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     INTRODUCTION 

 There are approximately 100 arboviruses that can infect 
humans and cause considerable morbidity and mortality 
and another 40 that can infect livestock with important eco-
nomic impacts. 1  The prevalence of viral infection in field-
collected mosquitoes is a common surveillance indicator 2  that 
is used to assess the risk of transmission of viruses such as West 
Nile virus (WNV) or western equine encephalomyelitis virus 
(WEEV) to humans and domestic animals. Other surveillance 
indicators of risk include sentinel animal seroconversions and 
animal or human infection data. 2  

 When uninfected mosquitoes acquire virus from a verte-
brate host, they go through a latent phase known as the extrin-
sic incubation period (EIP), which is the time that it takes the 
virus to disseminate into mosquito organs including the sali-
vary glands from which transmission to subsequent vertebrate 
hosts occurs. 3  The duration of the EIP varies among mosquito 
species, individual mosquitoes, and virus species, and is mod-
ulated by external factors such as temperature. In this study, 
we refer to those mosquitoes that have the ability to transmit 
virus as infectious. Uninfected, latent, and infectious mosqui-
toes can all potentially be found in a sample of mosquitoes 
collected for arboviral surveillance. Ideally, we would use that 
sample to estimate the proportion of mosquitoes in the popu-
lation that are infectious because this measure would be more 
directly related to risk of arbovirus transmission. This method 
would involve individual mosquito testing for virus dissemina-
tion to the salivary glands or actual transmission (e.g., saliva-
tion into a capillary tube). However, there is no practical way 
to do this with large numbers of field-collected mosquitoes. 
Thus, the proportion of infected mosquitoes, or infection rate, 4  
is estimated as a substitute ( Figure 1 ). 

  It is assumed that when the mosquito infection rate 
increases, the risk of arbovirus transmission also increases. 4  
This assumption relies on the proportion of infected mosqui-
toes being a good approximation of the proportion of infec-
tious mosquitoes. It also requires reliable estimates of the 

proportion of infected mosquitoes in the population. However, 
there are many factors that could invalidate this assumption. 
Environmental variation could introduce unpredictability into 
how many latent mosquitoes survive to become infectious, and 
the reliability of estimated infection rates can be compromised 
by biases (discussed below) introduced during mosquito col-
lecting and virus testing. 

 Temperature is one of the best studied factors affecting 
the EIP and the rate of virus dissemination in a mosquito, 
thus directly influencing the proportion of latent mosquitoes 
that become infectious. Laboratory studies have shown that 
approximately 40% of  Culex pipiens  mosquitoes infected with 
WNV will develop a disseminated infection after 15 days of 
incubation at 20°C, but this fraction increases to almost 90% 
at 30°C. 5  In the case of  Cx .  pipiens quinquefasciatus  and WNV, 
33% of infected mosquitoes will develop disseminated infec-
tions after 13 days of incubation at 25°C, and 81% will have 
disseminated infections after 13 days at 30°C. 6  Dissemination 
is necessary for viral transmission, and some studies report 
that 90% of  Cx .  pipiens  mosquitoes with disseminated WNV 
infections transmit the virus by bite. 7,  8  

 Another example of temperature modulating transmis-
sion is WEEV vectored by  Cx .  tarsalis . In a laboratory experi-
ment, 30% of mosquitoes were capable of transmitting virus 
to chickens after 6 days of incubation at 32°C, but the pro-
portion decreased to 20% after 12 days. At 25°C, only 4% of 
mosquitoes were capable of transmission after 6 days, but the 
fraction increased to 35% after 12 days. 9  A different experi-
ment found that approximately 70% of the infected  Cx .  tar-
salis  transmitted virus orally to capillary tubes seven days 
post-infection at 30°C, but after 12 days this fraction had 
decreased to approximately 12%. At 20°C approximately 25% 
of mosquitoes were transmitting virus after 7 days, but the 
percentage increased to approximately 60% after 12 days. 10  
Possible explanations for a reduction in transmission over 
time at 30–32°C include the ability of some  Cx .  tarsalis  
females to modulate viral dissemination from the mesenteron 
to the salivary glands or a decrease in the secretory function 
of the salivary glands caused by cell pathologic changes. 9,  10  
Dissemination responses to changes in temperature are non-
linear for WEEV in  Cx .  tarsalis . Clearly, temperature is a criti-
cal factor that modifies the response of mosquitoes to the virus, 
and this induced variation reduces our capacity to predict the 
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relationship between the proportion of infected and infectious 
mosquitoes. 

 In the field, mosquitoes endure daily changes in tempera-
ture and variations of the microclimatic conditions in their 
resting sites during non-active periods. 11  This temperature 
variability will cause a population of mosquitoes to contain 
infected individuals in different stages in the development 
of a disseminated infection. Consequently, mosquito samples 
taken on consecutive days could yield similar estimated infec-
tion rates, but the infectiousness rate could be different from 
one day to the next. 

 Ideally, to estimate the proportion of infected mosquitoes 
in a population, we would take a large sample of mosquitoes 
using an unbiased trapping method such that all individuals 
are equally likely to be collected. The mosquitoes would be 
tested individually for the presence of the virus with an assay 
that can detect the specific virus every time and at any concen-
tration. Those ideal conditions are usually not met and surveil-
lance methods introduce biases that affect the reliability of the 
estimated infection rates. 

 Trapping methods often introduce biases because they target 
a particular physiologic stage of the adult mosquito population 
(host-seeking females, gravid females, resting adults) or they 
attract some mosquito species more than others. 2  Sampling 
techniques will also affect the sample size obtained, both in 

absolute numbers of mosquitoes and in the proportion of the 
population. Because not all mosquitoes are equally likely to 
be captured, sampling introduces a bias that affects the rela-
tionship between the actual population infection prevalence 
and the estimated infection rate. It is important to remember 
that in some cases a collecting bias towards a particular mos-
quito stage in the population, such as gravid females, is desir-
able to increase the chances of detecting virus presence in the 
mosquito population. 

 Other biases are introduced by the virus detection process. 
Individual testing of mosquitoes in most cases is not feasible 
for logistic and financial reasons. Thus, a cost-effective alterna-
tive to individual testing is to aggregate mosquitoes in groups 
or pools and test those for virus. 4,  12  There are many assays 
that can be used to detect virus in mosquito pools including 
plaque assays in Vero cell culture, TaqMan assays (reverse 
transcription–polymerase chain reaction [RT-PCR]), VecTest, 
enzyme-linked immunosorbent assays, or immunoassays. These 
assays differ in their power to discriminate among viruses and 
in their ability to detect the virus particles or plaque-forming 
units (PFU) at different concentrations. 13,  14  

 The quantity of virus in a mosquito pool affects the outcome 
of the different assays because each assay has a threshold 
concentration below which virus usually cannot be detected. 
The quantity of virus in mosquitoes is affected by time and 

 F igure  1.    Estimation of the proportion of infected mosquitoes and its use to assess risk because direct estimation of the proportion of infected 
mosquitoes that are infectious is not practical. For this estimation to be useful in the assessment of risk, it is important to understand the relation-
ships between infected and infectious mosquitoes, and between the population infection rate and its estimate. Both relationships are studied here 
in Models I and II.    
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temperature. The mean body titer of  Cx .  tarsalis  females 
infected with WNV held at temperatures between 22°C and 
30°C was significantly higher than the titer in those females 
held at temperatures between 14°C and 18°C. 15  In another 
study with  Cx .  tarsalis  and WEEV, body titers after incuba-
tion at 15°C ranged between 10 2.8  and 10 8.7  PFU/body (mean = 
10 6.0  PFU/body) for mosquitoes that did not transmit virus into 
a capillary tube (latent), and between 10 5  and 10 8.1  PFU/body 
(mean = 10 6.9  PFU/body) for those mosquitoes that did trans-
mit the virus (infectious). At 30°C, the titers ranged between 
10 2.7  and 10 7.5  PFU/body (mean = 10 5.6  PFU/body) for latent 
mosquitoes, and between 10 4.1  and 10 7.7  PFU/body (mean = 
10 6.4  PFU/body) for infectious mosquitoes. 10  Statistical tests 
comparing those means were not reported by these authors. 
Virus titer distributions for other mosquito-virus systems in 
the field or in the laboratory are largely unknown. Failure to 
detect virus can occur when the infected mosquitoes (or mos-
quito) present in a pool have low virus titers, and the assay 
used needs a high concentration of virus particles to produce 
a positive result. 

 After mosquito pool assaying, the information on the num-
ber of mosquitoes collected in the sample, the number of pools 
that tested positive for virus, and the number of mosquitoes in 
each individual pool are used to calculate the estimated infec-
tion rate. There are various ways to conduct this calculation but 
the two most commonly reported are the minimum infection 
rate (MIR) and the maximum likelihood estimator (MLE) of 
the proportion of infected mosquitoes. The MIR is the ratio of 
the number of positive pools to the total number of mosquitoes 
in the sample. It is by definition the minimum infection propor-
tion and it assumes that only one infected individual is present 
in a positive pool. 16  The MLE is the value of the proportion of 
infected mosquitoes  P , that maximizes the likelihood of n pools 
of size m to be virus positive, where  P  is the parameter for a 
binomial distribution. 4,  17,  18  The MIR is considered appropriate to 
use when infections in the mosquito population are at low levels, 
but during periods of high transmission it will largely underesti-
mate mosquito infections. Thus, the use of the MLE coupled with 
variable size pooling is recommended. 17,  19  A field study compar-
ing the MIR and MLE estimated infection rates (pool size = 5) 
with the infection rates calculated from individual mosquitoes 
did not find major differences among the values generated. 20  
However, this pool size is rather small for arbovirus surveillance 
and the lack of a difference might not have much relevance for 
field studies. The MLE has the advantage that there are algo-
rithms available that consider variations in pool size. 17  

 Infection rates (e.g., MIR) are frequently reported as a 
measure of virus activity among mosquitoes. However, stud-
ies assessing the associations between mosquito infection 
rates and human or domestic animal disease incidence are 
limited. A recent study used a 25-year weekly data set from 
Massachusetts to show that human cases of infection with 
eastern equine encephalitis virus were positively associated 
with the number of infected  Culiseta melanura  per trap night 
and with weekly estimates of mosquito infection with eastern 
equine encephalitis virus. 21  The study also observed that the 
MIR reached values ≥ 1.0 at approximately week 31 in years 
when human cases were reported, contrary to years without 
human cases. 21  Important thresholds of mosquito infection 
above which human illness can be expected have been deter-
mined for other viruses. For example, in Arizona, an MIR ≥ 4 
for WNV from weekly  Culex  mosquito pools is considered a 

high level of viral activity and human cases are expected to 
occur. 22  In California, an MIR ≥ 5 for WNV, also from weekly 
 Culex  mosquito pools, is an indicator of increased risk of trans-
mission and could lead to emergency planning or to the decla-
ration of an epidemic if other risk factors have also increased 
concurrently. 23  Although associations exist and mosquito 
infection rates are used in surveillance, infection rates have 
limitations. The lack of detection of infection in mosquitoes is 
not necessarily an indication of absence of viral activity. 24  Also, 
some virus detection methods could detect unviable virus 
RNA in mosquitoes (using PCR methods), which would bias 
estimates of infection, and it is not possible to easily separate 
infected and infectious mosquitoes. 25  We explored some of the 
sources of error and limitations of infection rates. 

 As mentioned earlier, it is often assumed that as the estimated 
infection rate increases, the risk of transmission of arboviruses 
to humans and animals also increases. Basic questions arise 
from this assumption: does the proportion of infectious mos-
quitoes increase with the proportion of infected mosquitoes, 
and can we obtain reliable estimates of infection that reflect 
changes in the proportion of infected mosquitoes in the popu-
lation? In this study, we used a model to examine how incu-
bation temperature, mosquito survival, mosquito species, and 
virus species, influence the relationship between the propor-
tion of infected and infectious mosquitoes (Model I,  Figure 1 ). 
Additionally, we used numerical simulations to examine how 
the process of mosquito sampling, pooling, and virus testing 
affect the relationship between the proportion of infected mos-
quitoes in the population and estimated proportions calculated 
from field samples (Model II,  Figure 1 ). Specifically, the simu-
lations considered the sample size, the pool size, and virus con-
centration needed in the pool to show a positive test result. 

 The results of our study are a reminder of why changes in 
infection rates are not always associated with changes in risk 
of transmission and that this can be due to biologic and meth-
odologic factors. They also indicate that our estimated infec-
tion rates usually underestimate the population prevalence of 
infection, that they might not be direct indicators of increases 
in transmission risk, and that they should always be used in 
conjunction with other indicators and variables when making 
an evaluation of virus transmission risk. A more integrated 
approach toward mosquito surveillance using infection rate in 
conjunction with other indicators of risk is necessary to assess 
changes in the risk of arbovirus transmission and to determine 
the actual need for public health alerts. 

   METHODS AND RESULTS 

  Model I: Relationship between mosquito infection and 
infectiousness.   This model follows a cohort of mosquitoes 
that became infected with a virus during the first blood meal, 
and calculates the proportion of those infected mosquitoes 
that become infectious at different times  t  as a result of virus 
dissemination. Data on arbovirus dissemination in mosquitoes 
from two different and well documented mosquito-virus 
systems were obtained from the literature and were used as 
parameters in this model:  Cx. tarsalis -WEEV and  Cx. pipiens 
quinquefasciatus -WNV. Two constant incubation tempera-
tures of 20°C and 30°C were considered. 

 Following previous similar models, 26,  27  the proportion of 
surviving mosquitoes in a cohort that are infectious at time 
 t  ( INS t  ), was calculated as  INS  t  =  p  t  ×  INF  t  ×  D  t–t1 , where  p  is 
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the daily survival rate of the mosquitoes,  p  t  is the proportion 
of mosquitoes surviving after  t  days,  INF  t  is the proportion of 
mosquitoes at time  t  that carry the virus, and  D  t–t1  is the per-
centage of infected mosquitoes that show dissemination after 
 t  −  t  1  days of incubation under a particular temperature. Here, 
 t  1  is the time (in days) of the first and only infectious blood 
meal. Dissemination was used here as an approximation for 
infectiousness for the  Cx .  pipiens quinquefasciatus -WNV 
system. 5,  6  Data on WEEV transmission by  Cx .  tarsalis  in the 
laboratory were available. 9,  10  

 A single value for the proportion of infected mosquitoes 
( INF  t ) was considered for the present model. The term  INF  t  
included latent and infectious mosquitoes as dissemination 
progressed over time. It was assumed that 1% of the surviving 
mosquitoes in the cohort became infected with the virus dur-
ing the first blood meal at time  t  1 . This assumption is a combi-
nation of the proportion of blood meals taken on infectious 
hosts and the probability of infection after an infectious meal. 
Infection rates in cohorts of mosquitoes in the laboratory do 
not tend to decrease with time at fixed temperatures. 5,  10  Thus, 
the proportion of infected mosquitoes was kept constant at 
1% of the surviving mosquitoes at subsequent times. 

 The model followed the proportion of infected and infec-
tious mosquitoes in a cohort during four gonotrophic cycles. 
A gonotrophic cycle was considered as the time required for a 
mosquito to take a blood meal, go through oogenesis, and lay 
eggs. We assumed that the mosquitoes can take a blood meal 
immediately after oviposition. We calculated  INS   t   at the end of 
each of five gonotrophic cycles because they marked the times 
of a potential blood meal, thus, the times of potential transmis-
sion of the virus from the mosquito to a vertebrate host. The 
times  t  at which  INS   t   was calculated were  t   1   = time of the first 
blood meal and the only blood meal when mosquitoes became 
infected,  t   2–5   = times of the second, third, fourth, and fifth blood 
meals. The time of mosquito emergence was  t  0 . 

 Estimates of the minimum duration of the gonotrophic 
cycle for  Cx .  tarsalis  and  Cx .  pipiens quinquefasciatus  are 
shown in  Table 1 . It has been observed for other mosquito 
species that increases in temperature reduce the duration of 
the gonotrophic cycle. In a laboratory study conducted on 
 Anopheles albimanus , the duration of the gonotrophic cycle 
was significantly reduced from 88.4 hours (range = 81.8–94.9 
hours) at 24°C, to 69.1 hours (range = 64.6–73.6 hours) at 
30°C. 28  This finding indicates that an increase of 6°C would 
reduce the gonotrophic cycle of this mosquito by an average 
of 19.3 hours. The field calculations of longer-lived  Cx .  pipi-
ens quinquefasciatus  during the winter in Calcutta ( Table 1 ) 
and the information for  An. albimanus  support our assump-

tion that the gonotrophic cycle length should decrease approx-
imately one day from 20°C to 30°C. In this study, we consider 
a gonotrophic cycle of five days at 20°C and four days at 30°C 
for both species. Time from emergence to the first blood meal 
is approximately two days for  Cx .  tarsalis  and  Cx .  pipiens quin-
quefasciatus .   26,  30  A previous modeling study with  Cx .  tarsalis  
used a value of 2.5 days from emergence to the first blood 
meal to represent variations in their calculations (2–3 days). 26  
We use continuous values of t and consider that at 30°C blood 
meals were taken at 2.5 (first), 6.5, 10.5, 14.5, and 18.5 days of 
age. Adjusting for a longer lifespan at lower temperatures, we 
consider that at 20°C the first blood meal was taken at 3.5 days 
of age and the subsequent meals were taken at 8.5, 13.5, 18.5, 
and 23.5 days of age. 

     Two daily survival rates were used in the model. A sur-
vival rate of  p  = 0.85 was used for the 30°C temperature for 
both mosquito species and  p  = 0.90 was used for the 20°C 
temperature. The possible effects of age and infection status 
on mosquito survival were not considered. Estimates of sur-
vival rates for  Cx .  tarsalis  and  Cx .  pipiens quinquefasciatus  are 
shown in  Table 1 . In Calcutta, India, higher survival rates were 
observed for  Cx .  pipiens quinquefasciatus  during the winter 
months than in the summer months. 31  Higher survival rates at 
cooler temperatures have also been observed for  Cx .  tarsalis  
in the laboratory. 34  These observations support the selection of 
 p  = 0.90 for the 20°C temperature. 

 Rates of dissemination previously reported in the literature 
for WNV in  Cx .  pipiens  complex mosquitoes and for WEEV in 
 Cx .  tarsalis  studied under constant temperature conditions are 
shown in  Figure 2 . Those dissemination rates were the bases 
for estimating  D   t–t1   at different times in the model. Given that 
for all mosquitoes the infectious blood meal was the first one, 
 t   1   was equal to 3.5 days at 20°C, and 2.5 days at 30°C. The  D   t–t1   
values for the all time steps are shown in  Figure 2 . 

  The model was implemented using Microsoft Excel 
(Redmond, WA). 35  The mosquito-virus systems selected to 
illustrate different patterns of dissemination over time are 
only two among many types in these systems, and simplifica-
tions such as constant survival rates, fixed temperatures, and 
equating dissemination to infectiousness are acknowledged. 
However, this model illustrates the variation of patterns that 
can arise in the relationship between infection and infectious-
ness and therefore has broader implications. 

   Results for Model I.   The results of this model illustrate 
differences in viral dissemination in a cohort of mosquitoes 
at two temperatures ( Figure 3 ). At 20°C, WEEV in  Cx . 
 tarsalis  starts disseminating faster than WNV in  Cx .  pipiens 
quinquefasciatus . In the cohort, the highest proportion of 

 T able  1 
  Duration of the gonotrophic cycle and daily survival rates obtained from the literature for  Culex tarsalis  and  Cx .  pipiens quinquefasciatus   

Species
Minimum duration of 

gonotrophic cycle, days Daily survival rate (  p ) Location of collection Reference

 Cx .  tarsalis 4 0.87 Bakersfield, Kern County, CA: May and August. Average 
temperatures for Bakersfield are 22°C (May), 29°C (August). 29 

26

5 0.84 Sheridan, Placer County, CA: July. Average temperature 
for Yuba City (30 km northwest of Sheridan) is 25°C (July). 29 

30

 Cx .  pipiens quinquefasciatus 6 0.91 Calcutta, India: winter months. Winter temperatures in 
Calcutta range between 12°C and 27°C. 32 

31

4 0.81 Calcutta, India: summer months. Summer temperatures in 
Calcutta range between 24°C and 38°C. 32 

31

2–3 0.87–0.88 Monterrey, Mexico: June. Mean annual temperature in 
Monterrey is 28°C. 33 

33
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surviving  Cx .  tarsalis  mosquitoes that became infectious 
occurred 10 days after the infectious blood meal ( t  = 13.5 
days). After this time, the proportion of infectious mosquitoes 
decreased because of mosquito mortality and a decrease in 
WEEV dissemination. The highest proportion of surviving 
 Cx .  pipiens quinquefasciatus  that became infectious at 20°C 
occurred 20 days after initial exposure with the virus ( t  = 23.5 
days). Under these conditions, the peak of infectiousness of 
 Cx .  tarsalis  with WEEV would be reached by the third blood 
meal. For WNV in  Cx .  pipiens quinquefasciatus , it would 
be reached by the fifth blood meal, a point not likely to be 
reached by mosquitoes in nature. 

  At 30°C, dissemination progressed faster for both viruses, 
and  Cx .  tarsalis  infectiousness with WEEV peaked by the sec-
ond blood meal ( t  = 6.5 days). Infectiousness for  Cx .  pipiens 
quinquefasciatus  with WNV increased steadily until all surviv-
ing mosquitoes became capable of virus transmission by the 
fourth blood meal. 

 Considering both temperature regimens, the peak of the pro-
portion of surviving mosquitoes that were infected occurred 
during the first blood meal, but the peaks in the proportion of 
surviving mosquitoes that were infectious occurred days after. 
Therefore, the peaks of infection and infectiousness do not 

coincide. Thus, variability in dissemination over time causes 
the proportion of infectious mosquitoes to not be a constant 
fraction of the number of infected mosquitoes, even under 
these simplified conditions. 

   Model II: Relationship between population infection 
prevalence and estimated infection rate.   The process of 
estimating infection rates using samples taken from a mosquito 
population was modeled using numerical simulations. The 
simulations consisted of sampling a hypothetical population 
of mosquitoes with a known infection rate, randomly grouping 
the sampled individuals into pools, and simulating viral assays 
with different abilities to detect virus ( Figure 4 ). Variations 
were introduced on sample size (200, 2000), pool size (20, 50) 
and in the ability of the assay to detect the virus (low, high). All 
the simulations were conducted using R software 2.7.0. 36  

  Hypothetical mosquito populations consisted of 100,000 
individuals. Each population had two attributes: propor-
tion of infected mosquitoes and a distribution of virus titers 
among infected mosquitoes. Four proportions of infected mos-
quitoes in the population were considered: 1/1,000, 5/1,000, 
10/1,000, or 15/1,000. Two virus titer distributions were used. 
Distribution 1 had titers between 10 1.5  and 10 4  PFU/body, 
and Distribution 2 had titers between 10 2  and 10 6  PFU/body. 

 F igure  2.    Dissemination of virus in mosquitoes at different temperatures. Each panel shows two dissemination curves with values taken from 
the literature (references cited in parenthesis in legends), and a third curve of values that were estimated and used as parameters ( D ) for Model I. 
( A  and  B ) West Nile virus dissemination in  Culex pipiens  5  and  Cx .  pipiens quinquefasciatus.  6  ( C  and  D ) Western equine encephalomyelitis virus 
dissemination in  Culex tarsalis . 9,  10  For the  Cx .  tarsalis –western equine encephalomyelitis virus system, percentages correspond to oral transmission 
and not dissemination, and the values were approximated from figures in the original publications.    
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These patterns approximate those observed in  Cx .  pipiens  4–30 
days post-infection with WNV at 18–20°C (Distribution 1) and 
at 26–30°C (Distribution 2).   5    Titers were assigned randomly 
to each infected mosquito in the population using a uniform 
distribution. By randomly assigning titers, we were assuming 

that mosquitoes at any point in the virus extrinsic incubation 
period could be collected at any particular time. The two distri-
butions overlap, but this has also been observed in  Cx .  tarsalis  
infected with WEEV and WNV. 10,  15  Our goal was to determine 
how these titer distributions interact with the virus detection 

 F igure  4.    Design for the simulations of Model II to study the relationship between proportion of infected mosquitoes in a population and the 
infection rate.    

 F igure  3.    Results of Model I showing relationship between infection and infectiousness, modified by incubation time and temperature on two 
mosquito-virus systems. The number of mosquitoes in the cohort decreases over time (daily survival rate  p  = 0.90 at 20°C and  p  = 0.85 at 30°C), 
and 1% of the surviving mosquitoes acquire virus during the first blood meal. The proportion of infectious mosquitoes in the cohort changes as dis-
semination occurs. Simulated dissemination for western equine encephalomyelitis virus in  Culex tarsalis  shows a different pattern than simulated 
dissemination for West Nile virus in  Cx .  pipiens quinquefasciatus  at both temperatures.    
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ability of the assays to influence the resulting value of the esti-
mated infection rate. 

 Because simple random sample sizes of 200 and 2,000 were 
drawn with replacement, each repeated sample was taken from 
the original population. A total of 1,000 samples of each size 
were taken from each hypothetical population. It was assumed 
that only females were sampled and that they were all equally 
likely to be collected regardless of their age, gonotrophic sta-
tus or feeding status (empty, bloodfed). These sample sizes 
were selected to represent small and large values that could 
be common during surveillance. The probability of the sample 
containing infected mosquitoes increases asymptotically for 
small and large samples as the proportion of infected mosqui-
toes in the population increases. 

 Each sample was divided into groups or pools, as is usually 
done in surveillance studies to screen large numbers of mos-
quitoes, and each pool was tested for the presence of virus. 
Two pool sizes were considered, 20 and 50 mosquitoes. Each 
sample of 200 mosquitoes was divided into 4 pools of 50 or 
10 pools of 20. Each sample of 2,000 mosquitoes was divided 
into 40 pools of 50 or 100 pools of 20. The mosquitoes were 
randomly assigned to each pool. 

 Each simulated pool was individually evaluated for the 
presence of virus. Plaque-forming units of virus were assumed 
to be individual discrete units, and if more than one infected 
mosquito was present in the pool their titers were summed. 
The total PFUs in the pool was then divided by 2.5 to gener-
ate a PFU/mL concentration for each pool to simulate typi-
cal homogenization and extraction methods (using 2.5 mL of 
diluent as for the VecTest).   13  

 Two viral assays with different virus detection ability were 
simulated. The first one was an assay that could only detect 
virus at concentrations ≥ 10 3.8  PFU/mL. This was called the 
low detection ability assay. The second one was an assay 
that detected virus at concentrations ≥ 10 2.5  PFU/mL. This 
was called the high detection ability assay. The concentra-
tion threshold for the low detection ability assay is based on 
reports that WNV in a pool can be detected up to a minimum 
concentration of 10 3.8  PFU/mL with the VecTest   13  or 10 3.7  PFU/
mL with RT-PCR. 37  The threshold for the high detection abil-
ity assay was selected based on reports that the VecTest and 
RT-PCR can detect virus in pools of 50  Cx .  tarsalis  contain-
ing only one infected female, which had been inoculated with 
100 PFU of virus and held at 28°C for 3 days.   14   Culex tarsalis  
females that were infected with WNV by feeding on infected 
birds developed virus titers close to 10 2.5  PFU/mL 2–3 days post 
infection.   15  This finding suggests that WNV could be detected 
at lower levels than other studies have reported, and we used 
10 2.5  PFU/mL as a conservative threshold. The low detection 
ability assay will often require two infected mosquitoes in a 
pool using Distribution 2 (only one if titer is ≥ 10 4.2  PFU/mL) 
to detect virus and will always require ≥ 3 mosquitoes in a pool 
using Distribution 1. 

 Once the results for all the pools from a given sample were 
obtained, the estimated infection rate was calculated for that 
sample by using the MLE. 4  The MLE was calculated by using 
PoolInfRate 3.0 (Division of Vector-Borne Infectious Diseases, 
Centers for Disease Control and Prevention, Atlanta, GA, 
 www.cdc.gov/ncidod/dvbid/westnile/software.htm ). The MLE 
expresses the number of infected mosquitoes per 1,000 in the 
population. When all pools are positive, PoolInfRate will not 
calculate the MLE. Theoretically, in that case, the estimate of 

the proportion of infected mosquitoes in the population would 
be 1 (100% infected). 

 For each of the eight populations studied (four infection 
prevalence values × two titer distributions), eight estimated 
infection rate (MLE) frequency distributions were obtained 
with each of the sampling and testing procedures (two sample 
sizes × two pool sizes × two virus testing schemes). Each fre-
quency distribution has a particular number of possible MLE 
outcomes determined by sample size. For example, a sample 
of 200 mosquitoes can be divided into 4 pools of 50 and a sam-
ple of 2,000 mosquitoes can be divided into 40 pools of 50. 
When one has 4 pools, and 0, 1, 2, or 3 of the pools are virus 
positive, the only possible MLE outcomes (as calculated with 
PoolInfRate 3.0) in those cases are 0, 4.93, 11.35, and 20.20 
infected mosquitoes/1,000, respectively. 

 To explore which sample sizes, pool sizes, or virus detec-
tion assays were more likely to produce estimated infection 
rates close to the true population infection rate, their MLE 
frequency distributions were compared by using descriptive 
statistics (within population comparisons). Median, minimum 
and maximum values, and percentage of samples that produced 
estimates under the population infection rate (percentage 
of underestimation), were calculated for each frequency 
distribution. Even MLE values of 0.01 infected mosqui-
toes/1,000 below the population infection rate were consid-
ered underestimates. 

 To determine if MLE distributions were different between 
populations, pairwise comparisons of distributions were con-
ducted by using a Kolmogorov-Smirnov test (between popula-
tion comparisons). The pairwise comparisons tested differences 
between MLE frequency distributions for populations with 
1/1,000 infected mosquitoes versus MLE frequency distri-
butions for population with 5/1,000 infected mosquitoes. It 
follows that the other comparisons were between 1/1,000 ver-
sus 10/1,000, 1/1,000 versus 15/1,000, 5/1,000 versus 10/1,000, 
5/1,000 versus 15/1,000, and 10/1,000 versus 15/1,000. A Bon-
ferroni correction for multiple comparisons was applied and 
the overall probability to test the null hypothesis of equal distri-
butions was 0.05/6 = 0.0083. Comparisons were made between 
distributions that were generated with the same sample size, 
pool size, and virus detection method. This comparison was 
necessary because those factors determine the number of out-
comes in the distribution, and for the Kolmogorov-Smirnov 
test one needs the same number of outcomes in both groups 
being compared. 

   Results for Model II.   Frequency distributions with a total 
of 1,000 MLE values were obtained after simulated sampling, 
pooling, and testing of mosquitoes from hypothetical popu-
lations. A total of eight frequency distributions were obtained 
for each population ( Figure 5 ). 

  The descriptive statistics for the within population com-
parisons of the frequency distributions are shown in  Tables 2  
and  3 . When hypothetical populations followed viral titer 
Distribution 1 (10 1.5 –10 4  PFU/mosquito body), the median 
MLE values fell well below the population infection rate 
that they were attempting to estimate ( Figure 6A  and B) and 
underestimation was always > 80% ( Table 2 ). When simulated 
tests with low virus detection ability were used with samples 
from a population with titer Distribution 1, virus detection 
failed in a large number of positive samples and most MLE 
had values of zero ( Table 2 ). For example, we knew that 17.4% 
of the 1,000 samples of size 200 taken for the population with 
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infection rate 1/1,000 and Distribution 1 contained at least one 
infected mosquito. However, none of those samples produced 
positive pools after the simulation with the low detection abil-
ity assay and the MLE values were all 0. 

            When hypothetical populations had a viral titer Distribution 
2 (10 2 –10 6  PFU/mosquito body), median estimated infec-
tion rates (MLE) were relatively closer to the population 
infection rate, especially when a test with high viral detec-
tion ability was simulated ( Table 3  and  Figure 6C  and D). 
However, underestimation remained the rule. The frequency 
distributions with median MLE closer to the true value were 
obtained when population infection rates were 5/1,000 and 

the high viral detection ability test was simulated. Sample 
sizes of 2,000 tended to produce frequency distributions with 
median MLEs that increased with the population values, 
especially when combined with high viral detection ability 
tests ( Figure 6D ). 

 These results suggest that viral titer interacts with the abil-
ity of the test to detect virus, affecting the distribution of MLE 
outcomes: lower titers are largely undetected by assays with 
low ability to detect virus. Also, simulated large sample sizes 
and assays with high detection ability produced median MLE 
values that best approximated the population infection rate in 
the hypothetical populations ( Figure 6D ). The two pool sizes 

 F igure  5.    Results of Model II showing eight frequency distributions of 1,000 maximum likelihood estimator values each, which were obtained 
for a hypothetical mosquito population that had a proportion of 15 infected mosquitoes/1,000 and virus titer Distribution 2. Most outcomes fell 
below the population infection rate ( dashed vertical line ) that they attempt to estimate. Descriptive statistics for these distributions can be found 
in  Table 4 .    

  *   Two of the samples produced all positive pools and were excluded because maximum likelihood estimator (MLE) values cannot be calculated with all positive pools.  

 T able  2 
  Median maximum likelihood estimator values, minimum and maximum values, and percentage of maximum likelihood estimator values under the 

population infection rate (percentage underestimations) for 32 frequency distributions calculated for hypothetical mosquito populations with 
viral titer Distribution 1  

Population infection rate Sample size Pool size

Low virus detection ability High virus detection ability

MLE Minimum–maximum % Underestimation MLE Minimum–maximum % Underestimation

1/1,000 200 20 0 0 100 0 0–10.51 99.8
50 0 0 100 0 0–11.35 99.9

2,000 20 0 0 100 0.50 0–2.03 82.6
50 0 0 100 0.50 0–2.08 82.3

5/1,000 200 20 0 0 100 0 0–16.68 91.9
50 0 0 100 0 0–20.20 92.8

2,000 20 0 0–0.50 100 2.03 0–6.90 98.5
50 0 0–0.50 100 2.08 0–7.71 97.8

10/1,000 200 20 0 0–4.99 100 4.99 0–23.67 81.5
50 0 0–4.93 100 4.93 0–20.20 83.2

2,000 20 0 0–0.50 100 4.14 0–10.43 99.8
50 0 0–0.50 100 4.39 0–10 99.9

15/1,000 200 20 0 0 100 4.99 0–31.77 97.3
50 0 0–4.93 100 4.93 0–20.20 * 98.0

2,000 20 0 0–0.50 100 4.14 0.5–9.23 100
50 0 0–0.50 100 4.39 0.5–10.83 100
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produced almost identical MLE frequency distributions. Thus, 
the effect of pool size in these simulations was minimal. 

 Kolmorogov-Smirnov pairwise comparisons tested if the 
MLE frequency distributions were significantly different as 
the population infection rates increased (between population 
comparisons). Significant differences in the MLE frequency 
distributions were detected only between populations with 
infection prevalence of 1/1,000 and 10/1,000 and between 
1/1,000 and 15/1,000, but only when the frequency distribu-
tions came from samples sizes of 2,000 and when the popu-
lations had titer Distribution 2 ( Table 4 ). Thus, estimated 
infection rates only reflected changes in the actual population 
infection when the difference in prevalence was ≥ 10 times 
larger and when titers in mosquitoes were high and large 
samples were taken. 

         DISCUSSION 

 The results of this study suggest that estimated infection 
rates are more likely to reflect changes in infection prevalence 
in the mosquito population only when the sampling and virus 
testing are conducted in the best available conditions (i.e., 
large samples paired with assays that can detect virus at low 
concentrations). However, even under those conditions, infec-
tion estimates from samples are highly likely to underestimate 
the infection rate in the mosquito population. More impor-
tantly, these estimated infection rates are not straightforward 
indicators of changes in the risk of arbovirus transmission. 
This finding is caused by the variation among mosquitoes to 
complete the EIP and disseminate virus as a consequence 
of temperature, the time elapsed after initial infection, and 
the particular mosquito and virus species. For example, con-
sider the cohort in Model I. If mosquitoes in the cohort were 
sampled shortly after the initial blood meal and tested under 
the best available conditions, the estimate of infection prev-
alence would be approximately 1%, the hypothetical popu-
lation value. However, the risk of transmission at this point 
is null because there has not been any virus dissemination. 
Conversely, if the surviving mosquitoes were sampled around 

the time of the second or third blood meals, the proportion of 
infectious mosquitoes would be greater, but there would not 
be an associated significant increase in the estimated infection 
rate (still at 1%). Thus, when similar estimated infection rates 
are obtained from mosquito samples taken at different times 
or places, these estimates may not carry the same information 
about risk of virus transmission. In a larger context, if simi-
lar values of estimates of infection are obtained for the same 
mosquito–virus system at different periods, these estimates 
may not be equivalent because of variation introduced by dif-
ferences in mosquito survival and environmental temperature 
over time. Similar infection rates estimated for two mosquito–
virus systems would also be not comparable because of vari-
ations in the rate of virus dissemination associated with the 
biology of the system. 

 Model I considers only a single cohort of mosquitoes, but a 
population would be composed of numerous cohorts of mos-
quitoes at different ages. Depending on the species and envi-
ronmental conditions, recruitment to the population can occur 
infrequently, in large emergences or steadily over time. Our 
model would be more appropriate to situations with infre-
quent, large emergences and illustrates the problem of inter-
pretation of infection rates in the field. We anticipate that 
continual recruitment to a population, and the resulting vari-
ation in timing of blood meals, would increase the discrep-
ancy between the infected and infectious populations. Further 
research is needed on populations with a dynamic age struc-
ture and its effect on infection dynamics. 

 To have a more direct measure of infectiousness, field-
collected mosquitoes could be tested individually in the lab-
oratory for virus dissemination to the salivary glands. Also, 
traps baited with susceptible hosts could be placed in the field 
to capture biting mosquitoes, test them for virus, and later test 
the host for infection. In that way, one would have an esti-
mate of mosquito infection paired with a measure of transmis-
sion. 38,  39  However, these methods are seldom feasible, practical, 
or affordable for long-term surveillance programs. 

 Thus, estimated infection rates are necessary, and there is 
a large body of research dealing with ways to increase the 

 T able  3 
  Median maximum likelihood estimator values, minimum and maximum values, and percentage of maximum likelihood estimator values under the 

population infection rate (percentage underestimations) for 32 frequency distributions calculated for hypothetical mosquito populations with 
viral titer Distribution 2  

  *   Some samples (< 5%) produced all positive pools and were excluded because maximum likelihood estimator (MLE) values cannot be calculated with all positive pools.  

Population 
infection rate Sample size Pool size

Low virus detection ability High virus detection ability

Median MLE Minimum–Maximum % Underestimation Median MLE Minimum–maximum % Underestimation

1/1,000 200 20 0 0–4.99 92.3 0 0–10.51 85.3
50 0 0–4.93 92.3 0 0–11.35 85.3

2,000 20 0.50 0–2.03 80.0 0.50 0–3.60 52.5
50 0.50 0–2.08 80.1 0.50 0–3.79 53.2

5/1,000 200 20 0 0–23.67 92.6 4.99 0–31.77 80.7
50 0 0–20.20 * 93.3 4.93 0–20.20 * 85.5

2,000 20 2.03 0–6.34 98.8 4.14 1–11.04 75.3
50 2.08 0–7 97.3 3.79 1.01–10.83 70.9

10/1,000 200 20 4.99 0–23.67 80.8 4.99 0–31.77 58.8
50 4.93 0–20.20 82.6 4.93 0–20.20 * 62.3

2,000 20 4.14 0.50–9.23 100 7.47 2.03–16.20 86.1
50 4.39 0.50–9.21 100 7.71 2.08–14.51 78.4

15/1,000 200 20 4.99 0–41.38 86.1 10.51 0–53.20 63.7
50 4.93 0–20.20 * 91.9 11.35 0–20.20 * 75.2

2,000 20 6.90 2.03–14.20 100 10.50 4.68–21.94 88.9
50 7 1.54–14.51 100 11.69 4.39–24.86 83.2
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reliability of our estimates of infection. 4,  12,  16–  19,  40–  42  One common 
recommendation is to take large samples of mosquitoes 41,  42  
because infection is a rare event and a large sample increases 
the probability of collecting an infected mosquito, improv-
ing the accuracy of the estimated infection rate. In the labo-
ratory, grouping mosquitoes in small pools is recommended 
to minimize the random error of the estimated infection 
rate because small pools approach individual mosquito test-
ing. 4,  40,  42  However, smaller pools would make the testing less 
cost-effective, 12  and may be beyond the reasonable limits of 
public health infrastructures in many areas. The limits of pool 
size would not only be determined by budget and facilities but 
also by the maximum pool size recommended for a particular 
assay on the basis of its chemistry. 4,  42  Results from our numeri-
cal simulations point to the ability of an assay to detect virus, 
together with the sample size, as important factors affecting the 
reliability of the estimates of infection. When viral titers in the 

population were low (Distribution 1) or the population infec-
tion rate was low (1/1,000), the viral assay with low virus detec-
tion ability (meaning it needed relatively high concentrations 
of virus to produce a positive result) frequently underestimated 
(or failed to detect) the population infection prevalence. 
Therefore, using assays with the highest known detection ability 
is recommended. Because ideal conditions to estimate infection 
rates (large samples, small pools, and assays with high ability to 
detect virus) are difficult to achieve, it is of utmost importance 
to understand how biases accumulate throughout the estima-
tion process and to be aware of them when making assessments 
or decisions about transmission risk based on infection rates. 

 One of the most important goals when monitoring infection 
rates is to detect changes that could be related to increased risk 
of arbovirus transmission to animals and humans. To determine 
if changes are unusual, it is necessary to calculate a baseline 
infection rate. 43  Increases in infection rates could occur prior to 

 F igure  6.    Results of Model II showing the median outcomes of the estimated infection rate (maximum likelihood estimator [MLE]) frequency 
distributions (see  Tables 2  and  3 ) obtained after simulated sampling and testing of mosquitoes coming from hypothetical populations with increas-
ing infection prevalence (1, 5, 10, and 15 infected mosquitoes/1,000). Plots  A  and  B  correspond to median MLE outcomes for populations with viral 
titer Distribution 1. Because the estimation usually did not differ between different pool sizes, the lines are sometimes superimposed. Plots  C  and  D  
correspond to median MLE outcomes for populations with viral titer Distribution 2. A gray solid line indicating perfect agreement between popu-
lation prevalence and estimated infection rate is included for comparison purposes.    
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or during outbreaks due to virus amplification events when bio-
logical and environmental factors are ideal for large numbers 
of mosquitoes to transmit virus to a large population of sus-
ceptible amplification hosts. 44  Infection rates could also change 
after viremic hosts are introduced into an area. 45  The reliability 
of the methods that we use to estimate infection rates, and the 
range of the baseline information that we have, will determine 
our capacity to identify unusual changes in virus activity. 

 However, in addition to baseline estimated infection rate 
data, information on other mosquito population parame-
ters and environmental variables is necessary to determine 
if unusual arboviral transmission is occurring. Monitoring 
changes in the abundance of parous females, changes in the 
relative abundance of the total mosquito population, tem-
perature, and rainfall patterns, among others, are necessary 
indicators that should be used in conjunction with estimated 
infection rates in assessing risk. 2  These factors should also be 
investigated for extended periods to determine baseline pat-
terns during transmission season and then compare these val-
ues to periods of epizootic and epidemic transmission. 

 The use of multiple criteria for risk assessment is the cur-
rent procedure in some areas, such as California and Florida. 
These surveillance programs have a set criteria used to deter-
mine the level of risk of mosquito-borne arbovirus transmis-
sion, and have defined appropriate responses according to 
the assessed level of risk. 23,  46  Data on factors such as weather 
conditions, vector abundance, mosquito infection rates, senti-
nel chicken seroconversion, dead bird detection, and human 
cases are compared to historical data to determine the level 
of risk (e.g., normal season versus emergency) and the actions 
that need to be taken (public announcements, mosquito 
control, etc.). 23,  46  

 We acknowledge that the risk of transmission is not only a 
function of the proportion of infectious mosquitoes in a popu-
lation, but also a function of their abundance and biting pref-
erences. Recently, new measures of risk assessment have been 
proposed and could be more useful when comparing the risk 
in different areas or seasons, or the risk arising from different 
mosquito species. These are 1) the density of infected mosqui-
toes, resulting from the product of mosquito abundance and 
the estimated infection prevalence; 19,  47  2) the probability that 
a mosquito species will infect a mammal, 48  which is calculated 
as the product of abundance, proportion of blood meals taken 
from mammals, the estimated infection rate, and the fraction 
of infected mosquitoes that will subsequently transmit virus by 
bite; and 3) the vector index, which considers multiple species 
and is calculated as the summation of the product of the aver-
age number of mosquitoes of each species per trap times the 

proportion of infected mosquitoes of each species. 49  Although 
these indicators of risk need more parameters and conse-
quently need to meet more assumptions, they might be better 
than infection rates alone given that they consider more com-
plexities of the systems under surveillance. The calculation 
of the parameters for these risk estimates for different spe-
cies and for different geographic areas is necessary. If used for 
surveillance, indicators of risk should not be aggregated over 
broad areas or long periods to account for the spatio-temporal 
heterogeneity in virus transmission. 19  

 In addition to the factors examined here, there are many 
other factors that may influence the relationships between 
infection rates and risk of transmission. For example, the risk 
of transmission of a particular virus can change when multiple 
mosquito vector species are considered together. Virus strains 
could also vary in their dissemination rates under different 
temperatures, 50  which would add another level of complex-
ity to the relationship. In this study, we did not examine other 
environmental factors such as larval rearing conditions that 
can affect the susceptibility of mosquitoes to become infected 
and/or infectious. 51  In our second model, we simulated two 
viral titer distributions, but empirical data on the distribution 
of titers in field-collected mosquitoes is limited. One study 
documented coarse variations in titers among different virus 
and mosquito species over space and time, and suggested that 
monitoring high titers of virus in mosquitoes in the field could 
help to identify species with higher vector competence and to 
observe the effects of temperature in the progression of the 
virus amplification cycle. 52  In our study, we assumed that viral 
titers can be summed when more than one infected mosquito 
is present in a pool, but it is necessary to investigate how hav-
ing multiple positive mosquitoes in a pool determines virus 
concentration. We did not consider other factors that could 
introduce biases and error in estimation, such as trapping 
biases and the false-positive detection of virus. 

 In Florida, field experiments using sentinel chickens to esti-
mate the rate of virus transmission by  Cx .  nigripalpus  showed 
that transmission is low in relation to estimated infection 
rates, 38,  39  and many factors that we studied here were consid-
ered to explain this occurrence. These field studies support 
the idea that incorporation of information on the mosquito 
population (age structure, abundance and estimated infection 
rate), virus (strain, species-specific dissemination rates), and 
the environment (temperature) are necessary to make assess-
ments of the risk of virus transmission. 

 The results from our simplified models remind us that esti-
mates of mosquito infection prevalence may not be directly 
related to the risk of transmission of arboviruses to animals 
and humans. The general assumption that increases in infection 
rates indicates increases in the risk of arbovirus transmission 
might not be reliable as supported by field data. It is impor-
tant to remember that 1) there are biases that sampling and 
virus testing methods introduce in our estimates, which will 
cause them to generally underestimate the population infec-
tion rate; 2) similar estimated infection rates across locations, 
time, and for different mosquito and virus species might not 
indicate similar risk of arbovirus transmission because of vari-
ations in dissemination rates; 3) arbovirus baseline data are 
necessary to define unusual changes in transmission activity; 
and 4) use of other surveillance indicators in conjunction with 
estimated infection rates is necessary to fully assess the risk of 
arboviral transmission. 

 T able  4 
  Results of the Kolmogorov-Smirnov test comparing maximum likelihood 

estimator frequency distributions *   

Sample size 
and viral titer

Ability to 
detect virus Pool size

1/1,000 vs. 
10/1,000

1/1,000 vs. 
15/1,000

D  P D  P 

2000, Distribution 2 Low 20 0.46 0.00081 0.51 0.00012
50 0.33 0.07 (NS) 0.47 0.003

High 20 0.32 0.04 (NS) 0.46 0.00081
50 0.40 0.02 (NS) 0.43 0.007

  *   Results support significant differences among maximum likelihood estimator frequency 
distributions obtained for populations with infection rates of 1/1,000, and populations with 
infection rates of 10/1,000 or 15/1,000. The Bonferroni correction was applied (alpha = 0.05/6). 
NS = no significant difference.  
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