadening. The latter can be extracted by adjust-

ing a signal-average frictional ratio of the c(s) distribution to

its best-fit value (see below). The undisturbed boundary is

modeled as a discrete species with sedimentation parameters

of the free component Y predicted from EPT. For conditions

where the c(s) peak of the reaction boundary is resolved from

the discrete species of the undisturbed boundary, integration

of c(s) then provides a value for sA/B. Together with sA/B,

the best-fit frictional ratio implies an estimate of the average

molecular weight as well as the average diffusion coefficient

(via the Svedberg equation), which may be taken as esti-

mates of DA/B, and MA/B, and be compared with the

approximations Eqs. 7, 9, and 10, respectively.
(3A ¼ 110,000 fringes � M�1 cm�1, 3B ¼ 165,000 fringes � M�1 cm�1, and 3A

simulations with invisible A, as may be possible in the selective absorbance optica

shown an unphysical simulation of a system with invisible complex (3A ¼ 110,00

theoretical isotherms are independent of the species’ signal increments, and hav
The test-system used was that of a 40-kDa, 3.5 S molecule

A rapidly interacting with a 60-kDa, 5.0 S molecule B, to

form a 100-kDa, 6.5 S complex. The sedimentation profiles

were predicted for a 10-mm solution column at 50,000 rpm,

and signals a(r,t) ¼ 3AcA(r,t) þ 3BcB(r,t) þ 3ABcAB(r,t)
were calculated in 10 min time-intervals, using signal incre-

ments that would be typical with the interference optical

detection for these molecules. The parameter space of

loading concentrations was explored along different trajecto-

ries of equimolar concentrations and titration series of

constant A or constant B, respectively. The results of the

simulated experiments are shown in Figs. 2 and 3, where

the circles depict the values derived from the fit of the simu-

lated sedimentation data (PDE solution), and the solid lines

depict the isotherms predicted by Eqs. 7, 9, and 10, respec-

tively. It should be noted that there is no adjustable parameter

in the solid lines.

One basic prediction from the derivation above is that the

values for sA/B, DA/B, and MA/B should be independent

of the species’ signal increments. This is at variance with

the results from Gilbert-Jenkins theory that the contributions

of the free components A and B to the asymptotic boundaries

are not proportional to each other (13). This dilemma moti-

vates a test of the extent of a dependence of the observed

diffusion coefficients in the reaction boundary on the species

signal contributions.
FIGURE 2 Testing the observed diffusional

spread of the reaction boundary for a dependence

on the detection of different species. Shown here

are diffusion coefficient DA/B (top row), sedimen-

tation sA/B (middle row), and apparent molar mass

MA/B (bottom row), observed in the reaction

boundary (circles), in comparison with the corre-

sponding predictions of Eqs. 7, 9, and 10, respec-

tively (solid lines). To determine the data points

for the reaction boundary parameters, exact

Lamm PDE solutions were calculated for a mole-

cule A of 40 kDa, 3.5 S rapidly interacting with a

molecule B of 60 kDa, 5.0 S to form a 100 kDa,

6.5 S complex, sedimenting at 50,000 rpm in a

10-mm solution column, for equimolar dilution

series (left column), a titration of A with varying

B (middle column), and a titration of B with varying

A (right column). The signal profiles were fitted

(excluding the back-diffusion region) with a combi-

nation of a Lamm equation solution for a discrete

noninteracting species describing the undisturbed

boundary and a c(s) distribution describing the

reaction boundary. Where the c(s) peak could be

well resolved from the discrete species, it was inte-

grated to determine the average diffusion coeffi-

cient DA/B, sedimentation coefficient sA/B, and

apparent molar mass values MA/B. Shown in red

are simulations using extinction coefficients that

would be realistic for interference optical detection

B ¼ 275,000 fringes � M�1 cm�1). In green are shown data obtained from

l system (3A¼ 0, 3B¼ 165,000 OD�M�1 cm�1, and 3AB¼ 3B). In black is

0 fringes �M�1 cm�1, 3B ¼ 165,000 OD �M�1 cm�1, and 3AB ¼ 0). The

e no adjustable parameters.
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FIGURE 3 Probing the diffusive properties of the

reaction boundary for different systems. The presen-

tation is analogous to Fig. 2: the circles indicate

the values extracted via c(s) from the Lamm PDE

solutions (using standard interference optical signal

increments of 3A ¼ 110,000 fringes � M�1 cm�1,

3B ¼ 165,000 fringes � M�1 cm�1, and 3AB ¼
275,000 fringes � M�1 cm�1), and the solid lines

are the isotherms predicted by Eqs. 7, 9, and 10 for

diffusion coefficient DA/B (top row), sedimentation

sA/B (middle row), and apparent molar mass MA/B

(bottom row), respectively. In red are shown the

results for the standard conditions for a molecule

A of 40 kDa, 3.5 S rapidly interacting with a

molecule B of 60 kDa, 5.0 S to form a 100 kDa,

6.5 S complex. Blue, green, and magenta depict

analogous simulations under conditions that are

unphysical, but probe extreme values for species’

diffusion coefficients: a 10-kDa molecule A (blue); a

35-kDa molecule B (green), and a 40-kDa complex

(magenta).
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To this end, different situations were simulated with

different assumptions on the species’ signal increments,

with the results shown in Fig. 2. In red is shown the realistic

simulation with signal increments for all species as would be

observed for refractive-index sensitive interference optics in

a current analytical ultracentrifuge. Green shows the data that

are obtained when A does not contribute to the signal, solely

using contributions of the larger species and the complex.

The opposite extreme is simulated in the data shown in

black, which emphasizes the small species A and B by

applying conditions where, artificially, 3AB is set to zero. If

the individual species were to migrate in the reaction

boundary with significantly different diffusional spread, the

resulting data (red, green, and black circles) would diverge.

However, it can be discerned from Fig. 2 that the values

obtained are quite similar. Furthermore, the values follow

closely the prediction of the isotherm Eqs. 7, 9, and 10,

respectively. DA/B is slightly systematically underesti-

mated; however, the deviation is ~10% or better.

Whether Eq. 9 is of the correct functional form to provide

good approximations for the average diffusion coefficients

can be explored by variation of the parameters DA, DB,

and DAB in the simulated Lamm equation solutions. The

values that can be probed are not limited to physically

reasonable values, but instead may cover extreme or even

physically impossible values, that solely reflect the mathe-

matical structure of the Lamm PDE solutions in relation to

Eq. 9. The results of this set of simulation experiments is

shown in Fig. 3. Data points in red recapitulate the results

for the simulations under standard conditions as shown in

Fig. 2. Blue circles show the results when A is diffusing
Biophysical Journal 98(11) 2741–2751
much stronger (setting MA ¼ 10 kDa, at unchanged sA ¼
3.5 S, MB¼ 60 kDa, MAB ¼ 70 kDa, and otherwise standard

parameters), green circles show the results when B is

diffusing much stronger (setting MB¼ 35 kDa, at unchanged

sB ¼ 5.0 S, MA ¼ 40 kDa, MAB ¼ 75 kDa, and otherwise

standard parameters), and finally, magenta circles show the

results when DAB becomes very large (by setting MAB ¼
40 kDa, at unchanged sAB ¼ 6.5 S, MA ¼ 40 kDa, MB ¼
60 kDa, and otherwise standard parameters). Again, the

isotherms predicted by Eqs. 7, 9, and 10, indicated by the

solid lines, have no adjustable parameters and there is no

fit involved. They are in very good agreement with the

PDE-derived data, indicating that Eq. 9 captures at least

the most essential contributions to the diffusive broadening

of the reaction boundary.

With Eq. 10 it is possible to inspect the apparent molar

mass values of the reaction boundary MA/B as a function

of loading concentrations. In particular, it is instructive to

compare MA/B with the molar mass of the complex MAB,

and with the weight-average mass of the entire system Mw

(as it would be measured, for example, in certain sedimenta-

tion-equilibrium analysis models). The isotherms MA/B/

MAB(cAtot,0,cBtot,0) and MA/B/Mw(cAtot,0,cBtot,0) are shown

in Fig. 4, A and B, respectively. Not surprisingly, MA/B is

always between the mass of the complex and the weight-

average mass of the entire system. It attains asymptotically

the mass of the complex for conditions where the reaction

is saturated with excess A and/or excess B, in parallel with

the isotherms of sA/B approaching the s value sAB of the

complex (as shown in Fig. 5 in (15)). On the other hand,

MA/B is close to the weight-average mass of all species in



FIGURE 4 Isotherms of the apparent molar mass MA/B in the parameter

space of total loading concentrations, as predicted by Eq. 10. Shown are the

ratios MA/B/MAB(cAtot,0,cBtot,0) (A) and MA/B/Mw(cAtot,0,cBtot,0) (B), for

the system of Fig. 2, in a contour plot with the color temperature scale as

indicated on the right. The phase transition line of the sedimenting system

is indicated by the black dashed line.

FIGURE 5 Polydispersity of the reaction boundary. (A) Estimate for the

variation of the diffusion coefficient across the reaction boundary, as a func-

tion of loading concentration. Shown are values of ðDA/B;max � DA/BÞ=
DA/B using the color temperature scale on the right, where DA$$$B,max is

estimated for the trailing edge of the reaction boundary. High values >

0.1 are located in a very narrow band along the phase transition line (shown

as dashed line) for concentrations cA > KD. (B) Polydispersity of the sedi-

mentation coefficients based on the asymptotic boundaries dĉ=dv from

Gilbert-Jenkins theory (13). Plotted are the relative width ðvmax � vminÞ=vGJ

with vGJ ¼
R

vðdĉ=dvÞdv=
R
ðdĉ=dvÞdv, where dĉ=dv was calculated with

the numerical method described by Gilbert and Gilbert (29), using a division

of 10,000 concentration values, and vmax and vmin are the upper and lower

limit of s values for which dĉ=dv > 0.

Diffusion of the Reaction Boundary 2747
the loading mixture when the loading concentrations are near

the phase transition line, where the undisturbed boundary

vanishes. We note that MA/B is not equal to the weight-

average molar mass of the material in the reaction boundary,

even though the relative difference is <5% for the particular

conditions of Fig. 2 (data not shown).

In addition to the average diffusion coefficient DA/B

across the reaction boundary, we can ask the question how

large the local variation of the diffusion coefficient might

be, considering that the boundary shape will create regions

of different gradients (hence different gradient averages).

After all, the boundaries are not linear, as approximated

above. Some preliminary estimates are possible based on

the observation that the concentration profiles of all species

in the reaction boundary take roughly similar shape (for

example, in Fig. 1 A, compare the shapes of the thick red
and blue lines in the highlighted region). Although this

observation is not entirely accurate, it does permit an initial

estimate of the range of diffusion coefficients arising at

positions in the boundary. To this end, we may apply the

parameterization cX
0 ¼ kcX,0 and (cY,0 – cYundist)’ ¼ k(cY,0 –

cY,undist) with k½0; 1�, which explores, in a rough approxima-
tion, the regions of decreasing slopes in the trailing end of the

reaction boundary. When inserted into Eq. 9, a limiting value

for k¼0 can be found, which provides an estimate for the

maximal diffusion coefficient DA$$$B,max in the trailing

edge of the reaction boundary. In Fig. 5 A, this information

has been presented in the form of the relative change

(DA$$$B,max – DA$$$B)/DA$$$B as a function of loading
Biophysical Journal 98(11) 2741–2751
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concentration. Even though a considerable spread of diffu-

sion coefficients between the average value DA$$$B and the

maximum value DA$$$B,max may be encountered, the region

of >10% variation (plotted in cyan and warmer colors)

extends very narrowly along the phase transition line. For

most of the parameter space, the relative variation with this

estimate appears to be <5%.

It is interesting to compare this with the relative variation

of s values in the reaction boundary, as predicted by the

asymptotic boundaries in Gilbert-Jenkins theory (13) (de-

noted as diffusion-free velocity distributions dĉ=dv, custom-

arily using the symbol v to denote the constant sedimentation

velocity in linear geometry). The relative variation of s in the

reaction boundary may be assessed by comparing the width

and average of the asymptotic velocity distribution predicted

by Gilbert and Jenkins, i.e., ðvmax � vminÞ=vGJ , where

vGJ ¼
R

vðdĉ=dvÞdv=
R
ðdĉ=dvÞdv. This is shown in Fig. 5

B across the parameter space for the same system as Fig. 2

and Fig. 5 A. (Similar results are obtained when considering

the central second moment instead of the maximum spread,

which is approximately a factor of two smaller than the

maximum spread; data not shown). For the s values, similar

to the D values, significant polydispersity is encountered

exclusively in a narrow region close to the phase transition

line for concentrations cAtot,0 > KD.
DISCUSSION

The diffusional properties of the reaction boundary formed

during the sedimentation of rapidly interacting species is

a problem of long-standing interest in analytical ultracentri-

fugation. Even though the Lamm PDE of the interacting

system predicts the evolution of the concentration profiles

of all species, this alone is not completely satisfactory or

sufficient for the optimal planning and evaluation of SV

experiments on rapid protein interactions.

Current numerical algorithms and abundant computational

resources on desktop computers make routine direct fitting of

Lamm PDE solutions of interacting systems to experimental

data possible (6–9,24). However, the overwhelming majority

of studies in the literature does not apply this approach. This

may be attributed to the high susceptibility of the sedimenta-

tion boundaries to trace impurities and macromolecular

heterogeneity that impede the fit of PDE solutions (9). (An

analogous case is the common difficulty of fitting discrete

species models to noninteracting mixtures, which is rarely

possible, in contrast to the fit of sedimentation coefficient

distributions c(s) that can account for trace imperfections,

which is very successfully applied in the literature (25).) In

addition, the process of establishing the reaction scheme

by comparing the performance of various alternate hypothe-

sized Lamm PDE models would be very cumbersome. For

this reason, alternative, more flexible and robust approaches

must be developed for the data interpretation of interacting

systems in SV.
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Perhaps most importantly, when the Lamm PDEs are

used solely as computational recipes, they do not explain

the relationship between the physical sedimentation and con-

centration parameters that generate certain features in the

concentration profiles. Similarly, while they generate near-

exact concentration profiles for the set of underlying simula-

tion parameters, they do not allow generalizing of observ-

ables to different parameter sets, and an overview across

the parameter space of loading concentrations, for example,

would have to be assembled point-by-point. This impedes

optimal experimental design and robust data analysis. A

comprehensive overview of the observables as a function

of Lamm PDE parameters has not yet been reported, and,

therefore, major general features of the phase behavior of

rapidly interacting systems in SV have been overlooked

(see below).

With regard to the sedimentation boundary patterns

exhibited by rapidly reacting bimolecular systems, this pro-

blem was addressed recently by EPT (15). In EPT, physi-

cally based rules provide simple analytical relationships

that describe, in excellent approximation, the sedimentation

boundary patterns of the system across the parameter space.

Briefly, EPT distinguishes a dominant component, which

exists exclusively in the reaction boundary, from the second-

ary component, which provides the undisturbed boundary.

Both components must exhibit the same time-average s value

in the reaction boundary. This condition is sufficient to pre-

dict quantitatively the composition, amplitudes, and s values

of all sedimentation boundaries.

EPT also revealed an asymmetrically shaped phase transi-

tion line in the parameter space, where the role of dominant

and secondary component switches. At the phase transition,

anomalous sedimentation behavior exists (in that there is

only one single boundary at an s value intermediate to all

species), which is naturally explained in EPT by the require-

ment for all molecules to exhibit the same time-average s
value (20). EPT allows us to answer, with simple analytical

relationships, nontrivial questions such as: when does the

supernatant concentration (i.e., the undisturbed boundary)

reflect a good approximation of the concentration unbound

ligands? and When does the loading composition at the tran-

sition point reflect the complex stoichiometry?

In this work, we made use of the new analytical predic-

tions from EPT regarding the magnitudes of the concentra-

tion differences across the boundaries, to explore from

a new angle the problem of diffusion in the reaction

boundary. When the Lamm PDE is expressed in constituent

concentrations, gradient average diffusion coefficients natu-

rally appear for each component. They can be approximated

by linearized gradients across the boundary, and can be

further combined into a gradient average diffusion coeffi-

cient of all components. We have shown that the resulting

analytical expression, which relates all sedimentation, diffu-

sion, and concentration parameters, describes well the

overall diffusional spread of the reaction boundary, DA/B,.
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In conjunction with the sedimentation coefficient of the reac-

tion boundary from EPT, sA/B, it may be used to define

operationally, via the Svedberg equation, an apparent molar

mass MA/B of the effective particle. Not surprisingly, the re-

sulting values are between the weight-average molar mass of

the complete system and the molar mass of the complex, and

are often close to the weight-average molar mass of all

species in the reaction boundary.

Further, this approach enables us to obtain a rough esti-

mate of the heterogeneity of the diffusion coefficients in

the reaction boundary. Interestingly, it closely mirrors the

polydispersity of sedimentation coefficients in the asymp-

totic boundary predicted by Gilbert-Jenkins theory. Perhaps

contrary to conventional wisdom, both exhibit quite low

degrees of polydispersity under most conditions, with the

exception of a narrow band of concentrations close to the

phase transition region at concentrations >KD. This may

be explained by the fact that under conditions far from the

phase transition line, the high concentration of the undis-

turbed boundary leads to an offset of concentrations of the

secondary component across the reaction boundary. This

greatly diminishes the range of fractional saturation of the

dominant component, which governs the polydispersity of

both s values and D values. We believe it is essentially this

phenomenon that was already captured in the constant bath

approximation for the special case of very dissimilar-sized

molecules at conditions of excess small binding partner

(9), and led there to the perhaps surprising conclusion that

the evolution of the reaction boundary may be approximated

rather well with a single sedimentation and a single diffusion

coefficient.

To illustrate the performance of this and other data anal-

ysis models, we have simulated examples for Lamm PDE

solutions with different degree of expected polydispersity.

Fig. S1 (see Supporting Material) shows data under condi-

tion of equimolar cAtot ¼ cBtot ¼ 0.2 KD, an example for

conditions where heterogeneity should only be a few

percent; Fig. S2 shows conditions of cAtot ¼ cBtot ¼ KD,

which is an intermediate case; and Fig. S3 shows data for

cBtot ¼ 3 KD and cAtot ¼ 1.5 KD at the phase transition line

by EPT in the region of relatively strong polydispersity.

For all cases, the root-mean-square deviation (RMSD) of a

two-discrete-species model (one species for the undisturbed

and one for the reaction boundary) is ~%2%. However,

the D values for the reaction boundaries, and implicitly the

M values, are strongly affected by the polydispersity. This

is not surprising, given the well-known susceptibility of

the boundary spread to heterogeneity. Obviously, any imper-

fection that real data may exhibit would further bias the best-

fit values from such a discrete model.

Arguably the most important consequence of the reaction

boundaries exhibiting normal and relatively homogeneous

diffusion properties is the possibility of diffusional deconvo-

lution. The study of boundary s values and their isotherms

does not rely on boundary shapes, but instead relies only on
the mass transport accompanying the sedimentation bound-

aries. This mass transport can be measured in the plateau

region, and relates to the integral over the reaction bound-

aries, rather than their shape (15,26,27). Nevertheless, the

diffusional deconvolution is often a crucial advantage in

identifying the boundary components and resolving signal

contributions from impurities and aggregates.

Deconvolution of diffusion can be achieved, for example,

by approximating the sedimentation signal as a superposition

of Lamm PDE solutions of noninteracting species with a

continuous distribution of s values and D values. In the

c(s) method, the two are linked by a scaling law D(s) with

an adjustable parameter, typically using the average fric-

tional ratio f/f0 (10,21). Empirically, many applications of

SV to interacting systems in the literature have already illus-

trated that the diffusional deconvolution afforded by the c(s)

sedimentation coefficient distribution works very well also

when applied to sedimentation data of rapidly reacting

systems, and can yield remarkably high quality of fits (25).

This can be understood by considering that over the small

range of s values and D values encountered in the reaction

boundary, the exact scale relationship D(s) is not very impor-

tant. We note that the apparent frictional ratio f/f0 implied by

a literal interpretation of DA/B and MA/B, as if they were

molecular parameters, is not physically meaningful, and

assumes slightly smaller values than those of the free and

complex species. (For this reason, a c(s) approach where

the s axis is segmented with different f/f0 values attributed

to different regions, may be warranted to account separately

for the undisturbed and possibly other clearly visible bound-

aries; a variety of such models are implemented in SEDFIT

and SEDPHAT.)

In all cases of Fig. S1, Fig. S2, and Fig. S3, the fit with c(s)

in the standard form, with an adjustable frictional ratio

parameter, is very good although not perfect. With values

of ~1% or better, the RMSD is approximately a factor two

better than a discrete model. Due to the ill-posed nature of

the distribution analysis, the sedimentation coefficient distri-

bution does not exactly follow the asymptotic boundary

shapes predicted by Gilbert-Jenkins theory (shown as blue
area patches), but they were shown to be highly consistent

when using Bayesian regularization (28). Close to the phase

transition, even the standard maximum entropy regulariza-

tion can lead to the qualitatively correct bimodal reaction

boundary shape. As already shown in Fig. 3, the implicit

c(M) values of the reaction boundary peaks (using the

conversion of c(s) to c(M) based on a fitted f/f0 parameter

of the reaction boundary) follow closely the expected values

of Eqs. 9 and 10.

The size-and-shape distribution, most conveniently ex-

pressed as c(s,f/f0), promises an even more detailed analysis

accounting for polydispersity in both s and D. However,

additional peaks arise at s values and f/f0 values that are

not predicted by the theory (Fig. S1 D, Fig. S2 D, and

Fig. S3 D). The RMSD is improved by another factor two
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relative to the c(s) analysis, but the additional flexibility of

the size-and-shape distribution model seems to extract

features more detailed than warranted by the quality of the

approximations above for rapidly interacting systems. These

features are well defined, but other than the integrals over the

undisturbed and reaction boundary features being measures

of the mass balance, and the resulting relationship to the

overall weight-average s value sw and the average s value

of the reaction boundary sA/B, respectively, they currently

do not appear to be usefully interpretable.

In conclusion, diffusional deconvolution and analysis of

the reaction boundary spread appears to be conducted best

with the c(s) method. This work sheds further light on the

relationship of the sedimentation coefficient distributions

with the theoretically expected asymptotic boundaries and

EPT, and clarifies the meaning of the M values encountered

with the reaction boundaries in the transformation of c(s) to

c(M). Because the spread of the sedimentation coefficient

distribution is generally small, there will be little influence

from using different scaling laws in c(s), as long as they

have in some form an adjustable parameter for the magnitude

of diffusion.

Conceptually, it should be possible to fit isotherms of Mapp

values extracted from the reaction boundary of experimental

data of rapid interacting multicomponent systems to the

theoretical expressions of MA/B(cAtot,cBtot) based on Eqs. 9

and 10 to analyze binding constants. This would give an addi-

tional isotherm data set with independent information that

could be fit globally with appropriate interaction models,

in conjunction with the isotherm of sA/B(cAtot,cBtot),

sw(cAtot,cBtot), and the boundary amplitudes aundist(cAtot,cBtot)

and areact(cAtot,cBtot) introduced previously (16) and imple-

mented in SEDPHAT. However, at this point it seems that

the generally very high precision of s values and the robust-

ness of measuring the amplitudes of the multimodal bound-

aries would provide superior information, and perhaps not

too much would be gained in terms of further diminishing

the uncertainty of the derived estimate of the binding constant.

Another useful aspect of the framework presented here is

that it can support important qualitative conclusions about

the nature of the reaction. Knowing, for example, that the

MA/B value of the reaction boundary is very close to the

complex molar mass under conditions of 10-fold excess of

cAtot or cBtot over KD (Fig. 4) may provide an indicator for

the complex stoichiometry. The theoretical approach pre-

sented here should be straightforward to generalize to multi-

site binding, similar to the constant bath theory and EPT.
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