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Interplay between Intrinsic Noise and the Stochasticity of the Cell
Cycle in Bacterial Colonies
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ABSTRACT Herein we report on the effects that different stochastic contributions induce in bacterial colonies in terms of protein
concentration and production. In particular, we consider for what we believe to be the first time cell-to-cell diversity due to the
unavoidable randomness of the cell-cycle duration and its interplay with other noise sources. To that end, we model a recent
experimental setup that implements a protein dilution protocol by means of division events to characterize the gene regulatory
function at the single cell level. This approach allows us to investigate the effect of different stochastic terms upon the total
randomness experimentally reported for the gene regulatory function. In addition, we show that the interplay between intrinsic
fluctuations and the stochasticity of the cell-cycle duration leads to different constructive roles. On the one hand, we show
that there is an optimal value of protein concentration (alternatively an optimal value of the cell cycle phase) such that the noise
in protein concentration attains a minimum. On the other hand, we reveal that there is an optimal value of the stochasticity of the
cell cycle duration such that the coherence of the protein production with respect to the colony average production is maximized.
The latter can be considered as a novel example of the recently reported phenomenon of diversity induced resonance.
INTRODUCTION
Living cells are subjected to fluctuations with different inten-

sities, scales, and origins. Randomness in genetic expression,

cell-to-cell variability of the internal biochemical machinery,

diversity in proliferation times, and disorder/noise in the

medium compose, altogether, the uncertain environment

in which cells are born, further mature, and die. Whether

cells simply offer resistance to, or contrarily benefit from,

noise is an open question with a major biophysical interest.

Ultimately, variability (randomness) is crucial to life: life

promotes variability and variability secures life (1).

Mostly during this last decade, the role of cellular-based

fluctuations, singularly those concerning the effect of

randomness in gene expression, has been reviewed in detail

(2–7). In particular, many efforts have been devoted to discern

between the so-called intrinsic and extrinsic components of

noise and to assess their distinctive effects and origins

(5,8,9). This has been made possible, in the main, through

the use of dual reporter techniques implemented both in

prokaryotes (9) and eukaryotes (6). Parallel to the interest in

a better understanding of the origin and characteristics of

cell-based noise, more and more attention has been drawn

toward the elucidation of the eventual biological functionality

that this randomness might have. Whether the important

observable is the noise frequency, rather than its strength,

was an important issue raised by Austin et al. (10), with the

ultimate goal to map the structure of gene networks to noise

spectrum. The somehow inverse question, to see whether

both internal and external noise effects could be effectively
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suppressed in appropriately designed genetic architectures

(negative-feedback loops), was formulated by Dublanche

et al. (11). Still at the level of gene circuitry, the possibility

to construct noise-based switches and amplifiers for gene

expression had been previously addressed by Hasty et al.

(12). The issue of noise in differentiation dynamics, and in

particular the role it might play in selecting cells for compe-

tence, has been very recently raised by Süel et al., and Maamar

et al. (13,14). In addition, the method by which promoter-

mediated transcriptional noise drives phenotypic variability

has been characterized by Blake et al. (15). Finally, with

a different twist, the possibility of using extracellular noise

to induce stochastic synchronization and promote coherence

in multicellular environments was claimed by Zhou et al.

(16) and more recently by Ullner et al. (17).

In this context, the stochastic dynamics of the gene regu-

latory network controlling the cell cycle has been studied

from different perspectives, including its robustness and

noise tolerance (18–21), the elucidation of cell-cycle depen-

dent pathways affecting the fluctuations in gene expression

(22), and the contribution of intrinsic and extrinsic compo-

nents to the variability of the cell cycle (23). Yet, somehow

surprisingly, less attention has been paid to the role played

by the variability induced by the inherent stochasticity of

the duration of the cell cycle in cell processes, particularly

in protein expression. The episodes of cellular life are

started/terminated by rather unpredictable events of cell

division. In this respect, fluctuations in the duration of

the cell cycle should be viewed, on the timescale of an

evolving population, as long-memory fluctuations, similar

to other random effects related to life-lasting constitutive

components of the cell, and very different from the short-

memory of the biochemical noisy processes.
doi: 10.1016/j.bpj.2010.02.045
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In this article, we address the role assumed by the interplay

between these two stochastic contributions in regard to protein

production in bacterial colonies. We show that cells may profit

from the disparity of scales of the different components of the

total noise. To that end, we model a well-characterized simple

experimental setup: the dilution protocol. This approach

supposed a major breakthrough in the research of the function-

ality of genetic networks (24). In short, it is a protein regula-

tion/expression experiment where cells are filled with

repressor molecules that inhibit the expression of a protein.

Repressor molecules dilute after cell division, and both

protein and repressor levels are registered by fluorescence

microscopy as a function of time. This simultaneous charac-

terization allows us to quantify, at the single-cell level, the

relation between the repressor concentration and the protein

production rate: i.e., the gene regulatory function (GRF).

Within this framework, our goals are twofold. First, by

taking such a reference experimental system as a calibrating

tool, we implement a faithful modeling of the dilution

method that includes the gene regulation/expression pro-

cesses. As a result, we confirm the Hill-like functionality

of the GRF and analyze, by means of in silico experiments,

the effect of distinct stochastic contributions. Second, we

unveil what we believe to be novel constructive effects arising

from the interplay between gene-based noise and variability in

cell proliferation. As shown below, such interplay counterin-

tuitively contributes to set an optimum phase of the cell cycle

for which noise in protein concentration is minimal. It might

also drive the coordination of multicellular systems by coher-

ently regulating protein production.

The article is organized as follows. The Methods: Modeling

Approach section introduces our modeling and it is separated

in two subsections that respectively address the gene regula-

tion scheme and the description of the cell cycle duration

and its fluctuations. The Results section is divided into three

main subsections—the first one reporting numerical experi-

ments to reproduce the gene regulatory function and the anal-

ysis of its stochastic contributions, and the last two featuring

original aspects of the constructive interplay between intrinsic

and cell cycle based noises. Finally, in the Discussion we

summarize our main conclusions and propose different exper-

iments to test our predictions.
FIGURE 1 Schematic representation of the reactions driving protein

expression. The operator controlling gene expression has four possible occu-

pancy states (Oøø, Oø*, O*ø, and O**). Transitions between those states

depend on binding events of repressor molecules (R2) after monomer (R)

dimerization. Arrows representing possible reactions have been labeled by

their kinetic rates (see the expressions in Eq. 2). All reactions are assumed

to be reversible except for that of protein P production. The latter may occur

only if no repressor dimer binds to the operator.
METHODS: MODELING APPROACH

By tracking the behavior of individual cells of a colony subjected to protein

regulatory processes and molecular dilution due to division events, we aim at

modeling the experimental procedure that permits us to obtain the GRF at

the single cell level (24). In regard to the timescales, two distinctive

modeling modules can be distinguished.

First, protein expression is regulated within each cell by binding and

unbinding events of repressor molecules to gene operator sites. Second, at

a larger timescale, cells undergo division as a consequence of the cell cycle

progression. These events dilute the concentration of repressor molecules by

halving them between the cell and its progeny. In addition, the cell-cycle

phase modifies the gene regulatory properties by changing, due to cell matu-

ration, the protein production rate.
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Gene regulation and protein production

Fig. 1 summarizes the reactions that account for gene regulation and protein

production in our model following the experimental gene construct of Rose-

nfeld et al. (24). Despite the right operator of bacteriophage l promoter

has three binding sites, only two of them are accessible to cI repressor mole-

cules. Thus, we effectively describe the operator of the gene that encodes for

protein P (CFP fluorescent protein) to have two binding sites. The latter can

be either empty (Ø), or occupied (*), by repressor molecules (R, i.e., cI

protein), in dimer form (R2). That is, there are four possible occupancy states

of the operator. We represent these by Oij, with i and j indicating the binding

sites. We note that the cooperativity exponent of the gene regulatory func-

tion (~2 in experiments) does not depend on the functional form of the

repressor (i.e., either monomeric or multimeric) but on the number of

binding sites of the operator accessible to it.

Although basal expression rates can be always expected, experiments

reveal that protein expression under the control of such promoter is tightly

regulated by repressor molecules; consequently, we consider protein produc-

tion only if the operator is at state OBB, i.e., a nonleaky system. We further

assume an effective description for protein production such that transcription

and translation processes are summarized by a single step with an effective

reaction rate, kP
þ, which depends on time (see below). Thus, protein expres-

sion is described by means of the irreversible reaction,

OBB /
kþ

P
OBB þ P: (1)

On the other hand, the reactions that describe the reversible repressor

dimerization dynamics and the binding-unbinding events read

R þ R #
kþ

R2

k�
R2

R2; R2 þ OBB #
kþ

O�B

k�
O�B

O�B;

R2 þ OBB #
kþ

O
B�

k�
O

B�

OB�; 2R2 þ OBB #
kþ

O��

k�
O��

O��:

(2)



FIGURE 2 Stochasticity in the cell cycle. (A) Due to cell divisions, the

repressor concentration decreases over time, leading to an increase in protein

production. The duration of the cell cycle is a stochastic variable that

promotes cell-to-cell variability in protein production over time. (B)

Comparison between a deterministic and a stochastic dynamics in terms

of the colony size (number) over time. In the deterministic dynamics

(segments), all cells divide at the same time, leading to a steplike behavior.

Conversely, the stochastic dynamics introduce a scattering in the number of

constituents that increases over time. Yet, the average follows the determin-

istic behavior. (C) Density plot indicating the probability of finding a cell in

a particular phase of the cell cycle as a function of time (f¼ 0/100 stands for

the beginning/end of the cell cycle). This quantity reaches a stationary state

after some cell cycles (~ht/st) only if the dynamics of the cell cycle is

stochastic. (Inset) Probability (in log scale) once a stationary state is reached

(dashed line). The exponential decay is characteristic in age-balanced

bacterial cultures (see text).
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For the sake of simplicity, and following previous modeling approaches

of the l right operator (25–27), we disregard transitions of the operator state

from one to two (and correspondingly two to one) occupied binding sites

(see Fig. 1). Moreover, the experimental results reveal that protein degrada-

tion (both that of the repressor R and the protein P) is negligible within the

temporal scale of our interest (several cell cycles, i.e., hours) and conse-

quently is ignored hereafter in our scheme. Therefore, despite there being

seven species in our model, the number of kinetic equations can be reduced

up to five by invoking the conservation laws of

R þ 2R2 þ 2OB� þ 2O�B þ 4O�� ¼ LRV;

OBB þ O�� þ O�B þ OB� ¼ LOV;
(3)

where V x 1.5 mm3 stands for the cell volume (by taking into account that

the cell volume is V x 1.5 mm3, thus lnM x 0.9 molecules/cell) in Escher-
ichia coli and LR and LO denote the total concentration of repressor mole-

cules and operator sites (genetic material), respectively. The expressions in

Eq. 3 indicates that, during a cell cycle, the amount of repressor molecules

and the number of operator binding sites (gene copies) do not vary. Note that

these enforce the constraint that replication of the genetic material within

a cell cycle does not contribute to an increase of the operator binding sites.

Yet, we include this effect in an effective manner by means of the aforemen-

tioned temporal dependence of the protein production rate kP
þ as we detail

below.

The unavoidable intrinsic fluctuations associated to the reduced and

discrete number of the operator states, proteins, and repressing molecules

can be implemented in our model by deriving the corresponding Master

equation from Eqs. 1 and 2. This probabilistic equation can be exactly

solved (numerically) using a modified Gillespie algorithm that takes into

account the fact that the reaction rates, i.e., kP
þ, depend on time (28). Alter-

natively, if stochastic effects are still expected to be relevant but the

number of molecules/states is not too small (N being the number of mole-

cules/states: N T 10), an approximated, yet accurate, description is

possible using Langevin equations obtained from the Master equation by

means of expansion methods. In particular, the so-called Kramer-Moyal

expansion (29) leads to the stochastic differential equations (interpreted

in Ito sense)

_cP ¼ kþP cOBB
þ xP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþP cOBB

V

r
;

_cR ¼ �2kþR2
c2

R þ 2k�R2
cR2
þ 2xR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþR2

c2
R þ k�R2

cR2

V

s
;

_cOB�
¼ �k�OB�

cOB� þ kþOB�
cOBB

cR2

þ xOB�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�OB�

cOB� þ kþOB�
cOBB

cR2

V

s
;
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B
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�O�B cO�B þ kþO�B cOBB

cR2

V

s
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_cO�� ¼ �k�O��cO�� þ kþO��cOBB
c2

R2

þ xO��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�O��cO�� þ kþO��cOBB

c2
R2

V

s
;

(4)
where cX stands for the concentration of species X and xX denotes uncorre-

lated white noise terms with zero mean:

hxSðtÞi ¼ 0;�
xXðtÞxX

0
�
t
0�� ¼ dX;X

0 d
�
t � t

0�
:

We make use of these alternative descriptions (Master and Langevin

equations) throughout the text.

Cell division and cell cycle

In the reference experimental system, extrinsic noise is claimed to encom-

pass fluctuations in cellular metabolites, ribosomes, and polymerases.

Although intrinsic fluctuations has been proved to have short correlation

times (white noise), extrinsic fluctuations, often the dominant source of

biochemical noise, exhibit long correlation times of the order of the cell

cycle (24). As a matter of fact, other sources of long-time correlated extrinsic

fluctuations can be envisioned. As time evolves, cell lineages develop asyn-

chronously in a colony, thus reproducing the stochastic nature of the cell

cycle (see Fig. 2 A). In turn, the dilution of proteins of the regulatory process

under consideration is affected at the timescale of the cell cycle by such sto-

chasticity (23). This perturbation can be further transmitted over generations

through the halving processes. Herein, we focus on the effect induced by the

randomness of the cell-cycle duration and the division processes. We imple-

ment those events as follows. We define an internal clock for each cell and

a corresponding variable t ˛ [0, t], which denotes the time lasted up to

completion of a cell cycle. At division time, t, the clock is reset, repressor

molecules unbind from the operators, the gene copies duplicate and are
Biophysical Journal 98(11) 2459–2468
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distributed between the original cell and its daughter, repressor molecules

and proteins are binomially distributed, and the duration of their cell cycles

are newly and independently assigned. We point out that volume change

(cell growth) is disregarded in our modeling. Yet, we consider that the dupli-

cation of the cellular material during the cell cycle effectively modifies the

protein production rate as experimentally reported (24). We implement

such temporal dependence of the production rate as

kþP ¼ kþP ðtÞ ¼ k02
t
t:

That is, cell maturation exponentially modifies the protein production rate,

kP
þ, by doubling it from k0 at cell birth up to 2k0 at division time. As for the

stochastic duration of the cell cycle, we propose a simple rule,

t ¼ gtdet þ ð1� gÞtsto;

where tdet and tsto denote, respectively, the deterministic and stochastic

components of the duration of the cell cycle, and g ˛ [0, 1] is a parameter

that weights their relative importance, i.e., g ¼ 1/0 stands for a fully deter-

ministic/stochastic duration of the cell cycle. Note that we retain the fact that

before division, cells must mature and grow and consequently the cell cycle

must have a minimum duration gtdet. The stochastic part, tsto, is supposed to

be exponentially distributed and its probability density reads (29)

rðtstoÞ ¼
1

tdet

e�
tsto
tdet :

The exponential decay can be justified by means of probabilistic argu-

ments because it accounts for the time between random events that occur

continuously and independently at a constant average rate (i.e., the Poisson

processes that fairly describe many enzymatic reactions). In fact, as shown

below (Fig. 2 C), the exponential distribution is able to reproduce the

exponential decay of the cell-age distribution in bacterial colonies as exper-

imentally reported. Such two phase approach for describing the cell cycle

duration has been similarly hypothesized by other researchers and has

been experimentally tested in bacteria (e.g., Staphylococcus albus) (25,26).

According to these definitions, the parameters that are usually character-

ized experimentally in relation to the duration of the cell cycle, i.e., the

average duration and standard deviation, read

hti ¼ tdet;

st ¼ ð1� gÞtdet:

Moreover, in terms of hti and st, the probability density for the duration

of the cell cycle becomes fully specified,

rðtÞ ¼ qðt � hti þ stÞ
est

e�
t�hti

st : (5)

In the previous equation, t ˛ (0, N) and q($) stands for the Heaviside

step function. Following the experiment of Rosenfeld et al. (24), we take

t ¼ (50 5 10) min for the calibration of the parameters of our model:

tdet¼ 50 min and g¼ 0.8. Fig. 2 B shows the comparison between determin-

istic (synchronous) and the proposed stochastic (asynchronous) dynamics

for the temporal evolution of a bacterial colony in terms of the number of

components. The agreement between the proposed cell-cycle model and

experiments can be assessed by examining some statistical properties of

the colony growth. A particularly relevant quantity is the probability p(f)

of finding at a particular time a cell at phase f of the cell cycle (f¼ 0: begin-

ning of the cell cycle; f ¼ 100: end of the cell cycle), which is the so-called

cell-age distribution. Evolving from a single cell by duplication, Fig. 2 C
shows p(f) by means of a density plot. We note that a stationary state

(age-balanced population) is reached after ~hti/st cell cycles. In a determin-

istic synchronous dynamics, a stationary state is obviously never obtained.

Once at the steady state (dashed line), p(f) exhibits an exponential decay

(inset plot),
Biophysical Journal 98(11) 2459–2468
pðfÞ ¼ N 21� f
100;
where N is a normalization constant, indicating that in an age-balanced

colony the fraction of bacteria at the beginning of the cell cycle doubles

that at the end of the cycle, as observed in experiments (25,26,30). This

sort of counterintuitive effect is because for every cell that divides (end of

the cell cycle), two new cells start their cell cycle. Importantly, we stress

that the reported constructive role of the stochasticity of the duration of

the cell cycle does not depend on the specific functional form of r(t) as

long as it reproduces asynchronous stochastic divisions in a realistic way

(25,26,31).
RESULTS

Parameters calibration: protein dilution
experiments

Following the experimental prescriptions, we calibrate the

parameters of our model by considering a single chromo-

somal integrated gene copy. According to the experimental

results, the colony-averaged GRF that specifies the protein

production rate as a function of the concentration of repressor

satisfies a Hill-like functional relation,

GRFðLRÞ ¼
K

1 þ
�

LR

b

�n;

with measured values K ¼ (244 5 17)nM/ min, b ¼ (55 5

10)nM, and n ¼ 2.4 5 0.3, for the unrepressed protein

production rate, the repressor concentration at half-maximal

expression, and the cooperativity exponent, respectively.

To obtain the corresponding in silico GRF in our in silico

experiments, we first calibrate our model and estimate its

constants using experimental data (see Supporting Material).

A Gillespie-like simulation starts with a single cell filled with

~7.5 � 103 repressor molecules (~8.3 mM). Such concentra-

tion avoids protein production as prescribed by the experi-

mental setup. We then track in time the concentration of

this species together with the protein production at the single

cell level. As time evolves, the concentration of repressor

within a cell diminishes due to division, thus increasing

the probability of the operator to be in the unbound state,

Oøø, and then triggering protein production. Fig. 3 A shows,

for a number of cell lineages, the typical outcome of an

in silico experiment. The GRF was obtained by computing

as a function of the repressor concentration the averaged

protein production (in time and over cells within the same

generation, i.e., cells that have undergone the same number

of divisions). Fig. 3 B depicts the GRF obtained in our

modeling and its fit to a Hill function. We obtain, in agree-

ment with experimental results, the valuesbK ¼ ð245:56 5 0:05ÞnM=min;

bb ¼ ð54:1 5 0:06ÞnM;

bn ¼ 2:416 5 0:005:
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FIGURE 3 Protein production and gene regulatory func-

tion in the in silico dilution experiments. (A) Protein and

repressor concentration as a function of time. Different

lines indicate a number (16) of representative cell lineages.

The trajectory for a particular cell lineage has been high-

lighted. (B) Gene regulatory function obtained by means

of the protein dilution process: individual cells (shaded

crosses), colony average (points with error bars), and

fit to Hill function (long-dashed line). (C) Same as

panel B when variability in the production rate is

considered (see text).
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As mentioned above, the cooperativity exponent obtained

in experiments requires the gene operator to interact with two

repressing molecules independently of its multimeric form.

That is, if one operator site is suppressed, then bn decreases

and bb increases (data not shown), in agreement with exper-

iments that introduce a point mutation in the l right operator

(VN mutation) (24).

Importantly, we point out that the error bar of the GRF is

in fact very small when compared to experiments. This indi-

cates that the experimental deviation, with respect to the

average value, cannot be attributed to short memory stochas-

ticity (intrinsic noise) or to the long memory fluctuations

(diversity/variability) that are introduced by the binomial

partition of proteins and repressors and/or the stochasticity

of the cell cycle duration. To clarify the origin of the large

fluctuations in the GRF, we perform an in silico experiment

that effectively introduces cell-to-cell variability in the

protein production rate, which is done by trying to mimic

the role played by other extrinsic fluctuations in the reference

experiment. Such an in silico experiment is implemented as

follows. By assuming that extrinsic randomness is caused by

a large number of independent factors that directly modify

the gene production rate during the cell cycle (metabolites,

ribosomes, and polymerases among others), we invoke the

central limit theorem (29). We then introduce a quenched

stochastic perturbation to the protein production rate, k0,

that is Gaussian distributed, with standard deviation as

experimentally reported for the unrepressed production

rate: 517 nM/min. At division time, that value for the cell

and progeny is updated. This effectively leads to long

memory effects. Results are shown in Fig. 3 C. Lacking

this sort of extrinsic noise, because the Gaussian fluctuations

of k0 average out, the average behavior (with respect to the

previous case) does not change. Yet, the noise of the GRF

increases notably for low repressor (if protein production
leaking is considered, then the noise in the GRF spreads to

large repressor concentration too (data not shown)),bK ¼ ð245:7 5 0:5ÞnM=min;

bb ¼ ð54:0 5 0:6ÞnM;

bn ¼ 2:40 5 0:05:

Alternatively, large fluctuations in the GRF could also

emerge in plasmids systems due to binomial partition of

genetic material. This feature in fact may mask the stochas-

ticity due to extrinsic fluctuations. Note that if each plasmid

contributes with a bare production rate k0, then the protein

production rate of a given cell reads mk0 (m being the

number of plasmid copies received after binomial partition

at division time). The latter causes some cells to be more

or less productive than other cells, even if they contain the

same amount of repressors. This effectively introduces diver-

sity in the protein production rate with a long-memory of

the order of the cell cycle that is further transmitted over

generations. To test this hypothesis, we perform additional

in silico experiments where we implement several copies

(plasmids) of the gene encoding for protein P (25 copies),

and let them distribute binomially after cell division (results

are summarized in the Supporting Material). As mentioned

above, despite the protein production rate (in which the

in silico experiment does not include extrinsic noise), the

GRF shows a large noise in this case too.

Constructive interplay between intrinsic
fluctuations and the stochasticity of the cell cycle

We now focus on different aspects featuring what we claim

to be constructive roles arising from the interplay between

different stochastic contributions. As a beginning scenario,
Biophysical Journal 98(11) 2459–2468
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to stress the cooperative effects between randomness with

disparate timescales, we consider the role played by intrinsic

fluctuations and the variability introduced by the stochastic-

ity of the cell cycle duration in terms of protein concentra-

tion. For the sake of simplicity, and trying to disregard

other effects and to develop analytical calculations, we

restrict our analysis to the unrepressed situation, LR ¼ 0,

when protein production is maximal (we also disregard

extrinsic fluctuations in the protein production rate k0, i.e.,

Gaussian dispersion). Still, the net outcome (the existence

of a phase in the cell cycle where protein concentration noise

reaches a minimum) also applies to the dilution protocol.

Protein production increases over the cell cycle in an

exponential fashion. Thus, we expect that the intrinsic

component of the noise (herein the term ‘‘noise’’ is under-

stood as the ratio between the dispersion and the average)

of protein concentration will decrease over time. On the other

hand, the extrinsic component of the noise, due to the sto-

chasticity of the cell cycle duration, is expected to grow,

inasmuch as cell-to-cell asynchrony in protein production

increases over time. As a result, the total noise (intrin-

sicþextrinsic) should show a minimum during the cell cycle,

i.e., there should be an optimal phase of the cell cycle that

minimizes the noise in protein concentration. We have tested

this argument both analytically and numerically as follows.

Let us introduce first some formal definitions: for a fluctu-

ating quantity, z, the total (relative) noise can be defined as

the dimensionless ratio between the dispersion, sz, and the

average, bz,

hz ¼
szbz ;

where bz is the average with respect to intrinsic and extrinsic

fluctuations and to

s2
z ¼ bz2 � bz2:

Following Swain et al. (7), total averages can be separated

in terms of the intrinsic and extrinsic components as

dfðzÞ ¼ hf ðzÞi;
where hereafter in this section h$i stands for the averages

taken with respect to the intrinsic noise and : for those rela-

tive to the extrinsic fluctuations. Moreover, the total noise

can be in turn separated into intrinsic and extrinsic compo-

nents by splitting the dispersion term:

s2
z ¼ hz2i � hzi2 ¼ hz2i � hzi2 þ hzi2 � hzi2 ¼

¼
�
hz2i�hzi2

�
þ
�
hzi2�hzi2

�
¼ s2

z ;Intrinsicþs2
z ;Extrinsic :

Consequently, we need to calculate three different averages

of the protein concentration. By taking into account the same
Biophysical Journal 98(11) 2459–2468
realization of the cell cycle duration and averaging Eq. 4

over realizations of the intrinsic noise, we obtain�
_cP

�
¼ kþP ðtÞLO:

That is,

hcPi ¼
k0LOt

lnð2Þ
�
2t=t � 1

�
(6)

As for the evolution equation of the second moment, we

note that variable changes, when dealing with Ito Langevin

equations, must be carefully done because the regular rules

of calculus do not apply. The latter is because some

second-order differential terms do not vanish. In particular,

one must take into account the so-called Ito lemma:

dWP
2(t) ¼ dt, where WP(t) stands for the Wiener process

that characterizes, by differentiation, the white noise term

that appear in the Langevin equations (dWP(t) ¼ xPdt). By

using the Ito lemma, a straightforward calculation leads to

�
_c2

P

�
¼ kþP ðtÞLO

	
2cP þ

1

V



þ xP

V1=2
2cP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþP ðtÞLO

q
:

Note that the second term of the right-hand side of this

equation would not appear using the regular rules of

calculus. Therefore, by averaging over the intrinsic noise

we get�
_c2

P

�
¼ kþp ðtÞLO

�
2
�
cP

�
þ 1

V



¼ k0LO2t=t

	
2k0LOt

Inð2Þ
�
2t=t � 1

�
þ 1

V



That is,

�
c2

P

�
¼

k0LO

�
2t=t � 1

�
t

Vðlnð2ÞÞ2
�
k0LOtV

�
2t=t � 1

�
þ lnð2Þ

�
(7)

If we now average Eqs. 6 and 7 over r(t) from Eq. 5, we

obtain hcm
P i with m ¼ 1, 2. Squaring that result for the case

m ¼ 1 leads to hcPi
2
. Similarly, by squaring Eq. 6 and

then averaging over r(t), one can easily compute hcPi2. To

calculate these statistical terms numerically we implement

in silico two different copies, P1 and P2, of our gene of

interest in each DNA copy of every cell as in the experi-

mental setup (24) (see Supporting Material for details).

Fig. 4, A–C, shows the behavior of the intrinsic and

extrinsic noise as a function of time and also the value of

hcP
as a function of ccP (also as a function of time). As

expected, hcP
displays a nonmonotonous behavior indicating

the existence of an optimal phase of the cell cycle (alterna-

tively an optimal concentration of protein) for which noise

is minimal. Fig. 4 A and B show the intrinsic and extrinsic

components of the noise as a function ofccP . Note the monot-

onous behavior (decreasing and increasing, respectively) in

both separate cases. Consequently, we demonstrate that

minimization of the total noise results from a cooperative



A

B

C

FIGURE 4 Noise in protein concentration as a function of the protein

concentration/time (bottom/top axes): (A) intrinsic noise, (B) extrinsic noise,

and (C) total noise. In all cases, the solid curve and the circles and square

symbols (mostly indistinguishable) stand for analytical calculations and

Gillespie and Langevin simulations, respectively. Intrinsic/extrinsic noise

decreases/increases as time (concentration) develops. As a result of the

trade-off between intrinsic and extrinsic noise, there is an optimal value of

the concentration/time for which noise becomes minimum.
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interplay. Note in all cases the excellent agreement between

the analytical and numerical calculations (both Langevin and

Gillespie-like schemes).

Colony protein production coherence:
resonant aspects

In a number of biological processes, as for example the

response signal to stress, protein production rate is the

observable of interest that either drives further, or becomes
modified due to, signaling. We shift our attention to this

quantity and study the constructive role that develops due

to the interplay between different stochastic components in

relation to the collective behavior of the colony. As in the

previous case for the sake of simplicity, and trying to disre-

gard other effects, we restrict our analysis to the unrepressed

situation and disregard extrinsic fluctuations in the protein

production rate. We also note that the numerical results in

this section were obtained using the Langevin description.

For a given cell lineage, i, at a given (laboratory) time, t,
the protein production relative to the average rate of the

whole colony reads

D _PiðtÞ ¼ _cPðtÞji �
�

_cPðtÞ
�
:

Note that averages h$i here refer, overall, to both intrinsic

and proliferation-induced variability fluctuations. Thus, this

quantity measures the fluctuations of the protein production

rate in a cell of the colony. Protein production increases at

a nonlinear rate during the cell cycle due to cell maturation

as effectively accounted by kP
þ(t). As a function of the sto-

chasticity of the cell cycle duration, two extreme, albeit

unlikely, situations could be envisioned. If the cell colony

would grow deterministically (i.e., by means of synchronous

divisions), g ¼ 1, then _cPðtÞji would show a time-periodic

pattern subjected to intrinsic fluctuations, while h _cPðtÞiwould

exhibit the same pattern but noise free, as intrinsic fluctuations

average out (for a large enough population). As a conse-

quence, D _PiðtÞwould just reproduce the ith cell intrinsic noise.

On the other hand, if the cell colony would grow totally

at random (i.e., by means of purely asynchronous divisions),

g ¼ 0, then _cPðtÞji would show a noisy-non-periodic pattern,

while h _cPðtÞi would rapidly reach a constant value as the

culture balances its age. Thus, D _PiðtÞ would feature in this

case the noisy nonperiodic protein production of ith cell.

Importantly, in both cases the memory of D _PiðtÞ would be

quickly lost. Simply stated, D _PiðtÞ will behave in both cases

as unpredictable in the course of time. In one case, this is

due to the effect of intrinsic fluctuations and in the other as

a direct consequence of extrinsic noise (here the randomness

in the cell cycle duration). The important issue is whether or

not some sort of predictability could be recovered under real-

istic conditions of cell proliferation. In fact, we could expect

that, for intermediate values of the stochasticity of the cell

cycle, a balanced situation might hold and the protein produc-

tion of the cell with respect to the colony (progeny) could

perform in a more coherent way.

To analyze this effect, we perform in silico experiments

by growing a colony from a single cell and we compute the

autocorrelation function of the quantity D _PiðtÞ by tracking

every lineage. To evaluate its coherence, we average D _PiðtÞ
autocorrelation over all the lineages that evolve from this

primordial cell and take the corresponding Fourier transform.

Next, we evaluate at the dominant frequency of the power

spectrum (highest peak), the ratio between the height of the
Biophysical Journal 98(11) 2459–2468
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peak (a measure of the strength of the periodic behavior) and

its width (an indicator of the variability of the periodicity).

Finally, we repeat up to ~50 times such protocol for

different values of g. Our in silico experiments show that there

is indeed an optimal value of g for which protein production

with respect to the colony is generated in a more regular

fashion displaying an oscillatory behavior (see Fig. 5).

That value turns out to be g x 0.9 when 8 h are analyzed

(~10 cell cycles). Strikingly enough this value is significantly

close to the biologically relevant case for the dilution protocol

experiment g x 0.8. We point out that the g-position of the

maximum depends slightly on the number of cell cycles

considered, yet there is always a maximum close to g ¼ 1,

unveiling a robust and constructive effect of the interplay

between intrinsic fluctuations and the stochasticity of the

duration of the cell cycle.
DISCUSSION

Stochasticity in cell processes is a promising research topic

that covers a wide spectrum of viewpoints from the character-

ization of the noise sources to their role in terms of the biolog-

ical functionality. Within this framework herein, we have

addressed for the first time the constructive effects that arise

due to the interplay between the stochasticity of the cell cycle

duration and the intrinsic noise of biochemical processes. To

that end, and following the experimental prescriptions of

Rosenfeld et al. (24), we have proposed a quantitative model

that reproduces the dilution protocol in bacterial colonies

including the random effects of intrinsic and extrinsic noise,

variability due to binomial partition of molecules, and diver-

sity from a stochastic proliferation (duration of the cell cycle).

This simple, yet realistic, scheme has allowed us to evaluate

the contributions of those distinct stochastic components to

the overall noise experimentally reported in the GRF. Our
FIGURE 5 Coherence in protein production fluctuations of the colony as

a function of the stochasticity of the cell cycle. There is an optimal value

of the stochasticity for which coherence is maximal (g x 0.9). (Insets)

Fluctuations of protein production for different values of g and for a

representative cell lineage.
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results let us to conclude that noise in the GRF mostly arises

from extrinsic fluctuations that directly modify the protein

production rate in the timescale of the cell cycle and introduce

cell-to-cell diversity. Contrarily, randomness derived from

the binomial partition of protein and repressors, biochemical

intrinsic noise due to low numbers of molecules, and vari-

ability in the cell-cycle duration, do not contribute signifi-

cantly to the large noise experimentally reported according

to our simulations. Moreover, we show that when dealing

with plasmids, binomial distribution of genetic material intro-

duces diversity effects that may mask the effect of extrinsic

noise in the GRF.

In addition, we explore and unveil different features

directly rooted to the role of diversity in proliferation. We

discover the existence of an optimal phase in the cell cycle

for which randomness in protein concentration becomes

minimal. In this regard, a lot of effort has been done to

understand how noise is transmitted through gene cascades

for obtaining a robust pattern of gene expression (e.g., the

telephone game) (32–36). Network architecture and connec-

tivity have been proven to play a crucial role in this regard.

Moreover, it has been experimentally shown that noise in

protein levels becomes minimum in essential genes and

that functionality and fitness are reduced otherwise. Thus,

noise minimization processes help to secure a robust cellular

behavior that has been related with a trait acted on by natural

selection. Although all studies, in this sense, have focused on

the steady-state properties of this mechanism, our study

shows how noise minimization can be dynamically attained

during the course of the cell cycle by means of a trade-off of

different noise sources. Whether this particular mechanism

implies a specific functionality is unknown at this point.

One hypothesis is that cell maturation might require the exis-

tence of some phase during the life cycle when, generically,

biochemical constituents, although prone to uncertainties,

should be secured with minimum variability. In any case,

the phenomenon by itself contributes to the understanding

of the mechanisms leading to biological robustness.

The last result of our study refers to the coherence in

protein production rather than protein concentration. The

global dynamical trend of protein production is determined

by the periodicity of the cell cycle and the increase of protein

production. On top of that, protein production fluctuations

have stochastic contributions from intrinsic noise (fast time-

scales) and extrinsic noise (slow timescales). As a result, the

characteristic timescale of the fluctuations develops from

a balance of these contributions that can only resonate for

intermediate values of the stochasticity of the cell cycle

duration (note that g implies a characteristic timescale). In

a formal sense, the disclosed example of coherence enhance-

ment leading to sustained oscillations constitutes a novel, to

our knowledge, realization of a generic phenomenon termed

noise-induced coherence resonance in the field of nonlinear

noisy systems (37). More precisely, in our case this coher-

ence enhancement arises directly from the diversity in the



Cell-Cycle Duration Variability: Effects 2467
cell-cycle realization, and thus could be qualified as a novel

example of a recently reported phenomenon: diversity-

induced resonance (38). Such counterintuitive noise-sus-

tained predictability is a rather striking outcome of our

modeling for this particular toylike cell culture. Whether it

has real significance and, furthermore, biological function-

ality in more realistic in vivo scenarios, is a most challenging

open question at this point. In any case, one could speculate

whether cells could harness such temporal regularity and use

it as a simple quorum-sensing signal to undertake decisions

at the colony-size level as individual cells proliferate.

Although not justifying cell-to-cell diversity in division, cells

would instead benefit from the unavoidable presence of such

variability to sustainably program their collective behavior.

Indeed, it has been suggested that systems showing diver-

sity-induced coherence might profit from it to optimize the

response to an external stimulus (38).

Our study falls into the field of biophysical theory and

modeling. Yet, by focusing on an experimental system that

has been profusely characterized, we calibrate all parameters

with experimental data and show that our modeling is able

to quantitatively reproduce the experimental results of the

dilution protocol. We then believe that the predicted con-

structive roles due to the interplay of different noise sources

can be experimentally tested. The latter relies on the possi-

bility of controlling the cell cycle duration and its stochastic-

ity. In this regard, different methods for growing cultures

with synchronized cell divisions, thus minimizing the stan-

dard deviation of the cell cycle duration, have been proposed

(39,40). These depend on treatments of the cultures either

before growth (e.g., temperature or light intensity shifts,

thymine or nitrogen starvation, Percoll density gradients)

or periodically during growth (e.g., illumination changes,

glucose starvation). A more elaborate approach, which

would allow a tighter control of the cell-cycle duration, rests

on driving the cell division apparatus at a more fundamental

level. In bacteria, such machinery comprises >15 different

proteins (41). The tubulin homolog FtsZ is key in this

process, as it recruits all other components of the divisome

(41,42). In fact, mutant strains where FtsW (a protein that

stabilizes the FtsZ ring) has been suppressed grow without

dividing, and this property has been used to check the effect

of intrinsic fluctuations in gene regulatory processes (see

(13)). Placing FtsZ and/or FtsW under the control of an

inducible promoter can then be used to drive the formation

of the septation ring and consequently control the duration

of the cell cycle in a more-or-less precise way (43).

Summarizing, by quantitatively modeling the dilution

protocol experiments that helped to characterize the gene

regulatory function at the single cell level, our study is

able to explore the interplay between the variability of the

cell cycle duration and other noise sources in bacterial colo-

nies. Our results show that the trade-off of different noise

sources with disparate statistical properties leads to construc-

tive roles. We expect that the predicted phenomenology
drives further experimental research in the field to reveal

whether it plays a biological function.
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