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Abstract
A constant pH replica exchange molecular dynamics (REMD) method is proposed and implemented
to improve coupled protonation and conformational state sampling. By mixing conformational
sampling at constant pH (with discrete protonation states) with a temperature ladder, this method
avoids conformational trapping. Our method was tested and applied to seven different biological
systems. The constant pH REMD not only predicted pKa correctly for small, model compounds but
also converged faster than constant pH molecular dynamics (MD). We further tested our constant
pH REMD on a heptapeptide from ovomucoid third domain (OMTKY3). Although constant pH
REMD and MD produced very close pKa values, the constant pH REMD showed its advantage in
the efficiency of conformational and protonation state samplings.

Introduction
Solution pH is a very important thermodynamic variable that affects protein structure, function
and dynamics1–3. Many biological phenomena such as protein folding/misfolding4–6,
substrate docking7,8 and enzyme catalysis9–11 are pH-dependent. Examples include amyloid
fibril formation12 such as misassembly of prion proteins13, ATP synthesis14 and pH-dependent
partial α-helical formation of a 13-residue N-terminal fragment from ribonuclease A4,5. This
pH-dependence of structure and dynamics comes from changes in the ratio of protonation states
for the different residues at different solution pH values.

The pH value at which a particular titratable residue side chain has equal population of
protonated and deprotonated states is called the pKa value of that side chain15–18. The pKa
value of a titratable side chain can be highly affected by the environment of that titratable side
chain such as protein environment polarity. An ionizable side chain in the interior of a protein
can have a different pKa value from the isolated amino acid in solution18. For example, Asp26
of thioredoxin, which lies in a deep pocket of the protein, has a pKa value of 7.5 while the
intrinsic pKa value of aspartic acid is 4.019. Furthermore, a charged side chain can favor
different protonation states in order to stabilize protein structure by forming a salt bridge20.
The conformation and protonation distributions are highly coupled21–23: changes in either of
them can affect the other one.

Due to the importance of solution pH, Molecular Dynamics (MD) simulations have been used
to study its effect on protein structure and dynamics. Other popular theoretical methods
developed to calculate (predict) pKa values include the electrostatic continuum dielectric
model and the Poisson-Boltzmann Equation (PBE)17,24–27, free energy calculation
methods16,28–30 and empirical methods31,32. More details on computer simulation of pKa
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prediction and pH dependence of protein structure and dynamics can be found in recent
studies33–51. The traditional way of studying the effect of pH is setting a constant protonation
state before a simulation is carried out. The major problem of this method is that it decouples
the correlation between conformation and protonation state yielding a wrong population of
protonation states, especially when the solution pH is close to the pKa of that titratable site.
Furthermore, assigning protonation states before a simulation often involves a guess of
protonation state based on our experience.

Constant-pH molecular dynamics (constant-pH MD) methods were developed in order to
correlate protein conformation and protonation state. The purpose of constant-pH MD is to
describe protonation equilibrium correctly at a given pH. One category of constant-pH MD
methods uses a continuous protonation parameter. Earlier models include a grand canonical
MD algorithm developed by Mertz and Pettitt52 in 1994 and a method introduced by Baptista
et al.35 in 1997. In the Mertz and Pettitt model, protons are allowed to be exchanged between
a titratable side chain and water molecules. Baptista et al. used a potential of mean force to
treat protonation and conformation simultaneously. Later, Börjesson and Hünenberger53,54
developed a continuous protonation variable model in which protonation fraction is adjusted
by weak coupling to a proton bath, using an explicit solvent. More recently, the continuous
protonation state model was further developed by the Brooks’ group39–43,55. They called their
constant-pH MD algorithm continuous constant-pH molecular dynamics (CPHMD). In the
CPHMD method, Lee et al.55 applied λ-dynamics56 to the protonation coordinate and used
the Generalized Born (GB) implicit solvent model. They chose a λ variable to control
protonation fraction and introduced an artificial potential barrier between protonated and
deprotonated states. The potential is a biasing potential to increase the residency time close to
protonation/deprotonation states and it centered at half way of titration (λ=1/2). The CPHMD
method was then extended by incorporating improved GB model and replica exchange
molecular dynamics (REMD) algorithm for better sampling40–43. The applications of
CPHMD and replica exchange CPHMD included predicting pKa values of various
proteins40, studying proton tautomerism39 and pH-dependent protein folding and folding
intermediate of villin headpiece domain42,43.

In addition to continuous protonation state models, discrete protonation state methods have
also been developed to study pH-dependence of protein structure and dynamics36,46–49,57–
63. The discrete protonation state models utilize a hybrid molecular dynamics and Monte Carlo
(hybrid MD/MC) method. Protein conformations are sampled by molecular dynamics and
protonation states are sampled using a Monte Carlo scheme periodically during a MD
simulation. A new protonation state is selected after a user-defined number of MD steps and
the free energy difference between the old and the new state is calculated. The Metropolis
criterion64 is used to accept or reject the protonation change. Various solvent models and
protonation state energy algorithms were used in discrete protonation state constant pH MD
simulations. The Baptista group36,46–49 used the Poisson-Boltzmann (PB) equation to
calculate protonation energies while their MD was done in explicit solvent. Walczak and
Antosiewicz63 also employed the PB equation to determine protonation energy but they used
Langevin Dynamics to propagate coordinates between MC steps. Bürgi et al.57 calculated the
transition energy between two protonation states by using thermodynamic integration (TI)
method and explicit solvent. More recently, Mongan et al.62 developed a method combining
the GB model65,66 and the discrete protonation state model. In Mongan’s method, the GB
model was used in protonation state transition energy as well as solvation free energy
calculations. Therefore, solvent models in conformational and protonation state sampling are
consistent and the computational cost is small. This model was later coupled with the
Accelerated Molecular Dynamics67,68 to achieve better conformational sampling69. Dlugosz
and Antosiewicz also used the discrete protonation state method to study succinic acid58 and
a heptapeptide derived from ovomucoid third domain (OMTKY3)60,61. This heptapeptide
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corresponds to residue 26–32 of OMTKY3 and has the sequence of acetyl-Ser-Asp-Asn-Lys-
Thr-Tyr-Gly-methylamine. Nuclear magnetic resonance (NMR) experiments indicated the
pKa of Asp is 3.6, 0.4 pKa unit lower than the value of blocked Asp dipeptide61. In their
studies, the conventional molecular dynamics (MD) simulations were carried out to sample
peptide conformations. Dlugosz and Antosiewicz sampled protonation states using the PB
equation and used analytical continuum electrostatics to treat solvation effects. Their method
predicted the pKa to be 4.24.

Due to the correlation between conformation and protonation sampling, correct sampling of
protonation states requires accurate sampling of protein conformations. Hence, generalized
ensemble methods70–73 such as multicanonical ensemble algorithm74,75, simulated
tempering76 and replica exchange molecular dynamics (REMD)77 should be used to avoid
kinetic trapping which comes from low rates of barrier crossing in constant temperature MD
simulations. These methods make the system perform a random walk in temperature or energy
space which allows the system under study to easily overcome energy barriers and hence
reduces the problem of kinetic trapping. REMD, the MD version of parallel tempering (PT)
78 has the advantage of a-priori known weight factors, as Boltzmann weights. REMD has been
used in many studies of protein structure and dynamics and proven to drastically increase rates
of convergence towards a proper equilibrium distribution. Khandogin et al. applied the REMD
algorithm to the continuous protonation state constant-pH method and named it REX-CPHMD.
They applied REX-CPHMD to pKa predictions and pH-dependent protein dynamics such as
folding and aggregations40–43.

In this paper, we present a study of conformation and protonation state sampling using a REMD
algorithm on the discrete protonation state model proposed by Mongan et al. We first tested
our method based on five dipeptides and a model peptide having the sequence Ala-Asp-Phe-
Asp-Ala (ADFDA). The two ends of model peptide ADFDA were not capped so the two
ionizable side chains would have different environment. Then our method is applied to a
heptapeptide from OMTKY3, the same heptapeptide as Dlugosz and Antosiewicz studied in
their paper60,61. Our purpose is to show that the REMD algorithm coupled with a discrete
protonation state description can greatly improve pH-dependent protein conformation and
protonation state sampling.

Methods
A. Constant-pH MD algorithm in AMBER

A detailed description of the discrete protonation state model can be found in the paper of
Mongan et al.62. This algorithm employs discrete protonation states, MC sampling of
protonation states and the use of a GB model in MD and MC. Given a protein with N titratable
sites, the discrete protonation state model means protonation states of a protein are described
by a vector n=(n1, n2, …, nN) where each ni is some integer representing the protonation state
of titratable residue i. In AMBER, five amino acids are designed to be titratable: aspartate,
glutamate, histidine, lysine and tyrosine. For each titratable residue, different protonation states
have different partial charges on the side chain. This model also includes syn and anti forms
of protons for the aspartate and glutamate side chains as well as the δ and ε proton locations
for histidine.

The goal of constant-pH MD is to describe equilibrium between protonated and deprotonated
forms correctly at a given pH. In the discrete protonation model, the populations of each form
are sampled by MC method periodically during a MD simulation. At each Monte Carlo step,
a titratable site and a new protonation state for that site are chosen randomly and the transition
free energy at this fixed configuration is used to evaluate the MC move.
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Considering a titratable site A in a protein environment, its protonated form is protA-H and
deprotonated form is protA−. The equilibrium between the two forms is governed by their free
energy difference. This free energy difference is the ensemble average of different
configurations. However, the free energy difference cannot be computed by a molecular
mechanics (MM) model since the transition between two forms deals with bond breaking/
forming and solvation of a proton which involves quantum mechanical effects.

The above problems can be solved by using a reference compound. The reference compound
has the same titratable side chain as protA-H but with known pKa value (pKa,ref). Following
Mongan et al.62, we assume the transition free energy can be divided into the quantum
mechanics (QM) part and the molecular mechanics (MM) part. We further assume that the
quantum mechanical energy components are the same between the reference compound and
the protA-H. Since the pKa of the reference compound is known, its transition free energy from
deprotonated form to protonated form at a given pH is:

(1)

So the QM component of the transition free energy can be expressed as:

(2)

where ΔGref ,MM is the molecular mechanics contribution to the free energy of protonation
reaction for that reference compound. In practice, the QM component of the transition free
energy also contains errors from MM calculations so it’s actually better called a non-MM
component. Since the approximation of the QM component of the transition free energy is:

(3)

then the transition free energy from protA− to protA-H can be calculated as:

(4)

whereΔGMM is the molecular mechanics contribution (electrostatic interactions in nature) to
the free energy of the protein titratable site. Hence, by using a reference compound, the QM
effects are not needed. Effectively, we compute ΔpKa relative to the reference compound.
Computing ΔpKa can also help canceling some errors introduced by GB solvation model
through the use of ΔGref ,MM. In AMBER, a reference compound is a blocked dipeptide amino
acid possessing titratable side chain (for example, Acetyl-Asp-methylamine). Five reference
compounds were constructed corresponding to five titratable residues. The values
ofΔGref ,MM for each reference compound are obtained from thermodynamic integration
calculations at 300 K and set as internal parameters in AMBER62,79. The ΔGMM is calculated
by taking the difference between the potential energy with the charges of the current protonation
state and the potential energy with the charges of the new protonation state (i. e. ΔGMM is
approximately by ΔH but averaging over configurations).

The ΔG from Eq. 4 is used to decide if a MC move in protonation space should be accepted
or rejected. If the transition is accepted, MD steps are carried out to sample conformational
space in the new protonation state. If the MC attempt is rejected, MD steps are also carried out
with no change to the protonation state.
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B. Titration Curve and pKa Prediction Calculation
The titration curve of an ideal titratable site having no interaction with other titratable groups
follows the Henderson-Hasselbalch (HH) equation:

(5)

Molecular dynamics runs are assumed to be ergodic, thus the ratio of time that a titratable site
spends in protonated and deprotonated states can be used as concentrations. The analytical
form of the titration curve can be obtained by exponentiating both sides of the HH equation.
A more generalized form of HH equation which studies an ionizable residue interacting with
another one can be written as:

(6)

So the titration curve of an interacting ionizable residue can be expressed as:

(7)

where s is the fraction of deprotonation and n is the Hill coefficient. A Hill plot, which can be
obtained by plotting log([A−]/[HA]) as a function of pH, is used to study titration behavior.
The HH equation (including its generalized form) will be represented as a straight line in a Hill
plot. The x-intercept is the pKa value and the slope is the Hill coefficient which reflects
interactions between titratable residues.

C. Replica Exchange Molecular Dynamics (REMD)
A detailed description of the REMD algorithm can be found in the papers of Sugita and
Okamoto77. In REMD, N non-interacting copies (replicas) of a system are simulated at N
different temperatures (one each). Regular molecular dynamics is performed and periodically
an exchange of conformation between two (usually adjacent) temperatures is attempted.
Suppose replica i at temperature Tn and replica j at temperature Tm are attempting to exchange;
the following satisfies the detailed balance condition:

(8)

Here w(i→j) is the transition probability between two states i and j and Pn(i) is the population
of state i at temperature n (in REMD assumed Boltzmann weighted). If the Metropolis criterion
is applied, the exchange probability is obtained as:

(9)

Here q[i] is the molecular configuration of state i, E is the potential energy and β= 1/kBT. If the
exchange between two replicas is accepted, the temperatures of the two replicas will be
swapped and velocities rescaled to the new temperatures by multiplying all the old velocities
by the square root of the new temperature to old temperature ratio:
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(10)

In the case of constant pH molecular dynamics, the potential energy of the system depends not
only on the protein structure but also on the protein protonation state. Likewise, when coupling
REMD algorithm with constant-pH MD, one can either attempt to exchange molecular
structures only or swap both structures and protonation states at the same time. For simplicity,
let us consider two replicas where replica 0 has temperature T0, protein structure q0 and
protonation state n0, while replica 1 has temperature T1, structure q1 and protonation state
n1. A diagrammatic description of the two exchange algorithms is shown in Figure 1. The first
way of performing an exchange attempt is that replica 0 tries to jump from state (q0, n0) to
state (q1, n0) at temperature T0 in one Monte Carlo step. Similarly, replica 1 attempts to transit
from state (q1, n1) to state (q0, n1) at temperature T1. Protonation states are kept at exchange
attempts and only change during dynamics. Therefore, the detailed balance equation now
becomes:

(11)

Here w(β0q0n0, β1q1n1 → β0q1n0, β1q0n1);is the transition probability of swapping structures.
If Metropolis criterion is used, this exchange probability can be written as:

(12)

and

(13)

where β0= 1/kBT0, β1= 1/kBT1 and E is the potential energy. Here, if the protonation states of
two adjacent replicas at an exchange attempt are the same, the exchange probability of our
constant pH REMD will be equivalent to the conventional REMD exchange probability.
However, if it is not the case, four potential energy terms are needed to calculate exchange
probability. Under this circumstance, the constant-pH REMD becomes a REMD algorithm that
combines both temperature and Hamiltonian REMD algorithms.

One possible concern of exchanging only structures would be the role of kinetic energy,
especially when n0 and n1 are different. In the REMD algorithm developed by Sugita and
Okamoto, the kinetic energy terms in the Boltzmann factors cancel each other on average
through velocity rescaling (Eq. 10). Only potential energies are required to compute exchange
probabilities. There is a problem in canceling kinetic energy terms when the numbers of
particles of two systems attempting to exchange are not the same. However, according to the
constant-pH MD algorithm proposed by Mongan et al.62, a proton does not leave the molecule
but becomes a dummy atom when an ionizable side chain is in a deprotonated state.
Furthermore, that dummy atom retains its position and velocity which are controlled by
molecular dynamics. Hence, the kinetic energy contributions to the Boltzmann weight will be
cancelled out during exchange probability calculation, leaving only potential energy useful for
the calculation.
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The second possibility consists of exchanging protonation states as well as molecular structures
at REMD Monte Carlo moves. For instance, replica 0 attempts to move from state (q0, n0) to
state (q1, n1) at temperatures T0 in one MC move and replica 1 attempts to jump from state
(q1, n1) to state (q0, n0) at temperature T1. The detailed balance equation now can be written
as:

(14)

This equation states that the exchange probability is the product of MC transition probabilities
at temperature T0 and T1. If the protonation states of two adjacent replicas are the same at an
exchange attempt, the exchange probability of constant-pH REMD becomes the exchange
probability of conventional temperature-based REMD. If n0 and n1 are different, then each MC
transition is essentially the protonation state change step in constant-pH MD, plus a structural
transition. For example, consider the MC transition at temperature T0,

(15)

where

(16)

The first term in Δ1 derives from the transition in configuration at fixed protonation state n0,
and the rest corresponds to protonation state change at fixed structure q1. Eelec represents the
electrostatic component of potential energy. Similarly, the transition probability of MC jump
at T1 can be expressed as:

(17)

where

(18)

Therefore, according to Eq. 14, the exchange probability can be written as:

(19)

and

(20)

where Δ is the same quantity as in Eq. 13.

The exchange probability calculation in the second method of coupling REMD and constant-
pH MD utilizes the same number of energy evaluations required by the first method since
obtaining electrostatic potential energies does not require extra energy calculations. The
advantage of implementing the second exchanging protocol (exchange both structures and
protonation states) over the first one (exchange structures only) should not be significant
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because it is the conformational sampling at higher temperature that greatly improves
conformational sampling at lower temperatures. Allowing protonation states to change at
exchange attempts does not provide extra gains in conformational sampling since the
protonation state space is well sampled during the MD propagation. Therefore, only the first
method of performing exchanges was implemented.

D. Simulation Details
For our study, constant pH REMD simulations were carried out first on five reference
compounds: blocked Aspartate, Glutamate, Histidine-δ, Lysine and Tyrosine to test our method
and implementation. The experimental pKa values of those reference compounds are
known80 and listed in Table 1. We later performed constant pH REMD simulations on a model
peptide ADFDA (Ala-Asp-Phe-Asp-Ala, unblocked termini) and a heptapeptide derived from
OMTKY3 (residues 26 to 32 with blocked termini). Four replicas were used in the reference
compounds and ADFDA REMD simulations. The temperatures were 240, 300, 370 and 460
K for all six molecules. The pH range for the study of acidic side chains was sampled from 2.5
to 6 and the pH range of histidine is from 5.5 to 8. The basic side chains were titrated from pH
9 to 12. An interval of 0.5 was chosen for all titrations.

Eight replicas were chosen for the heptapeptide with a temperature range from 250 to 480 K.
10 ns were used for each replica in all REMD simulations and an exchange was attempted
every 2 ps. A MC move to change protonation state was attempted every 10 fs. A second set
of REMD runs was done with the same overall conditions but different initial structures in
order to check simulation convergence.

To compare conformational and protonation state sampling, 100 ns of constant pH MD
simulations were carried out for the aspartate reference compound and ADFDA, at the same
pH values as in the REMD runs. For the heptapeptide, one set of 10 ns constant pH MD
simulations were done at each pH values simulated by REMD method.

Constant pH REMD and MD simulations were done using the AMBER 10 molecular
simulation suite.81 The AMBER ff99SB force field82 was used in all the simulations. The
SHAKE algorithm83 was used to constrain the bonds connecting hydrogen atoms in all the
simulations which allowed use of a 2 fs time step. OBC Generalized Born implicit solvent
model66 was used to model water environment in all our calculations. The Berendsen
thermostat84, with a relaxation time of 2 ps, was used to keep the replica temperature around
their target values. Salt concentration (Debye-Huckel based) was set at 0.1M. The cutoff for
non-bonded interaction and the Born radii was 30 Å.

E. Cluster Analysis
Cluster analysis was done using the Moil-View program85 in order to compare conformational
sampling86,87. The MD and REMD trajectories (having same number of frames) at 300K and
under the same solvent pH were combined following a procedure introduced in the paper of
Okur et al.. Then the combined trajectory was clustered based on peptide backbone atoms root-
mean-square deviations (RMSD). The population fraction corresponding to each cluster was
obtained for MD and REMD simulation. The correlation coefficient values which represent
the correlations between MD and REMD cluster population were calculated at each solution
pH value by doing linear regression. A high correlation between MD and REMD cluster
population indicates that the structure ensembles are close to each other. This method provides
a direct comparison of global conformational sampling between MD and REMD simulations.
The same technique was used when studying convergence of constant pH REMD and MD
trajectories. A cluster cutoff RMSD of 1.5 Å is chosen for both ADFDA and the heptapeptide
during our analysis.
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F. Local Conformational Sampling and Its Convergence to the Final State
In our study, the local conformational sampling was examined by comparing the probability
density of backbone dihedral angle pair (φ, ψ). Essentially, we are comparing the
Ramachandran plot of a residue. Each (φ, ψ) probability density was computed by binning φ
and ψ angle pairs 10° × 10°. These two dimensional histograms were normalized into
populations and the contours were plotted. The metric used to evaluate (φ, ψ) probability
density convergence was the root-mean-squared deviation (RMSD) between the cumulative
(φ, ψ) histogram and the one produced by using all configurations. Each cumulative histogram
was constructed by using (φ, ψ) pairs up to current time and following the same algorithm
mentioned earlier in this section.

Results and Discussion
A. Reference Compounds

We first applied our constant pH REMD method to the reference compounds. Table 1 shows
the pKa values predicted by REMD simulations (10 ns for each replica) as well as the reference
pKa values. All our pKa values were calculated by fitting to the HH equation. Agreement
between constant pH REMD predictions and the reference values can be seen.

The pH titration curves of the same reference compounds showed agreement between MD (100
ns) and REMD simulations. Figure 2 demonstrates the REMD and MD titration curves of
aspartic acid reference compound as an example.

We further studied the convergence of protonation states sampling. REMD and MD
protonation fraction were plotted with respect to MC attempts for aspartate reference
compound at all pH values. Figure 3A demonstrates the protonated fraction versus time at pH
4 as one example. According to Figure 3A, it suggests that although the final pKa predictions
are the same for REMD and MD simulations, the protonation state sampling during REMD
simulations clearly converges faster than that in a MD run.

B. Model peptide ADFDA
The model peptide ADFDA (as zwitterion) was chosen as a more stringent test of our constant
pH REMD method. The charged termini will provide different electrostatic environment for
each titratable Asp residue and hence a correct constant pH REMD model should reflect this
difference between titration curves of the two Asp residues. The Asp2 residue is closer to the
NH3

+, so the deprotonated state is favored and the pKa value of Asp2 residue should shift
below 4.0 (which is the pKa of the reference aspartic dipeptide). The Asp4 residue is closer to
the COO− negative charge and hence the pKa value should shift above 4.0.

The titration curves of the model peptide ADFDA from REMD simulations are shown in Figure
4. We can clearly see that Asp2 and Asp4 have different titration curves from each other and
from the reference compound. The pKa value and Hill coefficient for each Asp residue were
obtained by fitting titration curves to a Hill plot. The results are shown in Table 2. The REMD
pKa predictions reflect the difference between Asp2 and Asp4 due to different peptide
electrostatic environments. We also displayed the MD titration curves of Asp2 and Asp4 in
Figure 4 and listed the MD pKa predictions and corresponding Hill coefficients in Table 2.
The titration curve of Asp2 residue only showed a small difference between MD and REMD
simulation. But we can see differences in titration behaviors of Asp4 between MD and REMD
calculations when solution pH is below 5. Interestingly, Lee et al. studied blocked Asp-Asp
peptide using CPHMD method55, reporting different Hill coefficient for each of the two Asp
residues.

Meng and Roitberg Page 9

J Chem Theory Comput. Author manuscript; available in PMC 2011 April 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Convergence rates of Asp2 titration behavior were compared between REMD and MD
calculations due to the fact that Asp2 titration curves are very close. The cumulative protonated
fractions versus MC attempts at pH 4 are shown in Figure 3B. Faster convergence in
protonation state sampling can be seen for REMD simulation even though both REMD and
MD calculations resulted in the same final protonated fraction. Clearly, our constant pH REMD
method accelerates the convergence of sampling of protonation states.

In addition to protonation state sampling, we also evaluated the conformational sampling in
constant pH MD and REMD simulations. First, distribution of backbone φ and ψ angle pairs
(Ramachandran plots) of residue Asp2, Phe3 and Asp4 in ADFDA at each solution pH were
studied. The regions in Ramachandran plots sampled by MD and REMD simulations are the
same. Ramachandran plots for residue Asp2 at pH 4 are shown in Figure 5 as an example.

Since the Ramachandran plots only represent local conformational sampling, we also evaluated
global conformational sampling by clustering MD and REMD trajectories and comparing the
cluster populations. The MD and REMD cluster population R2 values are listed in Table 3. A
plot of cluster populations from MD and REMD trajectories at solution pH of 4 is shown in
Figure 6A as an example. The large R2 values indicate that the MD and REMD sampled the
same conformational space and generated the same structure ensemble. The small size of
ADFDA and simple structure of each residue make 100 ns long enough for MD to sample the
relevant conformations.

We further studied the convergence of REMD simulations by comparing global conformation
distribution between two REMD simulations starting from two different structures. Cluster
populations of the two REMD simulations at solution pH 4 are displayed in Figure 6B. The
R2 value is 0.959 at pH 4. This large correlation tells us that the two REMD simulations provide
the same structure ensemble and hence the two simulations are converged.

C. Heptapeptide derived from OMTKY3
We first compared the protonation state sampling between constant pH REMD and MD
simulations. Titration curves of Asp3, Lys5 and Tyr7 from two sets of simulations are plotted
in Figure 7A and 7B. For each titratable residue, titration curves generated by constant pH
REMD and MD are close to each other. Since the pKa value of Asp3 in this heptapeptide is
experimentally determined to be 3.6, it will be interesting to evaluate how our predicted values
compare to the experimental result. The pKa values of Asp3 were calculated based on Hill’s
plots which are displayed in Figure 7C. The predicted pKa value is 3.7 for both REMD and
MD simulations and they are in excellent agreement with the experimental pKa value.
Following the same procedures, our predicted pKa values of Lys5 (10.6 for both REMD and
MD) and Tyr7 (9.9 and 9.8 for REMD and MD respectively) were obtained. Not surprisingly,
the REMD and MD schemes yielded essentially the same predicted pKa values for Lys5 and
Tyr7.

Although the final pKa predictions are the same for constant pH REMD and MD simulations,
constant pH REMD showed clear advantage in the convergence of protonation state sampling.
Again, we chose the cumulative average protonation fraction vs MC steps to reflect protonation
state sampling convergence for all three titratable residues. Several representative plots are
shown in Figure 8. The trend that constant pH REMD simulations produce faster convergence
in protonation fraction is universal. Therefore, it is very clear that constant pH REMD method
is better than constant pH MD in protonation state sampling.

Conformational sampling is an important issue in constant pH studies. We first looked at the
conformational sampling on peptide backbones. We evaluated backbone conformational
sampling through Ramachandran plots. Six residues (from Ser2 to Tyr7) are studied here. Not
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surprisingly, Ramachandran plots from constant pH REMD and MD simulations are very close,
suggesting that the overall local conformational samplings are similar. The Ramachandran
plots of Asp3 at pH 4 are shown in Figure 9 as examples. The only exception is Tyr7 in acidic
pH values. Tyr7 can visit the left-handed alpha helix conformation during constant pH REMD
runs but is not able to do that in constant pH MD runs. In general, constant pH REMD and MD
yielded the same Ramachandran plots for the heptapeptide.

As demonstrated earlier, the overall samplings of (φ, ψ) distribution by constant pH REMD
and MD are similar for Ser2 to Thr6. It is interesting to determine how fast each sampling
scheme reaches the final distribution. We studied evolution of backbone conformational
sampling based on cumulative data as what we did in the case of protonation state sampling
convergence. As described in the METHOD section F, the RMSD between the (φ, ψ)
probability distribution up to current time versus total simulation time was calculated. The
smaller a RMSD is, the closer a probability distribution reaches to the final distribution.
Deviations were calculated starting from the second nanosecond with time intervals
incremented by 100 ps. The cumulative time-dependence RMSD of Asp3 and Lys5 are also
shown in Figure 10 as examples. As seen in the figures, these curves decrease faster in constant
pH REMD simulations. Figure 10 suggests that although the final (φ, ψ) probability
distributions are similar between constant pH REMD and MD simulations, the constant pH
REMD simulation clearly reaches the final state faster.

Cluster analysis was also applied to study the convergence of conformation sampling in the
heptapeptide. By comparing cluster populations between the first and second half of one
trajectory, one could check the convergence of that simulation. The two halves of a structural
ensemble should yield the same populations in each cluster if convergence is reached. For
example, simulations at pH 4, both constant pH REMD and MD yield about 20 clusters and
the correlations coefficients are calculated through a linear regression. Cluster population plots
and correlation coefficients are shown in Figure 11. A much higher correlation coefficient can
be seen in constant pH REMD simulation, suggesting the two halves of the constant pH REMD
simulation at pH 4 populate each cluster much more similarly than the corresponding constant
pH MD does. Hence, much better convergence is achieved by the constant pH REMD run.

Conclusion
In our work, we have applied replica exchange molecular dynamics (REMD) algorithm to the
discrete protonation state model developed by Mongan et al.62 in order to study pH-dependent
protein structure and dynamics. Seven small peptides were selected to test our constant pH
REMD method. Constant pH molecular dynamics (MD) simulations were ran on the same
peptides for comparison. The constant REMD method results are encouraging. The constant
REMD method can predict pKa values in agreement with literature and experimental results.
Constant pH REMD method also displays advantage in convergence behaviors during
protonation states and conformational sampling.

The REMD algorithm has been proven beneficial to study pH-dependent protein structures.
Our future work will include studies of pH-dependent protein dynamics and application of this
constant pH REMD to large proteins.
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Figure 1.
Diagrams displaying exchanging algorithms in constant-pH REMD. (A): Only molecular
structures (denoted as q) are attempted to exchange. In this case, protonation states are not
toughed at an exchange attempt; (B): Both molecular structures (denoted as q) and protonation
states (denoted as n) are attempted to exchange at the same time. Metropolis criterion is applied
in both algorithms to evaluate transitions.

Meng and Roitberg Page 15

J Chem Theory Comput. Author manuscript; available in PMC 2011 April 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Titration curves of blocked aspartate amino acid from 100 ns MD at 300K and REMD runs.
Agreement can be seen between MD and REMD simulations.
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Figure 3.
Cumulative average protonation fraction of a titratable residue vs Monte Carlo (MC) steps.
(A) Aspartic acid reference compound at pH=4. (B) Asp2 in model peptide ADFDA at pH=4.

Meng and Roitberg Page 17

J Chem Theory Comput. Author manuscript; available in PMC 2011 April 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
The titration curves of the model peptide ADFDA at 300K from both MD and REMD
simulations. MD simulation time was 100 ns and 10 ns were chosen for each replica for REMD
runs.
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Figure 5.
Backbone dihedral angle (φ, ψ) normalized probability density (Ramachandran plots) for Asp2
at pH 4 in ADFDA. Ramachandran plots at other solution pH values are similar. For Asp2,
constant-pH MD and REMD sampled the same local backbone conformational space. Phe3
and Asp4 Ramachandran plots also display the same trend.
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Figure 6.
Cluster populations of ADFDA at 300K (A): MD vs REMD at pH 4, (B): two REMD runs
from different starting structures at pH 4. Large correlation shown in Figure 5B suggests that
the REMD runs are converged. Large correlations between two independent REMD runs are
also observed at other solution pH values. Correlations between MD and REMD simulations
can be found in Table. 3.
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Figure 7.
(A) and (B) are titration curves of Asp3, Lys5 and Tyr7 in the heptapeptide derived from protein
OMTKY3. (C) shows the Hill’s plots of Asp3. The pKa values of Asp3 are found through
Hill’s plots.
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Figure 8.
Cumulative average protonation fraction of a titratable residue vs MC steps.
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Figure 9.
Dihedral angle (φ, ψ) probability densities of Asp3 at pH 4. (A): constant-pH MD results; (B):
constant-pH REMD results. All others also show very similar trend.
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Figure 10.
The root-mean-square deviations (RMSD) between the cumulative (φ, ψ) probability density
up to current time and the (φ, ψ) probability density produced by entire simulation. (φ, ψ)
probability density convergence behaviors at other pH values also show that REMD runs
converge to final distribution faster.
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Figure 11.
Cluster population at 300 K from constant pH MD and REMD simulations at pH=4. Cluster
analysis is performed using the entire simulation. The populations in each cluster from the first
and second half of the trajectory are compared and plotted. Ideally, a converged trajectory
should yield a correlation coefficient to be 1. (A): constant pH MD (B): constant pH REMD.
Much higher correlation coefficient can be seen in constant pH REMD simulation, suggesting
much better convergence is achieved by the constant pH REMD run.
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Table 2

pKa predictions and Hill coefficients fitted from the HH equation

Asp2 Asp4

pKa Hill Coefficient pKa Hill Coefficient

REMD 3.74 0.87 4.38 0.67

MD 3.76 0.89 4.54 0.85
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Table 3

Correlation coefficient between MD and REMD cluster populations

pH=2.5 pH=3 pH=3.5 pH=4

R2 0.94 0.90 0.79 0.93

pH=4.5 pH=5 pH=5.5 pH=6

R2 0.85 0.98 0.92 0.96

The R2 values were calculated by linear regression.
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