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ABSTRACT Accurate ligand-protein binding affinity prediction, for a set of similar binders, is a major challenge in the lead
optimization stage in drug development. In general, docking and scoring functions perform unsatisfactorily in this application.
Docking calculations, followed by molecular dynamics simulations and free energy calculations can be applied to improve the
predictions. However, for targets with large, flexible binding sites, with no experimentally determined binding modes for a set
of ligands, insufficient sampling can decrease the accuracy of the free energy calculations. Cytochrome P450s, a protein family
of major importance for drug metabolism, is an example of a challenging target for binding affinity predictions. As a result, the
choice of starting structure from the docking solutions becomes crucial. In this study, an iterative scheme is introduced that
includes multiple independent molecular dynamics simulations to obtain weighted ensemble averages to be used in the linear
interaction energy method. The proposed scheme makes the initial pose selection less crucial for further simulation, as it auto-
matically calculates the relative weights of the various poses. It also properly takes into account the possibility that multiple
binding modes contribute similarly to the overall affinity, or of similar compounds occupying very different poses. The method
was applied to a set of 12 compounds binding to cytochrome P450 2C9 and it displayed a root mean-square error of 2.9 kJ/mol.
INTRODUCTION
Accurate prediction of ligand-protein binding affinities plays

a crucial role in computer-aided drug design, in particular at

the lead optimization stage. The most commonly used struc-

ture-based method is still docking and scoring, due to its speed

and ease of use (1,2). Docking fulfills three roles: binding

mode prediction; distinguishing binders from nonbinders in

a large data set (i.e., virtual screening); and binding affinity

prediction of a smaller set of binders. Scoring functions are

generally reasonably good at predicting correct binding

modes, as has been shown in numerous studies of redocking

ligands to cocrystallized complex structures. However,

scoring functions are not always able to distinguish the crys-

tallographically correct binding mode, even if it is present in

the suggested docking solutions, from other suggested poses

(3–5). In addition, scoring functions have been shown to be

successful in enriching binders from a large data set of binders

and nonbinders, and therefore are useful for virtual screening

(3,5). However, using docking and scoring at a more fine-

tuned level, for accurately predicting binding affinities of

a set of binders, or rank compounds accordingly, has proven

to be a much more challenging task (3,4,6,7). The low success

rate is mainly because the protein is mostly kept rigid during

the docking procedure, allowing only the ligand to be fully

flexible. Currently, a number of commonly used docking

programs allow for some protein flexibility, either by soft-

ening the interactions in the active site, which introduces

side-chain flexibility, or by docking to an ensemble of protein

structures (8–11). However, for many target proteins the
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allowed protein flexibility is still too small to accurately

model ligand-induced changes of the protein conformation

or the existence of several protein conformations differently

favored by different ligands. This is the classical induced-fit

problem. In addition, the scoring functions do not consider

the possibility that multiple binding poses contribute to the

overall affinity of the ligand. Another challenge for the dock-

ing programs is how to treat solvation in the active site. Most

programs now offer the possibility to include static or partly

rotatable water molecules during the docking procedure,

and some programs even offer the possibility of predicting

whether certain water molecules should be taken into account

for each ligand (12–14). However, the number of water mole-

cules that can be treated this way is generally very low (up to

three waters), which can cause problems with larger binding

sites, and the overall increase in accuracy by including water

molecules is still doubtful. However, there are studies indi-

cating a general improvement in docking results, typically

in binding mode prediction (15,16). The consensus seems to

have shifted in favor of including static, or partly rotatable,

water molecules in docking calculations, but studies of the

actual benefit and molecular accuracy of including them seem

to indicate that the improvement is minimal, if any (17–19).

A number of studies have shown that refining docking

and scoring calculations by performing molecular dynamics

(MD) and free energy calculations starting from docked

poses can greatly increase the accuracy of binding affinity

predictions (7,20,21). Due to the much more elaborate proce-

dure and the simulation time needed for each compound,

only a small set of compounds, up to ~50, can be predicted

at the same time. This scheme is therefore only useful in

the lead optimization stage, where accurate binding affinity
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predictions of a smaller set of similar compounds are needed

for selection of compounds to be synthesized and for ration-

alization of particularly interesting interactions between the

compounds and the binding site. The improved accuracy

of the simulations is mainly due to the increased level of

molecular detail, using a flexible and explicitly solvated

protein. Problems do remain, such as the restriction of

sampling time, as no major structural changes will take place

during the simulation time that can realistically be used for

efficient binding affinity predictions. In connection with

this is the importance of using accurate starting structures,

which has been reported in a number of studies (7,21–23).

One of the free energy calculation methods that has been

studied extensively for this approach is the linear interaction

energy (LIE) method, introduced by Åqvist et al. in 1994

(24). The LIE method takes only the endpoints of binding

into consideration, i.e., the ligand free in water and the ligand

bound to protein, and estimates the solvation free energy at

these endpoints using linear response theory. The resulting

equation for the binding free energy becomes (25)

DGbind ¼ b
�D

VEL
lig�surr

E
protein
�
D

VEL
lig�surr

E
free

�

þ a
�D

VVdW
lig�surr

E
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�
D

VVdW
lig�surr

E
free

�
;

(1)

where VEL
lig�surr is the electrostatic interaction energy between

the ligand and its surroundings in complex with solvated

protein or free in solution. Likewise, VVdW
lig�surr is the van der

Waals interaction between the ligand and its surroundings.

The angular brackets denote an ensemble average and

a and b are coefficients. According to linear response theory,

the value of b should be 1/2. In the original applications of

the LIE method, b was set to 0.5 and a was parameterized

on a training set (24). Later applications lead to deviations

of the value of the parameters, changing with the properties

of the ligands (26). Due to the approximations introduced in

the derivation of the method, it is accepted that both b and

a can be parameterized on a training set for a certain target

to optimize the predictions for that target protein. There

have also been cases where it is necessary to include

a constant g or a parameter d for changes in intramolecular

ligand interactions upon binding to the protein (7,27).

Cytochrome P450s (P450s) are heme-containing redox

enzymes and among the most important proteins for the

metabolism of endogenous and exogenous compounds

throughout the biosphere (28). P450s are important to

consider, particularly in drug design, as ~75% of the drugs

currently on the market are metabolized by P450s before

being excreted from the body. To avoid the formation of

reactive metabolites, drug-drug interactions, and the problem

of interindividual differences in metabolic efficiency due to

genetic polymorphisms, it is important to understand the

interaction of the drug with different P450 enzymes (29).

Molecular modeling of P450s and predictions of binding

modes and affinities are being introduced earlier in the
drug discovery process today. However, P450s are difficult

proteins to model. The active sites can be very large and flex-

ible, as their evolutionary role is to metabolize and adapt to

a large range of compounds (30,31). There are also several

studies indicating that some P450s bind multiple ligands in

the active site during metabolism (32,33). Binding mode

prediction can therefore be difficult for compounds binding

to P450s, although some docking studies have been success-

ful in this regard (16,17,34,35). The criterion for success is

then often a maximum distance of the atom undergoing

metabolism from the heme-Fe, which says little about the

accuracy of the actual binding mode. The lack of multiple

ligand bound crystal structures makes experimental valida-

tion difficult. Accurate binding affinity predictions are even

more challenging, although ligand based methods, e.g.,

QSAR, have shown some success in this area (36,37).

In this study, the binding of a set of 12 thiourea-containing

compounds to cytochrome P450 2C9 was modeled, and

compared to experimental findings (38). The aim was to

accurately predict the known binding affinities for this set

of compounds. Docking was used to obtain starting struc-

tures for MD simulations, followed by free energy calcula-

tions using the LIE method. P450 2C9 has one of the

larger active sites of the human P450s for which crystal

structures have been solved to date. The number of possibil-

ities for different ligand conformations and orientations

within the active site is large in this protein, making it diffi-

cult to choose the correct binding mode. Therefore, several

binding modes were chosen based on the expected site of

interaction and/or metabolism for these compounds. Both

manually placed poses and docking poses fulfilling the

expected metabolism criteria were used for further simulation

and calculations. The results originating from the different

starting structures were used to estimate probabilities for

the binding modes and subsequently the energies were re-

weighted accordingly. This resulted in a new method to

combine multiple binding modes in free energy calculations,

more specifically the LIE method. Starting from a set of

potentially possible binding modes, this approach determines

the likelihood of all poses based on their intrinsic binding

affinity.
MATERIALS AND METHODS

Theory of combining interaction energies
from simulations of multiple binding poses

The free energy of binding according to the LIE method is the difference of

the solvation free energies of the free ligand, DGsol (free), and the ligand

bound to protein, DGsol (protein). The calculations of these two solvation

free energies for a given pose, i, can be calculated according to Eqs. 2 and 3,

DGi
solðfreeÞ ¼ b

D
VEL

lig�surr

Ei

free
þ a

D
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free
; (2)
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FIGURE 1 Scaffold of the thiourea-containing compounds. The R groups

for the different compounds are displayed in Table 1.
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where VEL
lig�surr and VVdW

lig�surr are the ligand-surrounding potential electrostatic

and van der Waals energies as before.

In general, a free energy difference between two states A and B can be

calculated from the contributions of different conformations or poses, i,

using a formalism reminiscent of the Jarzynski equation (39),

DGAB ¼ �kBT ln
X

i

½i�Ae
�DGi

AB
kBT ; (4)

where [i]A is the relative weight of conformation i in state A and calculated

as (40)

½i�A¼ e
�Gi

A
kBT

P
i

e
�Gi

A
kBT

: (5)

In this particular case, the states A and B represent the solvated and

unsolvated state of the ligand in protein. The relative weight i of each start-

ing conformation in the protein simulation can therefore be written as
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e
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; (6)

with DGi
solðproteinÞ calculated according to Eq. 3.

The overall electrostatic and van der Waals ligand-surrounding interaction

energy averages can then be calculated as
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which can then be used in the original LIE method (Eq. 1).

Because a and b appear already in Eqs. 2 and 3, the LIE equation needs to

be solved iteratively, as displayed in Scheme 1, below. The convergence

criteria for a and b were set to <0.001 units of change. As the relative

weights are completely determined by the energies and a given a and b,

this scheme does not add any additional degrees of freedom to the model

building. By adding multiple poses, additional simulation data is added

and the estimate of the ensemble averages in Eqs. 7 and 8 improves, but

there are no additional fitting parameters. The weights are not fitting param-

eters are but are determined based on the statistical mechanical formulae in

Eqs. 4 and 6. Scheme 1 offers a correct way of including data from indepen-

dent simulations in the LIE model construction.

Scheme 1

Step 1. Starting values of a and b are guessed.

Step 2. For all conformations i (i.e., poses in the protein) that have been

simulated, the solvation free energy, DGi
solðproteinÞ, is calculated

using Eq. 3.

Step 3. The relative weight of each conformation, i, is calculated using

Eq. 6.

Step 4. The overall interaction energy averages are estimated using Eqs. 7

and 8.

Step 5. New a- and b-values are calculated solving the original LIE equa-

tion, Eq. 1.

Step 6. The new a- and b-values are used to calculate new solvation free

energies for all conformations (i.e., go back to Step 2).

The iterations continue until the values of a and b converge.
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Starting poses

The scaffold of the set of compounds and the list of the side chains for each

compound are given in Fig. 1 and Table 1. These compounds contain both

an imidazole and a thiourea moiety. Imidazoles are known to efficiently

inhibit P450s by coordinating the heme iron atom (41,42). On the other

hand, studies show that thioureas can also be metabolized at the sulfur

atom (43,44). Examples of the various docking poses that were considered

as reasonable starting structures are displayed in Fig. 2. The positioning of

the imidiazole-N3 directed toward the heme-Fe constitutes the first two

docking poses, N_1 and N_2, with the rest of the molecule directed in

two different ways in the binding site. The third and fourth docking poses,

S_1 and S_2, direct the thiourea moiety toward the heme-Fe.

The structure of P450 2C9 cocrystallized with flurbiprofen, PDB code

1R9O (45), was used for the docking calculations and the following MD

simulations. Missing loops in the crystal structure were modeled-in for the

MD simulations, using MOE (46) and GROMOS05 (47). No crystallo-

graphic water molecules were included in the docking or the MD simula-

tions. All docking calculations were performed with GOLD version 3.2

(48,49). Both the GOLDScore and the ChemScore (50) scoring functions

were used to guide the docking and score the resulting docking poses. The

radius of the sphere in which the docking program tries to position the ligand

was set to 15 Å, centered in the middle of the active site. For the rest, default

settings were used. Fifty docking poses of each scoring function were saved

and visually inspected. Binding modes in accordance with N_1, N_2, S_1, or

S_2, with the expected point of interaction close to and directed toward the

heme-Fe, were selected for further MD simulation. The expected interaction

points for all of the compounds were the N3 of the imidazole and the S atom

of the thiourea group. For ligands where these poses did not appear in the top

50 poses of either GOLDScore or ChemScore, the pose was created by

superposition on a similar compound displaying that particular pose fol-

lowed by energy minimization or by restrained minimization, restraining

the distance between the point of interaction and the heme-Fe.

Simulation settings

The thiourea-containing compounds were parameterized using the GROMOS

force field, parameter set 45A4 (51), see Supporting Material for the

parameterization of the scaffold. All setup, simulations, and analysis were

performed with the GROMOS05 (47) and GROMACS 3.2.1 (52,53) biomo-

lecular simulation packages. Protein simulations of 2 ns were performed for

all the ligands and the ligand-surrounding interaction energies were inspected

for convergence. The interaction energies of the final 1 ns were used for aver-

aging and LIE model building and calculations. Pose N_1 was observed in the

docking solutions of all the ligands, and extra simulations were performed for

this pose starting from the same structure but using different random starting

velocities. The ligands were also simulated free in solution for 1 ns.

The simulations were performed using the following protocol. The

energy-minimized molecular structure was centered in a periodic truncated

octahedron solvated with ~16,700 (protein) and 1100 (free) simple-point

charge water molecules (54). One Cl� counterion was added at a random

position in the box of the protein simulation to obtain the same net charge



TABLE 1 The R-groups of the set of 12 thiourea-containing

compounds used in the study

Compound name R Structure

TH1 Methyl

TH2 Ethyl

TH3 1-Propyl

TH4 2-Propyl

TH5 cHexyl

TH6 Phenyl

TH7 p-Methylphenyl

TH8 p-Methoxyphenyl

TH9 p-Chlorophenyl

TH10 Methylphenyl

TH11 Methyl-

(p-methoxy)phenyl

TH12 Ethylphenyl
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of zero in the protein simulation as in the simulation of ligand free in solu-

tion. Initial velocities were randomly assigned according to a Maxwell-

Boltzmann distribution at 50 K. The system was gradually heated up to

298 K, increasing the temperature by 50 K every 20 ps, followed by 40 ps

of equilibration. During the heating up of the system, position restraints on

the heavy atoms were gradually released. Subsequently, 2 ns of simulation

was performed. For some of the systems, extended simulations were carried

out, to reach convergence of the interaction energies. A time step of 2 fs was

used and all bonds were constrained using the LINCS algorithm (55). The

simulations were conducted at constant temperature and pressure, using

the weak coupling algorithm (56). The solute and solvent molecules were

separately coupled to two temperature baths at 298 K with a relaxation

time of 0.1 ps. The relaxation time for the isotropic pressure scaling was

set to 0.3 ps with an isothermal compressibility of 2.807 � 10�5 atm�1

and a reference pressure of 1 atm. Nonbonded interactions within 0.8 nm

were calculated every time step using a pair list generated every fifth

time-step. Long-range interactions, up to 1.4 nm, were calculated every fifth

time-step. A reaction-field term was added to the energies and forces, with an

effective dielectric constant of 61.0 to represent the electrostatic interactions

outside the 1.4-nm cutoff (57). Solute coordinates were stored every 0.4 ps

for the solute and energies were stored every 0.02 ps.
RESULTS AND DISCUSSION

The GOLD and ChemScore docking scores are not free ener-

gies of binding and cannot be compared directly to the exper-

imental values or the values calculated by the LIE method

below. However, the ranking of the compounds based on

the scores can be expressed in terms of the Spearman rank.

The ranking of the compounds was unsatisfactory, display-

ing a Spearman rank of 0.30 for the docked N_1 poses, using

ChemScore.

Throughout the simulations the protein structure remained

well conserved with atom positional root mean-square

(RMS) deviations with respect to the crystal structure of, at

most, 0.3 nm for the backbone atoms. The inhibitors were

relatively mobile in the active site, although interconversions

of one pose to another during the simulations were not

observed.

A classic LIE model, only including the N_1 docked con-

formations (see Fig. 2 A) as starting structures for the simula-

tions, was constructed (Model 1). The last nanoseconds of the

2-ns simulations were used to calculate the energy averages.

The resulting model is displayed in Fig. 3. The resulting

LIE model has an RMS error of 5.4 kJ/mol (see Table 2),

and displays four compounds for which the predictions

deviate >6 kJ/mol. The Spearman rank is 0.52, an improve-

ment compared to the docking scores, which corresponds to

a reasonable ranking of the compounds.

Including multiple poses

Because of the lack of experimental information about

binding modes of the thiourea-containing compounds in

P450 2C9, and the large flexibility displayed by P450s,

several different starting structures were used to try to

improve the model. These conformations correspond to the

binding modes displayed in Fig. 2, A–D. For most of the

compounds it was not possible to find all the four different
Biophysical Journal 98(11) 2682–2691



FIGURE 2 Examples of the four different starting

conformations for the MD simulations. The heme is dis-

played in space-fill and is oriented in the same way in all

figures. The ligand is displayed in ball-and-stick, with

carbon atoms and the residues of the protein in sticks. (A)

N_1 pose of compound TH6. (B) N_2 pose of compound

TH1. (C) Pose S_1 of compound TH6. (D) Pose S_2 of

compound TH7.
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binding modes among the docking poses. These compounds

were therefore superposed on a similar compound displaying

that specific binding mode, followed by energy minimiza-

tion. The energy averages from the four different simulations

for each compound were combined according to Scheme 1.

Varying the starting values of a and b did not change the

new values of a and b significantly, indicating a robust

method. Typically 5–10 iterations were needed to reach

convergence of the values of a and b. The resulting model

(Model 2) displays a slightly improved RMS error and the

same Spearman rank compared to using only one pose.

However, studying the relative weights, [i]A, for each confor-

mation and compound, it is clear that for some of the

compounds the additional simulations using different start-

ing structures are relevant, leading to an improved model.

As an example, compound TH3, an outlier with an error of

8.8 kJ/mol in Model 1, displays an error of �2.2 kJ/mol in

Model 2, and the relative weights for this compound strongly

favor another pose than the one used in Model 1, namely

pose N_2. Model 2 displays four compounds with

errors >6 kJ/mol, two of which are the same compounds

as the outliers in Model 1, but with reduced errors and contri-

butions from more poses. On the other hand, two compounds

for which several poses are contributing show larger devia-

tions from experimental values in Model 2 than in Model 1.

To investigate whether the improvement of the model is

a result of additional sampling, two additional N_1 simula-
Biophysical Journal 98(11) 2682–2691
tions in the protein were performed for all the compounds,

starting with different randomly generated starting velocities.

A model using energy averages from the three N_1 simula-

tions was constructed using Scheme 1 (Model 3); see Table 2.

The value of b increases significantly from 0.11 to 0.28,

whereas a stays approximately the same. The RMS error

of this model is slightly decreased compared to the previous

models, 4.3 kJ/mol, and the Spearman rank increases some-

what, indicating a better ranking. Previous studies have

shown that a good LIE model is able to make predictions

within 1 kcal/mol (4.19 kJ/mol) of the experimental values

(25,58). Model 3 displays one big outlier (>7.5 kJ/mol),

compound TH3, which in Model 2 displayed a favorable

weight on pose N_2, which is not taken into account in

Model 3. Fig. 4 displays Model 3.
Effect of initial poses

The different docking poses that were selected were based on

data of moieties coordinating the heme iron. Not all of the

poses displayed the typical distance for atoms coordinating

the heme-Fe, but were positioned slightly further away.

To study whether a more pronounced coordination could

reduce the errors in the previous models, three poses were

positioned with the imidazole-N3 or the S of the thiourea

moiety within ~2.5 Å from the heme-Fe. The positioning

was achieved by minimizing the complex using a distance



FIGURE 3 LIE Model 1 for the thiourea compounds, including energies

from simulations of one docked pose (N_1). The thick line is not a correlation

line, but indicates the perfect correlation between experimental and calculated

values. The thin lines represent an error of 54.19 kJ/mol (1 kcal/mol). The

values are a ¼ 0.53 and b¼ 0.11. The RMS error is 5.4 kJ/mol. The marker

for compound TH8 falls outside the scale of the graph.
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restraint between the N or S and the Fe. Three different

simulations starting from different starting conformations,

corresponding to N_1, N_2, and S_1 (see Fig. 2, A–C), were

performed. The LIE model originating from using only the

restrained N_1 pose (Model 4) displays similar a and
TABLE 2 Summary of the results of the different LIE models

LIE

model No. Starting structures a b

RMS

error

(kJ/mol)

Spearman

rank

1 One pose

(docked); N_1

0.53 0.11 5.4 0.52

2 Four poses (docked

and superposed);

N_1, N_2, S_1, and S_2

0.50 0.11 4.7 0.52

3 Three poses (docked); 3*N_1 0.54 0.28 4.3 0.59

4 One pose (restrained); N_1 0.53 0.11 5.3 0.52

5 Three poses (restrained);

N_1, N_2, and S_1

0.54 0.39 6.1 0.10

6 Three poses (docked

and superposed);

N_1, N_2, and S_1

0.50 0.12 4.7 0.53

7 Maximum four poses

(only docked); N_1, N_2,

S_1, and S_2

0.53 0.20 3.7 0.59

8 Maximum six poses

(only docked); N_1, N_2,

S_1, and S_2

0.54 0.51 2.9 0.69

9 One pose (selected

from Model 8)

0.54 0.51 3.0 0.61
b values as by using the docked N_1 poses as starting

structures, but displays larger errors (up to 10 kJ/mol) for

three of the compounds. The RMS error is 5.3 kJ/mol.

Including all the three poses results, similarly to including

several simulations of N_1 docked poses, in a higher b of

0.39, whereas a stays approximately the same (Model 5).

However, there are again three large outliers, different from

the ones in Model 4, and the resulting RMS error is 6.1 kJ/mol,

with a very poor Spearman rank of 0.10. This can be compared

to Model 6, which includes the corresponding three docked

poses, and which results in a better model with a RMS

error of 4.7 kJ/mol, and Spearman rank of 0.53. Interestingly,

these results indicate that it is more favorable to start simula-

tions from docked poses similar to the expected binding

mode, than starting from conformations that have been forced

into the binding site, to strictly fulfill a certain hypothesis.

The differences in the quality of the resulting models are

significant.

Following the reasoning that it is more favorable to start

simulations from docked poses, the model with four different

docked poses (Model 2) was revised. As mentioned above,

a representative of each of the four conformations for each

compound was not always available in the docking poses.

Therefore some starting structures were modeled by super-

position on a similar molecule, followed by energy minimi-

zation. In Model 7, only docked poses have been included,

which resulted in a varying amount of simulations for the dif-

ferent compounds, ranging from one to three. In this model,
FIGURE 4 LIE Model 3 for the thiourea compounds, including energies

from three simulations originating from one docked pose (N_1), but using

different starting velocities. The thick line is not a correlation line, but indi-

cates the perfect correlation between experimental and calculated values.

The thin lines represent an error of 54.19 kJ/mol (1 kcal/mol). The values

are a ¼ 0.54 and b ¼ 0.28. The RMS error is 4.3 kJ/mol.

Biophysical Journal 98(11) 2682–2691
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a and b are 0.53 and 0.20, respectively. All predictions are

within 5.5 kJ/mol of the experimental values, the Spearman

rank is improved to 0.59, and the RMS error is reduced to

3.7 kJ/mol. This again indicates that forcing the compounds

in a specific pose may actually worsen the prediction and that

the docking program is able to generate suitable starting

positions, even if the scoring function does not correctly

rank the different poses or the different compounds. It also

indicates that in this particular case, the induced fit effect is

not very large. Docking in a rigid structure followed by fully

flexible MD simulations is sufficient to obtain improved

affinity predictions.
FIGURE 5 LIE Model 8 for the thiourea compounds, including energies

from simulations of maximum six docked poses. The thick line is not a corre-

lation line, but indicates the perfect correlation between experimental and cal-

culated values. The thin lines represent an error of 54.19 kJ/mol (1 kcal/mol).

The values are a¼ 0.54 and b¼ 0.51. The RMS error is 2.9 kJ/mol. The only

big outlier is compound TH4, with an error of 6.5 kJ/mol.

TABLE 3 Experimental versus calculated free energies

of binding for the best model, Model 8

Compound

Experimental

DG (kJ/mol)*

Calculated

DG (kJ/mol)y
Error

(kJ/mol)

TH1 �26.3 �27.0 �0.7

TH2 �27.5 �23.6 3.9

TH3 �31.0 �32.6 �1.6

TH4 �28.9 �35.3 �6.4

TH5 �38.1 �34.0 4.1

TH6 �37.1 �35.0 2.1

TH7 �37.6 �34.5 3.1

TH8 �35.8 �36.4 �0.5

TH9 �43.0 �43.2 �0.2

TH10 �31.9 �34.7 �2.8

TH11 �28.6 �29.7 �1.1

TH12 �30.2 �28.9 1.3

*Calculated from IC50 values.
yCalculated using Eq. 1, in which the ensemble averages are calculated as

a weighted sum over different simulations. The relative weights for simula-

tion are given in Table 4.
Final model building

All the data, originating only from simulations of docked

poses, were then included in one model, resulting in six

possible conformations for each compound (Model 8).

Respecting the criterion that only docked poses should be

used, the data set resulted in a range of three-to-five energy

averages for each compound. In this model, b increased to

0.51, very close to its theoretical value of 1/2, and a remained

at a value of 0.54, very close to the a-values of the other

models in Table 2. The fact that b increased to 0.51 in Model

8 is reassuring in the sense that it confirms the LIE theory.

The RMS error decreased to 2.9 kJ/mol, unusually good

for this type of calculation, and the Spearman rank increased

to 0.69, which corresponds to a good ranking. Fig. 5 displays

Model 8 and Table 3 displays the experimental and calcu-

lated values of this model. A Leave-One-Out cross validation

was performed for Model 8. The resulting RMS error is

3.6 kJ/mol, which indicates a robust model.

Compound TH4 is the only outlier, with an error of

6.5 kJ/mol. The matrix of the relative weights for the differ-

ent conformations, [i]A, is shown in Table 4. As can be seen,

it is mostly the simulations started from the N_1 conforma-

tion that contribute. The exceptions are compounds TH2,

TH3, and TH8, where the N_2 conformation contributes

significantly, as was observed in the previous models. For

TH2 and TH8, multiple binding modes contribute similarly

to the overall affinity. This may indicate that the loss of

translational and rotational entropy upon ligand binding is

different for these compounds, which may go against the

implicit assumption in LIE that the entropy loss upon

binding is similar for similar compounds. For compound

TH7, the S_2 starting structure contributes the most. Interest-

ingly, for the outlier TH4, there is only one docked pose

taken into account in the calculations. The reason for this

is that no other docking solutions, similar to the ones

described in Fig. 2, were available. It is possible that, with

the increased b-value of this model, the sampling of the

TH4 compound is insufficient. Simulations using the starting

structure S_1 do not contribute significantly for any of the

compounds and could be left out, without significant changes

to the model. This indicates that in a setup in which docking
Biophysical Journal 98(11) 2682–2691
poses were not manually selected but all poses were

included, the irrelevant poses will not affect the model.

One additional model, Model 9, was constructed using

only the single most likely pose according to Table 4.

A similar model is obtained with a RMS deviation error of

3.1 kJ/mol and a Spearman rank of 0.61. This shows that

reasonable LIE models may be obtained using single simula-

tions. The proposed method automatically selects the most

appropriate pose from a number of suitable propositions



TABLE 4 Relative weights of the energies,½i�sol
protein, originating

from the simulations with different starting structures, i,

contributing to the total energy in Model 8

Compound

Pose

N_1 1

Pose

N_1 2

Pose

N_1 3

Pose

N_2

Pose

S_1

Pose

S_2

TH1 0.0042 0.24 0.74 0.014 —* —*

TH2 0.17 0.23 0.054 0.54 —* —*

TH3 0y 0.0025 0.011 0.98 —* —*

TH4 0.97 0.0067 0.025 —* —* —*

TH5 0.17 0.80 0.035 —* —* —*

TH6 0.0085 0.91 0.047 —* 0.034 —*

TH7 0.017 0y 0.0040 —* —* 0.94

TH8 0.0087 0.60 0.041 0.34 0.0098 —*

TH9 0.11 0.54 0.35 —* —* —*

TH10 0y 0.95 0.0010 —* 0.048 —*

TH11 0.57 0.022 0.41 —* —* —*

TH12 0.41 0.026 0.56 —* —* 0.0059

*Conformation is not included in the energy calculation.
yRelative weight <0.001.
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from docking. For compounds TH2 and TH8, the predictions

in Model 9 deteriorate slightly (deviations of 4.5 kJ/mol and

1.2 kJ/mol, respectively), because multiple binding modes,

which are relevant for these compounds, are no longer

included in Model 9.

It should be stressed that, even though our models seem

able to include various poses, care should be taken to keep

a balanced amount of poses for all the compounds, as

a and b are intricately connected to the eventual relative

weights of the poses. This was seen for compound TH4,

an outlier in Model 8, where only one of the four different

poses was sampled. That is, if insufficient poses, or poses

with a very different balance between electrostatic and van

der Waals energies are included for a compound, this will

lead to variations of a and b, which subsequently leads to

different relative weights of the poses.

In summary, we have introduced an iterative scheme that

allows us to correctly include multiple independent MD

simulations to obtain weighted ensemble averages to be used

in the LIE formalism. This can be of importance for predic-

tions in lead optimization programs if binding modes have

not yet been determined experimentally. Nervall et al. (22)

showed that the LIE method could distinguish between

two distinct clusters of suggested docking poses of ligands

in HIV reverse transcriptase. One of the clusters was close

to a crystal structure conformation and considered to be

correct. Scoring functions failed to predict the correct

binding mode, whereas by using the optimized LIE parame-

ters (27) the LIE model could predict the correct binding

mode for each ligand in the set to have a more favorable

free energy of binding. Our proposed scheme makes the

initial pose selection less crucial for further simulation, as

it automatically calculates the relative weights of the various

poses. It also leaves the possibility open of multiple binding

modes contributing similarly to the overall affinity, or of

similar compounds occupying very different poses. It appears

that the docking program is able to properly identify poten-
tial binding poses, even if the scoring function does not rank

these appropriately. The proposed scheme weights the

various poses based on thermodynamics and includes the

information of all poses in the affinity prediction.
CONCLUSIONS

We have proposed a new iterative scheme that calculates

weighted ensemble averages from multiple MD simulations

to be used with the LIE method for binding affinity predic-

tions. The accuracy of an initial, classic LIE model was

significantly increased for a set of 12 thioureas binding to

cytochrome P450 2C9. The best model displayed a RMS

error of only 2.9 kJ/mol and was obtained by using all MD

data starting from docked conformations. We also observed

that using starting conformations from docking experiments

leads to better models than using manually constructed or

restrained starting poses. An increase in the overall sampling

was seen to lead to an increased b-value, toward the theoret-

ical value of 1/2.
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