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Abstract

A method for studying the divergence of multiple closely related populations is described and assessed. The approach of
Hey and Nielsen (2007, Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in
population genetics. Proc Natl Acad Sci USA. 104:2785–2790) for fitting an isolation-with-migration model was extended
to the case of multiple populations with a known phylogeny. Analysis of simulated data sets reveals the kinds of history
that are accessible with a multipopulation analysis. Necessarily, processes associated with older time periods in a phylogeny
are more difficult to estimate; and histories with high levels of gene flow are particularly difficult with more than two
populations. However, for histories with modest levels of gene flow, or for very large data sets, it is possible to study large
complex divergence problems that involve multiple closely related populations or species.
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Introduction
By including both population splitting and gene flow, iso-
lation-with-migration (IM) models hold the potential to
help investigators disentangle two of the main factors that
determine how fast populations diverge (Latter 1973;
Wakeley and Hey 1998; Nielsen and Wakeley 2001). In
the absence of gene exchange, the expected level of diver-
gence between populations or species will be proportional
to the amount of time since they shared a common ances-
tor. But if gene exchange has been occurring since the sep-
aration of populations, it can greatly shape the dynamics of
the divergence process (Dobzhansky 1951; Endler 1977;
Arnold 1997; Barton 2001). In the absence of gene exchange,
speciation is a byproduct of multiple independent selective
fixations in the separate populations (Dobzhansky 1936;
Muller 1940; Orr 1995). But when genes have been moving
as divergence accumulates, speciation is a more complex
processes in which natural selection drives the divergence
process to a degree that overcomes the unifying effects of
gene exchange (Millicent and Thoday 1961; Maynard Smith
1966; Felsenstein 1981; Rice and Hostert 1993).

Nielsen and Wakeley (2001) developed the first general
procedure for estimating population size, migration and
splitting time parameters for an IM model with two
populations. They adapted the Bayesian Markov chain
Monte Carlo (MCMC) approach devised by Wilson and
Balding (1998) to estimate the posterior probability of
the parameters and the genealogy, pðH;GjXÞ}
pðXjG;HÞpðG;HÞ, where X is the data, G is the genealogy,
and H is a vector of population size, migration rate and
population splitting parameters. However, this approach
suffers because the state space of the Markov chain simu-
lation is very large (i.e., it includes all parameters and ge-
nealogies) and because the primary results are a list of

recorded values of parameters, rather than an estimate
of a posterior density function. These difficulties can be
partly overcome by a method that uses direct calculation
of the prior probability of the genealogy to run a Markov
chain simulation over a space that includes only G and
population splitting times, t. This MCMC simulation gen-
erates samples from the posterior density PðG; tjXÞ, and
these are then used to build an estimate of the joint pos-
terior probability of the model parameters, pðHjXÞ(Hey
and Nielsen 2007).

A major limitation of current IM-based applications is
the restriction to samples from two populations. Analyses
of pairs of populations assume that each is the other’s clos-
est relative and that no other populations have contributed
to the divergence process of the sampled populations (e.g.,
by exchanging genes with them). However, many, if not
most, cases of divergence that are of interest to investiga-
tors involve more than two related populations or species.
To get around this limitation, studies typically report anal-
yses of multiple pairwise combinations of sampled popula-
tions and then try to make some, usually qualitative, sense
of the overall pattern present in the multiple separate anal-
yses (Hoelzel et al. 2007; Lucas et al. 2009; Pinho et al. 2008).

In this paper, the method of Hey and Nielsen (2007) is
extended to the case of multiple populations that have
a known phylogenetic history.

Methods
A basic two-population IM model includes three popu-
lation size parameters (for the two sampled populations
and the ancestral population), two migration rates (for
migration in each direction between sampled popula-
tions), and a time since the ancestral population split in-
to two. An IM model of k . 2 sampled populations will
include these same types of parameters, albeit in greater
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abundance, as well as some kind of representation of the
population phylogeny. Figure 1 shows an IM model for
three sampled populations in which sampled popula-
tions 1 and 2 are more recently diverged from each other
than either are with respect to population 3. In figure 1
and throughout this paper, the populations in a model
with k sampled populations are numbered first from 1
through k, for the sampled populations, and then from
k þ 1 (for the most recent ancestral population) to 2k �
1 (for the oldest ancestral population at the root of the
phylogeny).

The general k-population model includes the following
assumptions:

� The history of the sampled populations can be repre-
sented by a bifurcating phylogenetic tree.

� The population phylogeny is rooted, and the topology of
the tree and the sequence of splitting events in time is
known.

� Each sampled population, as well as each ancestral
population, is constant in size and follows Fisher–Wright
population assumptions (Ewens 1979).

� Gene flow may have occurred, in either or both directions,
between each pair of populations that coexist over one or
more time intervals.

� No gene flow occurred between unsampled populations
and sampled populations or their ancestors.

The individual loci sampled from these populations are
assumed 1) to not have had recombination since the most
recent common ancestor, 2) to be effectively unlinked from
each other, and 3) to have a history that has not been
shaped by natural selection (Hey and Nielsen 2004).

As in the case of a two-population IM model, multipo-
pulation models have three main types of unknown, each
of which is scaled by the rate of neutral mutations per gen-
eration, u (Hey and Nielsen 2004). Every population has
a population mutation rate, h or 4Niu (Ni is the effective
population size for population i), as well as a rate of mu-
tation-scaled migration to each population with which it
coexists in time m5M/u (M is the migration rate per gen-
eration per gene copy). The root population at the base of
the population tree has a population size parameter but no
migration parameters because there is only one population
in the model at that point in time. In addition to popula-
tion size and migration parameters, we have for every in-
ternal node of the population tree a population splitting
time, t 5 Tu, where T is the time since common ancestry
in generations.

A k-population IM model will have k � 1 splitting
events and a total of 2k-1 populations (i.e., k sampled pop-
ulations plus k � 1 ancestral populations). The splitting
events are numbered beginning with the most recent, as
are the time intervals, or periods, such that period i ex-
tends between ti-1 and ti. In the case of time period 1,
the interval extends from the time of sampling to t1
and in the case of time period k, the interval extends from
tk-1 to infinity.

The number of distinct migration parameters can be
found by considering that the model will have two migra-
tion rates for every distinct pair of populations that coexist
during at least one time period. During period 1, when
there are k populations, there will be kðk� 1Þ migration
rates. Moving down the tree to period 2, two populations
merge to form an ancestral population and so, of the
kðk� 1Þ migration rates in period 1, only
ðk� 2Þðk� 3Þ also apply over period 2. However, for pe-
riod 2, we also need to consider the migration rates be-
tween the ancestral population that first appears in
period 2 and the other populations that are present at that
time. Therefore, for period i, where i . 1, we need to in-
troduce 2ðk� iÞ migration parameters to the model. Sum-
ming the count for period 1 to the sum over periods 2
through k � 1, we find the total number of migration pa-
rameters to be

kðk � 1Þ þ
Xk� 1

i5 2

2ðk � iÞ5 2ðk � 1Þ2: ð1Þ

Unlike the count of population size parameters, which
increases by only two for every additional sampled popu-
lation added to the model, the number of migration
parameters goes up rather quickly with increasing k. For
k 5 3, expression (1) yields 8; for k 5 4, it is 18; and
for k 5 10, the IM model described here will have 162 mi-
gration parameters. There are various ways to simplify the
model, with regard to migration, that will reduce this total.
For example, it can be assumed that migration rates are
equal in both directions between populations, which will
reduce the number of parameters by a factor of two.

FIG. 1. An isolation-with-migration model for three sampled
populations.
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Alternatively, one can assume that migration occurs only
between sister populations so that in any time period, there
are only two migration terms. Figure 2 shows the number
of parameters under a full model as a function of the num-
ber of sampled populations.

The method of Hey and Nielsen (2007) generates Bayes-
ian estimates of the model parameters by approximating
the integration over genealogies.

pðHjXÞ5
Z

w

pðHjGÞpðGjXÞdG; ð2Þ

where G is the genealogy (i.e., gene tree history) of the data set
X, w is the set of possible genealogies, and H is the set of
model parameters (excluding t). The method proceeds in
two steps. First, a sample of genealogies and splitting time val-
ues is generated, using a MCMC simulation, from the poste-
rior density, pðG; tjXÞ. Second, the posterior density of the set
of remaining model parameters H is estimated using the ge-
nealogies saved in the first step,

pðHjXÞ � 1

k

Xk
i5 1

pðHjGiÞ: ð3Þ

Although originally described for a two-population IM
model, the approach can be directly extended to k sampled
populations with a given population tree. The key to the
method is the integration, over the elements of H, to ob-
tain the prior probability of G as given by (1):

pðGÞ5
Z

pðGjHÞpðHÞdH: ð4Þ

Adding more populations to the model causes the num-
ber of parameters to increase considerably, but the form
and tractability of this integration are unaffected by the
increase (see Appendix).

Prior Distributions for Multiple Splitting Times
Heretofore, two-population IM models have generally
assumed a constant prior distribution on the parame-
ters for population sizes, migration rates and splitting
times (Nielsen and Wakeley 2001; Hey and Nielsen
2004; Becquet and Przeworski 2007; Hey and Nielsen
2007). However, with k . 2 populations and a popula-
tion tree, it is no longer feasible to have uniform prior
distributions for individual splitting time parameters. To
see this, consider two possible ways to parameterize
splitting times.

First, consider a model in which the splitting times
t5ft1; t2 . . . tk�1g are randomly distributed over the range
from zero to a maximum value specified by the investiga-
tor, tm. And assume that we know the order of the splitting
events, such that ti,tiþ1. The joint prior distribution of in-
tervals between splitting times will then follow a Dirichlet
distribution on the interval {0,tm}, and the joint prior den-
sity of splitting times (i.e., the joint set of time values, not
the intervals between them) will have a uniform density
over a portion of a hypercube. Consider that for a k 5

3 population model, there will be two splitting times,
and the constraint of t1,t2,tm results in a uniform distri-
bution over one half of the area of a square with sides tm in
length. The general form for the marginal prior density of ti
in a k-population model is a beta distribution on the
interval {0,tm}:

pðtiÞ5
k!

ði � 1Þ!ðk � iÞ!
ðtm � tiÞk� it i� 1

i

tkm
: ð5Þ

For example, the marginal priors for a model with k5 5
and tm510 are shown in figure 3.

An alternative approach to parameterizing splitting
times is to let the individual time parameters in the model
each follow a uniform distribution over a common interval
and then to have the splitting times be sums of these terms.
For example, if we let si be the duration of period i, then the
splitting time associated with period i, would be
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FIG. 2. Numbers of parameters of different types and total
numbers, as a function of the number of sampled populations in
the model.
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FIG. 3. Marginal prior distributions for splitting times in a model
with five splitting events for a shared common maximum time
of 10.
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ti 5
Xi

j5 1

sj:

Clearly, the prior density of t1 is uniform under this ap-
proach, but for higher values of i, the marginal prior for ti is
a convolution of two or more uniform variables and is not
uniform. The first approach, in which the set of splitting
times follows a uniform density, subject to the constraint
that ti,tiþ1, has been used here.

Exponential Priors for Migration
Since Nielsen and Wakeley (2001), IM analyses have been
based on uniform prior distributions for migration param-
eters, just as for population size and splitting time param-
eters. However, there are two reasons why investigators
might wish to consider a prior distribution for migration
that has the highest probability at zero. The first stems
from the fact that IM analyses are generally directed at pop-
ulations that exhibit at least some divergence. Given that
divergence is not expected if gene flow is high, the very
observation of divergence can motivate an expectation
that gene flow has been low.

A second reason is that many data sets do not provide
a lot of information on both splitting time and migration.
When analyzed under a model with a uniform and wide
prior distribution on migration, such data may reveal a pos-
terior density that has its highest values for histories in
which both the migration rates and the splitting time
are at the upper bounds of their respective prior distribu-
tions. Unless the upper bound on splitting time was low,
such a history is effectively that of an island model, in which
the divergence is at an equilibrium due to a balance be-
tween genetic drift within populations and gene exchange
between them. Although such a history might indeed be
correct, IM analyses are generally conducted because of
a prior expectation that an IM model is suitable and thus
that the data did not arise from an equilibrium island
model. One possible way to deal with this would be to
specify a joint prior distribution in which histories with
both high gene flow and high splitting times are unlikely.
However, having the priors of the different parameters not
independent of one another raises a number of complica-
tions. It is in this context, where limited data suggests an
island model when wide priors are used, that it may be use-
ful to consider a prior for migration that has lower prob-
abilities for higher values of migration.

Both of these considerations suggest using an exponen-
tial prior distribution on migration. Unlike a uniform prior
with an upper bound, m#, specified by the user, an expo-
nential prior will extend from zero to infinity, with an
expected value, �m, that is specified by the user:
fðmÞ5e�m= �m= �m. Calculation of the prior probability of
the genealogy is even simpler for an exponential prior than
for a constant prior (see Appendix). However, with expo-
nential priors, the posterior density will no longer be uni-
formly proportional to the likelihood, a key assumption for
likelihood-ratio tests (Hey and Nielsen 2007).

Population Migration Rates
For migration, the relevant parameterization in most pop-
ulation genetic contexts is the population migration rate,
the product of the effective number of gene copies and the
migration rate per gene per generation. Given an estimate
of the posterior probability of the population size and mi-
gration rate parameters, pðHjXÞ, we can generate an esti-
mate of the posterior density for a function of multiple
elements of H. For the population migration rate into pop-
ulation i from population j, we first find the marginal den-
sity for the two parameters:

fðhi;mi/jjXÞ5
Z

pðHjXÞdH!hi;mi/j
; ð6Þ

where H!hi;mi/j
is H with hi and mi/j removed. Letting R 5

2NM 5 h � m/2,

pðRÞ5
Z hmax

2R=mmax

fðh; 2R

h
Þ 2

h
dh; ð7Þ

where mmax and hmax are the upper bounds on the uniform
prior density of these parameters.

IM Analyses with Multiple Populations
A computer program was written (available from http://
genfaculty.rutgers.edu/hey/home) to implement the
method of Hey and Nielsen (2007) for an arbitrary number
of sampled populations and a known phylogeny. The major
changes, with respect to an earlier program for the analyses
of two populations, involved designing and implementing
algorithms for the MCMC simulation of genealogies over
multiple time periods. In addition, to improve mixing of
the MCMC simulation, two algorithms for updating the
population splitting time terms were included. The first
method is that of Rannala and Yang (2003), in which
branch lengths above and below the splitting time being
altered are stretched and contracted reciprocally (much
like moving the center point of a rubber band with fixed
end points). The second method is the original approach of
Nielsen and Wakeley (2001) extended to multiple popula-
tions. This method involves the removal and resimulation
of migration events when a splitting time is moved.

Simulations
To explore sampling and estimation issues when more than
two populations are studied, data sets were simulated and
analyzed under several models. Table 1 shows the different
simulation models that were considered, each of which in-
cludes 20 independent simulated data sets generated un-
der the infinite-sites mutation model (Kimura 1969).
Simulation models 1 and 4 are baselines for many compar-
isons, such that other simulation models typically vary from
1 or 4 in just one or two ways. All simulation models except
2, 3, and 6 are based on a three-population phylogeny in
which two of the three sampled populations (populations 1
and 2) join at the most recent splitting event, and then the
ancestor of these populations, population 4, joins with
sampled population 3 at the older splitting time. To
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simplify interpretations, all population size parameters (for
sampled and ancestral populations) in each simulation
were set to a single value (though this value varied among
some simulation models). In all three-population simula-
tions, the ratio of splitting time to population size (i.e.,
tu/4Nu) for the most recent split was set to 0.2 and to
0.5 for the older splitting event. For each simulated data
set, the program was run using a uniform prior distribution
for population size parameters, with an upper bound for
population size that is three times the true value and an
upper bound on the oldest splitting time that is two times
the true value. The prior distribution for migration param-
eters is shown in table 1. Preliminary analyses were used to
estimate the necessary duration of a run and the number of
Metropolis-coupled chains required to achieve a well-
mixed Markov chain, based on visual observation of trend
plots for splitting time values and on autocorrelations of
splitting time values over the course of the run (Hey
and Nielsen 2004). Marginal posterior probability density
estimates for population size and migration parameters
were based on 20,000 sampled genealogies.

For each simulation model, the results for a given param-
eter are summarized by plotting the sum of the 20 marginal
posterior densities for that parameter. Thus, each curve
shown in the figs. 4–9 is actually the sum of 20 curves, each
of which was estimated from one of the simulated data sets
for that simulation model. These summed posteriors are
useful for looking at overall patterns of estimator variance
and bias; however, they necessarily combine two sources of
variance (within data sets and among data sets) in the pos-
terior density for a given parameter. For simulation models

1, 4, and 10, curves for all data sets are provided in Supple-
mentary Material online.

Tests of Migration
One of the main questions that arise in IM analyses is
whether the estimated migration rates are significantly dif-
ferent from zero (Nielsen and Wakeley 2001; Hey 2006; Hey
and Nielsen 2007; Becquet and Przeworski 2009). Nielsen
and Wakeley (2001) proposed a simple likelihood-ratio test
for which the test statistic is twice the difference in the log-
arithms of the maximal posterior probability for a migration
parameter and the posterior probability when that param-
eter is at zero. This likelihood-ratio statistic is tested against
a mixture of distributions, 1

2 v
2
0 þ 1

2 v
2
1 (where v2

0 is equal to
zero) (Nielsen and Wakeley 2001). Tests of the null hypoth-
esis, that the true migration rate is zero, were conducted for
all migration parameters in all the models. For most of the
simulation models, most or all the true values for migration
rates were zero, and for these, the estimated false-positive
rate (i.e., the proportion of migration parameter estimates
with log-likelihood-ratio statistics greater than 2.74, i.e., P,
0.05 under a distribution that is 50% zero and 50% v2

1) was
calculated. For migration rates with nonzero true values,
the proportion of statistically significant values (i.e., statis-
tical power) was also determined.

Results
One of the general questions that become possible with
multipopulation models is whether subsets of the data,
for just pairs of populations, provide a different picture than
that obtained with the full multipopulation analysis. Figure 4

Table 1. Simulation Models.

Model No. 1 2a 3a 4 5 6 7 8 9 10 11b 12b 13b

No. of sampled
populationsc 3 2 2 3 3 4 3 3 3 3 3 3 3
hd 10 10 10 10 10 10 1 1 10 10 10 10 10
t1
e 2 2 5 2 2 2 0.2 0.2 2 2 2 2 2

t2
e 5 — — 5 5 4 0.5 0.5 5 5 5 5 5

t3
e — — — — — 5 — — — — — — —

mf — — — — — — — —
m1>2 5 0.02
m3>(1,2) 5 0.02

m 1>2 5 0.02
m3>(1,2) 5 0.02

m1>2 5 0.2
m3>(1,2) 5 0.2

m1>2 5 0.2
m3>(1,2) 5 0.2

m1>2 5 0.2
m3>(1,2) 5 0.2

No. of loci 10 10 10 50 10 50 50 50 10 50 50 50 50
No. of gene copies
per locus 5 5 5 5 20 5 5 15 5 5 5 5 5
m prior termg 1 1 1 1 1 1 1 1 1 1 0.5 5.0 0.05h

False positivesi 0.050 0.0 0.0 0.0 0.0 0.019 0.012 0.056 0.025 0.042 0.075 0.200 0.0130
Mean run
duration (h)j 3 1 1 12 48 96 6 20 3 12 48 96 96
Figure no. 4 4 4 5 5 6 7 7 8 8 9 9 9

a Data for models 2 and 3 were taken from data sets simulated for model 1.
b Models 11, 12, and 13 all used the same data sets.
c Population trees for two-population models, (1,2):3; for three-population models, ((1,2):4,3):5; and for four-population models, ((1,2):5,(3,4):6):7.
d The true value for all population size parameters in the model.
e Population splitting time values.
f Migration rate parameters with nonzero values, rates for all parameters not shown were set to zero.
g The upper bound on the uniform prior distribution for migration parameters.
h The mean of the exponential prior distribution for migration parameters.
i The proportion of those migration parameters that have true values of zero and that are estimated to be significantly different from zero.
j The average time required for an analysis on a single PC processor. Run duration depends on the size of the data set, the burn-in duration, the rate of sampling genealogies,
and the number of Metropolis-coupled chains specified by the investigator (Hey and Nielsen 2004).
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compares results for a three-population model (simulation
model 1) with those for two two-population models (mod-
els 2 and 3), each of which is based upon excluding all the
samples from one of the three populations in model 1. In
this case, the two-population simulated data sets, even
though they are sampled from larger three-population data
sets, do not in fact violate the assumptions of the IM model.
This is because their histories do not include gene flow and
do not have any population size change. Given the unifor-
mity of these models (i.e., all population sizes equal) and the
absence of gene flow, it is not surprising that the modes of
the curves for the two-population models are close to the
true values. However, the same data fitted to a three-

population model shows more bias in the size of population
4, more bias in the splitting time estimates, and flatter curves
for t2 and the migration parameters (only four of the eight
migration curves are shown for simulation model 1 in fig. 4).
A full three-population model has 15 parameters, compared
with just 6 for a two-population model, and for these pa-
rameter values, it appears that these sample sizes are insuf-
ficient for the full three-population model. The individual
curves for each of the 20 data sets for model 1 are provided
in Supplementary Material online.

Results for models with larger three-population data sets
are shown in figure 5. Comparison of models 4 (50 loci, 5
gene copies per locus) and 5 (10 loci, 20 gene copies per

FIG. 4. Marginal posterior probability density estimates for simulated data for models 1, 2, and 3 (left column, center column, and right column,
respectively). As described under Methods, each curve is the sum of 20 curves from the analysis of 20 independently simulated data sets. Each
row of panels shows the results for a different set of parameters (top row: population size; middle row: splitting time; and bottom row:
migration rates). For migration rates, only four or two of the possible migration rates are shown.
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locus) with model 1 (fig. 4; 10 loci, 5 gene copies per locus)
shows that both 4 and 5 have summed curves that are
much closer to the true value. For these parameter values,
having more loci (model 4) rather than more gene copies
per locus (model 5) seems to provide narrower posterior
density estimates and less bias.

To see results with the same sampling scheme as model
4, but for a four-population model, data were simulated
under a phylogenetic tree in which populations 1and 2 join
at t1 5 2, populations 3 and 4 join at t2 5 4, and then
populations 5 (the ancestor of 1 and 2) and 6 (the ancestor
of 3 and 4) join to form population 7 at t3 5 5. Results are
shown in figure 6. A four-population model has 28 param-
eters, and not surprisingly, we again see some of the pat-

terns observed with smaller data sets under a three-
population model (e.g., simulation model 1; fig. 4) in which
some parameter estimates are biased (most notably the
size of ancestral population 6) and some curves that extend
all the way to the upper boundary of the parameter.

For models 1–6, all the population size parameters had
true values of 10.0. To see the effect of having a much small-
er value, and thus much less variation in the data set, sim-
ulations were done using h 5 1.0, with splitting times
scaled accordingly. Two models were considered, one with
a data set the same size as for model 4 (model 7 with 50
loci, 5 gene copies per locus) and one with a larger data set
(model 8 with 50 loci and 15 gene copies per locus). Both
models 7 and 8 returned summed curves for migration

FIG. 5. Marginal posterior probability density estimates for models 4 and 5. For migration rates, only four of the eight migration rates in a
three-population IM model are shown.
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parameters that are very flat, suggesting that for low values
of h and these parameters values, much more data will be
required to estimate migration parameters with confidence
(fig. 7).

Models with Gene Flow
Migration between populations causes those populations
to resemble each other and to appear more like a single
population. If it is high enough, migration can obliterate
any population genetic appearance of a history of popula-
tion splitting. In terms of Bayesian estimation of a diver-
gence model, data from histories with migration will
yield flatter posterior densities for population size param-
eters, splitting times, and migration rate parameters. In
each of the simulation models with migration, migration
events were added to the simulations both from popula-
tion 1 to 2, in period 1, and from population 3 to popu-
lation 4 (i.e., the ancestor of 1 and 2), in period 2. Note that
because migration rates are defined in terms of the coales-
cent process, these rates refer to time as it proceeds back
into the past. Defined this way, movement of a gene from
population 1 to 2 is equivalent to the movement of a gene
in the reverse direction (population 2 to 1) as time moves
chronologically, from the past to the present. Similarly,
population migration in the coalescent from population
1 to 2 (i.e., 2N1M1/2), when interpreted as time moves
from the past to the present, is the rate at which popula-
tion 1 receives migrants from population 2.

Simulation models with migration varied for sample size,
amount of migration, and the prior distribution on the mi-
gration parameters (table 1). Figure 8 shows the results for
simulation models that are similar to models 1 and 4 with
the addition of a small amount of migration (m 5 0.02,
2NM 5 0.1). In the simulations in figure 8, there were
on average 0.25 migration events per locus; so, the 10 locus
data sets (model 9) had on average 2.5 actual migrations,
whereas the 50 locus data sets had on average 7.5 migration
events. Comparisons of models 9 and 10 to 1 and 4 (figs. 4
and 5), respectively, shows more variance (i.e., flatter
curves) in the models with migration. The summed poste-
rior densities for migration show either no peak or a very
slight peak near the true migration rate for those nonzero
migration parameters. However, these curves do not reveal
the variation among the different replicates, some of which
showed clear nonzero peaks for migration parameters and
many of which that did not (see Supplementary Material
online). Table 2 shows the estimated statistical power of
detecting nonzero migration using the test of Nielsen
and Wakeley (2001); for m1.2, migration was detected
10% of the time in model 9 (i.e., 2 of the 20 simulated data
sets) and 25% of the time in model 10. For m4.3, estimated
statistical power was zero in both models 9 and 10. Clearly,
for these parameter values and data set sizes, low levels of
migration are difficult to detect, particularly for migration
events prior to the most recent population splitting.

Results for moderately high levels of gene flow (m5 0.2,
2NM5 1.0) are shown in figure 9 for data sets with 50 loci.
This figure compares results for a common set of

FIG. 6. Marginal posterior probability density estimates for
simulations under a four-population model (model 6). For migration
rates, only 4 of the 18 migration rates in a four-population IM model
are shown.
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simulations for three different types of prior distributions
for migration parameters, including a uniform distribution
with a low upper bound (model 11 with an upper bound
on migration ofm#50:5), a uniform distribution with a high
upper bound (model 12, m#55:0), and an exponential
distribution with a low mean value (model 13, �m50:05).
For model 11, the statistical power for detecting recent
gene flow was quite high (0.95; table 2) and fairly high
for gene flow that predated the most recent population
split (0.7).

However, the results when using a high prior on migra-
tion are very different from those found with a low prior.
For model 12, we find that the curves for t2 and for migra-
tion rates in period 2 fall virtually at the upper bound for
the respective parameter (i.e., barely visible at the right side
of the middle and lower chart in the middle column of
fig. 9). We also find a very narrow peak for t1 that is far
to the left of its true value and broader distributions for
ancestral population sizes. These analyses also returned
a strikingly high false-positive rate of 20% (table 1) for those

FIG. 7. Marginal posterior probability density estimates for models 7 and 8.
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migration parameters that had a true value of zero. Much
of this false-positive rate was due to statistically significant
estimates for m4.3 (the true value of which was zero), for
which the curve was always abutting the upper bound
(fig. 9). What appears to be happening for these data sets
is that histories with large splitting times and high migra-
tion rates are found to have high posterior probability. In
effect, the method has returned estimates that encroach on
an island model in which population splitting was long ago
and divergence is the result of an equilibrium between ge-

netic drift and migration. This tendency for the analyses to
indicate (wrongly) a history with ancient splitting time and
high gene flow seems to be a result of three things: having
limited data for a model with many migration parameters,
such that the data does not dominate the prior distribu-
tion; having a high amount of gene flow in the true history;
and having high values for the upper bounds on migration
and splitting time prior distributions.

The contrast between simulation models 11 and 12
shows how estimated posterior densities can be very

FIG. 8. Marginal posterior probability density estimates for models 9 and 10.
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sensitive to the prior distribution for migration parameters.
If data sets are very large, or migration rates are low, this is
less likely to be a problem, but going into an analysis, an
investigator may not know whether their data is sufficient
for the history they are trying to discern. It is partly for this
reason that the use of exponential priors for migration rates
were explored (simulation model 13). An exponential prior
has the advantage that it ranges from zero to infinity and so
an investigator can use it without explicitly ruling out high
migration rates. In this case, we find that the summed
curves for population size and splitting time are similar
to that for a low prior (model 11); however, the migration
curves are noticeably shifted to the left, as expected if the
prior distribution is having a large effect on the posterior
distribution. If we apply the test of Nielsen and Wakeley

(2001) to the case with exponential priors, the statistical
power for recent gene flow is 0.6, but for gene flow older
than the most recent population split, it is only 0.05
(table 2). It must be noted that an exponential prior nec-
essarily shifts all migration curves closer to zero and will
make this test even more conservative than it is under
a uniform prior.

Likelihood-Ratio Tests of Migration Parameters
With an estimate of the marginal posterior density for a mi-
gration rate m or a population migration rate 2NM, ob-
tained using a uniform prior on m, it is straightforward
to calculate a likelihood-ratio statistic and to assess the sta-
tistical significance with a mixed v2 distribution (Nielsen
and Wakeley 2001). This test was examined in several

FIG. 9. Marginal posterior probability density estimates for models 11, 12, and 13.
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ways using the analyses on simulated data, for both m and
2NM.

To assess the rate at which the test is significant, when
the true rate is zero (i.e., false positives), tests were con-
ducted for all the migration parameter estimates in all
the data sets listed in table 1, with the exceptions of models
12 and 13 and those migration parameters in models 9–11
with nonzero true values. Variation in the false-positive rate
among models (table 1) suggests that false positives are
more likely when data sets are small (either in terms of
number of gene copies or amount of variation in the data).
Thus, we see that models 1 and 6, which have small samples
for the number of sampled populations, and models 7 and
8, which have low polymorphism, return nonzero false-pos-
itive rates in contrast to models 2, 3, 4, and 5. Simulation
models with true nonzero migration also have higher rates
of false positives (i.e., models 9, 10, and 11). Part of this may
be due to insufficiency of data, as more data are generally
required for histories with gene flow. Not shown in table 1
but apparent in a summary of all the migration rate tests
(Supplementary Material online) is that migration rates be-
tween closely related populations are much more likely to
be falsely identified as significantly different from zero than
are migration rates between distantly related populations.

To assess the power of the likelihood-ratio test, it was
also applied to all those migration parameters with non-
zero true values in models 9–11, and these results are
shown in table 2. For low migration rates (models 7 and
8), statistical power is estimated to be low (gene flow in
period 1) or zero (gene flow in period 2). For high gene
flow, when a low prior is used on migration rates, statistical
power is fairly high in both time periods (model 11) ,
whereas for model 13 with an exponential prior, statistical
power was reduced, especially in period 2.

To see if the distribution of the likelihood-ratio test
statistic actually follows that suggested by Nielsen and
Wakeley, the cumulative distribution of observed values
was plotted alongside that for the 1

2 v
2
0 þ 1

2 v
2
1 distribution

in figure 10. As suggested by its authors, the test is fairly
conservative; however, the observed and expected cumu-
lative distributions are similar for higher values of the test
statistic.

Discussion

Joining Population Genetics and Phylogenetics
The discernment of recent evolutionary history for closely
related populations or species presents challenges that fall
in the area of population genetics (Gillespie and Langley
1979; Pamilo and Nei 1988; Hudson 1992; Nielsen 1998;
Rannala and Yang 2003; Degnan and Salter 2005), and evo-
lutionary biologists have long recognized that investigators
cannot address the phylogenetic history of closely related
species without simultaneously considering their popula-
tion genetic history (Gillespie and Langley 1979; Tajima
1983; Felsenstein 1988; Hey 1994; Maddison 1997; Avise
1998; Arbogast et al. 2002; Knowles and Maddison 2002;
Maddison and Knowles 2006). The extension of IM analyses
to cases with multiple populations, for a known phyloge-
netic tree, is one step toward a general statistical frame-
work that merges phylogenetics and populations genetics.

Covariation of Migration and Splitting Time when
Data is Limiting
Flat posteriors for migration parameters, which are com-
monly found in IM analyses, also present the difficulty that
point estimates based on these posteriors will vary with the
prior distribution that is used. A marked example of this is
shown in figure 9. Traditionally uniform priors (so-called
‘‘uninformative priors’’) have been used in IM analyses
(Nielsen and Wakeley 2001), both for simplicity and so that
the posterior probability will be proportional to the likeli-
hood. The latter point means that likelihood-ratio tests of
nested IM models can be done using the joint posterior
density estimate (Hey and Nielsen 2007). However, a uni-
form prior is not literally uninformative if in fact the pos-
terior density estimates change with the upper bound that
is used. This is the case for many migration parameters in
the analyses described here. In effect, what has been done

Table 2. False-Positive Rates and Statistical Power for Detecting
Migration.

Simulation Model No. 9 10 11 12 13

No. of loci 10 50 50 50 50
m prior term 1 1 0.5 5.0 0.05a

False positivesb 0.025 0.042 0.075 0.200 0.0130
m1 > 2 power

c 0.1 0.25 0.95 0.667 0.600
m2 > (1,2) power

c 0.0 0.0 0.70 1.0 0.050

a The mean of the exponential prior distribution for migration parameters.
b The proportion of migration rates having true values of zero and for which the
likelihood-ratio statistic did indicate that the estimated migration rate was
significantly different from zero.
c The proportion of migration rates having true values greater than zero and for
which the likelihood-ratio statistic was statistically significant so that a rate of zero
is rejected.
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here, by relying mostly on analyses that use an upper
bound on m of 1.0, is to impose an informative prior in
which we assume that migration has not had a high value.
The use of exponential priors for migration can help in
some circumstances, as shown in figure 9. However, an in-
vestigator using an exponential prior must still specify
a mean for that distribution, and setting this value too high
can lead to results similar to what is found for a high
uniform prior for migration (e.g., like those for model 12
in fig. 9).

Contrasting Two-Population Models with
Multipopulation Models
In some ways, multipopulation IM models are not much
more complex than two-population models. The calcula-
tion of the prior probability of the genealogy turns out to
be accessible under a wide class of models (wider than
those considered here—see Appendix), and the Markov
chain simulation over genealogies, while requiring more
complex updating algorithms, does not change much con-
ceptually when there are more than two populations. Nev-
ertheless, the analysis of a data set under a highly
parameterized IM model with multiple populations and
a phylogeny is a complex endeavor. In the first place, there
are the many practical issues that arise before analyses can
even begin, including questions about the quantity of data
needed, the shape of prior distributions, how to ensure suf-
ficient Markov chain mixing, and dealing with long run
times (average run times for the simulation models are
given in table 1). However, we may expect that in the fu-
ture, some of these questions will tend to go away as data
acquisition and computing time continue to become less
expensive.

A more interesting set of complexities arises when an
investigator must make sense of a posterior density esti-
mate in 15, 28, or 190 dimensions (3, 4, and 10 population
models, respectively). Even if data and computing power
are not limiting, large models can seem overwhelming,
and investigators will be inclined to work with simple
smaller models that are more easily interpreted. One
way to proceed is to consider both a full k-population
model and multiple small models each with data only from
a subset with j of the sampled populations (where 2 � j,
k). The analyses on the reduced data sets will proceed
much more quickly, and the comparison of results for
small and large data sets can help make clear those aspects
of the overall history that require the full analysis in order
to be revealed. An example of this is provided in a four-
population study of chimpanzee divergence (Hey, 2010).
In cases where gene flow levels have been low, population
splitting times are not very close to one another in time,
and population sizes have not greatly changed over time
periods, the assumptions of an IM analysis on a reduced
set of populations will not be greatly violated, and the
results for a full multipopulation analysis should be pre-
dictable on the basis of results on reduced samples. Thus,
for example, in comparison of simulation models 1, 2, and
3, the use of a two-population model for models 2 and

3 (each based on subsets of the data in model 1) was not
in violation of the general IM model assumptions.

The method presented here is intended for the analysis
of recent divergence. The implicit assumption of recent di-
vergence applies not only for the most closely related pop-
ulations but for all the populations included in the analysis.
Necessarily, genealogies will extend deeper (i.e., will include
coalescent events and migration events from older times)
the more populations that are included in an IM model.
Every additional population entails an additional splitting
event and additional sampled and ancestral population size
parameters, as well as many additional migration parame-
ters over all time intervals in the model. With more pop-
ulations and parameters comes the need not only for more
data to inform on recent processes involving the newly in-
cluded populations but also an additional need for data
that can inform on processes that occurred further back
in time. Increasing the number of gene copies sampled
per locus will not be of much help in accessing older time
periods because the timing of coalescent events in popu-
lations are heavily weighted toward the recent (Felsenstein
2006). However, increasing the number of loci can provide
access to older time periods, though the numbers of loci
required may be very large (e.g., hundreds or thousands)
for older histories and larger models.

Supplementary Material
Supplementary table S1 and supplementary data are avail-
able at Molecular Biology and Evolution online (http://www.
mbe.oxfordjournals.org/).
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Appendix

Hey and Nielsen (2007) showed how the prior probability
of a genealogy, f(G), could be calculated for a two-popula-
tion IM model in which the population size and migration
rate parameters in each time period are constant. In this
appendix, the approach used in the 2007 paper is extended
to a class of models that include multiple populations and
time periods. As described below, this class of models is
actually much broader than the bifurcating phylogenetic
models with gene flow that are examined in this paper.

With more than two populations, and with multiple
time periods, a general model can be described in terms
of both its phylogenetic and population genetic compo-
nents. The phylogenetic part of the model, P, which is as-
sumed to be fixed, specifies the history of the populations
from which genetic data are sampled, including 1) the
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number of time periods, 2) the durations and sequence in
time of time periods, 3) the number of populations in each
time period, and 4) and the ancestor/descendant identities
of all populations in each time period (i.e., which popula-
tion in period z is a descendant of which population in pe-
riod z þ 1). Importantly, P need not be bifurcating, nor
indeed are there any constraints on the number of popu-
lations in any time period, so long as these conditions ap-
ply. The population genetic part of the model, X, specifies
the kinds of event (including coalescent events and possi-
bly events of other types) that can happen in a genealogy
under the model, and it also specifies the prior probability
distributions of all the rates at which each of these types of
events can occur. These rates are the parameters of the
population genetic model.

The purpose of this appendix is to develop an expression
for the probability of a genealogy, given P, by solving
fðGjPÞ5

R
fðGjP;XÞfðXÞdX. We call this the prior proba-

bility of G. But unlike the prior probabilities for the param-
eters in X, the prior probability of G is not directly specified
by the investigator, but rather it is induced on G by the
priors specified for X. In what follows, it is assumed that
the prior probability distributions for each of the param-
eters in X are independent of each other so that the joint
prior,fðXÞ, is just the product of the prior distributions for
each element of X.

The key to the calculation is the Markov property of the
genealogical process, by which the time interval between
any two successive events in a genealogy follows a simple
waiting time distribution that is independent of the time
duration between previous events. Because the Markov
property holds for models in which parameters and num-
bers of populations change over time periods, but are con-
stant within time periods, it is possible to describe a general
representation for the probability of a genealogy for a fairly
broad class of models.

Let there be Y possible types of events in the genealogy.
These must include coalescent events and for IM models
will also include migration events. Other types of events
that would fit this framework are those for which their oc-
currence does not disrupt the Markov property. All event
types must be defined in such a way that for every event
the number of edges in G and their population locations
immediately after an event be completely determined by
1) that event and 2) the numbers and locations of edges
immediately before the event. Recombination, in which
a gene copy is split into two ancestral gene copies (Hudson
1983), is a type of event that, although not included in this
paper, could be included in this general framework.

Let py,z,j be the rate parameter for event type y during
period z, in population j. If the event involves multiple pop-
ulations, as is the case with migration, then a pair of pop-
ulations can be indicated in the population subscript,
e.g., py,z,(jk). If events of type y are coalescent events in pop-
ulation j during period z, then p y;z;j51=ð4Nz;juÞ, where Nz,j

is the effective size of population j in period z. If by y we
mean migration events, then for population j to k,
p y;z;ðjkÞ5mz;j/z;k=u.

At any point in time in the genealogy, there will be some
number of gene copies in each population. These counts of
edge numbers determine xy,z,j,i, the total number of events
that are possible in population j of type y during time in-
terval i in period z. For example, if there are n gene copies in
population j during interval i in period 1 and events of type
1 are coalescent events, then x1,1,j,i5 n(n� 1)/2. Similarly, if
type 2 events are migrations from population j to k, then
x2,1,j,i 5 n.

The total rate of all events during interval i in period z is
just a sum of products of x values and rates. For example,
continuing the example of a model with coalescent param-
eters identified as type 1 and migration parameters iden-
tified as type 2, the total rate would be

rz;i 5
X
j

x1;z;j;ip1;z;j þ
X
j

X
k 6¼j

x2;z;j;ip2;z;ðjkÞ: ðA1Þ

However, this kind of notation, that separates parame-
ters by the number of populations to which they apply, is
unnecessarily cumbersome for the present purpose. Here-
after, a single subscript j is used to indicate the population,
or populations, to which a parameter applies. Then the to-
tal rate to the next event during interval i of time period z is

rz;i 5
X
y

X
j

xy;z;j;ipy;z;j: ðA2Þ

The probability that this interval has duration sz,i follows
an exponential density, fðsz;iÞ5rz;ie

�sz;irz;i .
The probability that time interval i in period z has a par-

ticular duration and that it ends in a specific event includes
three components: 1) the probability that this interval has
duration sz,i; 2) that it ends in an event of type y; and 3) that
a particular one of the possible xy,z,j,i events of type y in
population j occurred, assuming that all are equally likely.
Because of cancellation of terms, this probability takes a
fairly simple form:

fðy; sz;iÞ5
1

xy;z;j;i

xy;z;j;ipy;z;j
rz;i

rz;ie
� sz;irz;i 5 py;z;je

� sz;irz;i : ðA3:aÞ

If interval i is the time interval immediately prior to the
end of time period z, then we need to find the probability
that none of the possible events occur in an interval of that
duration. Letting !y refer to the case when none of the pos-
sible events occur and sz,i refer in this case to the duration
of this last interval in period z,

fð!y; sz;iÞ5
Z N

sz;i

rz;ie
� trz;i dt5 e� sz;irz;i : ðA3:bÞ

Together, (A3.a) and (A3.b) can be used to cover all the
time intervals and events in period z. Under the Markov
property, the total probability for the portion of the gene-
alogy in a particular time period is the product of the prob-
ability for each time interval in that period (i.e., a product of
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(A3) terms). If we let cy,z,j be the total number of time in-
tervals that end in an event of type y in population j during
period z, then the total probability of the genealogy over all
the intervals in this time period, including the interval pre-
ceding the end of the time period, is

Y
y

Y
j

p
cy;z;j
y;z;j

Y
i

e� sz;irz;i : ðA4Þ

For a model with multiple time periods, such as a phy-
logeny P with multiple population splitting events, the to-
tal probability is the product of terms like (A4) over time
periods. With X being the vector that includes all param-
eters (i.e., py;z;j for all y, z, and j),

fðGjP;XÞ5
Y
z

ð
Y
y

Y
j

p
cy;z;j
y;z;j

Y
i

e� sz;irz;iÞ; ðA5Þ

where j and i are understood to index the populations and
time intervals, respectively, in each time period (i.e., for each
value of z). Substituting the right side of (A2) for rz,i and re-
arranging,

fðGjP;XÞ5
Y
z

ð
Y
y

Y
j

p
cy;z;j
y;z;je

� hy;z;jpy;z;jÞ; ðA6Þ

where hy;z;j5
P
i

sz;ixy;z;j;i.
In (A6), the range of j is understood to depend on the

value of z. But for some models, we may not wish to iden-
tify populations by time periods but rather to number all
populations distinctly and keep track separately of those
time periods in which a population occurs. If we do this,
letting j range over populations (and pairs of populations
as needed for migration parameters), then (A6) can be
rewritten as

fðGjP;XÞ5
Y
y

Y
j

p
cy;j
y;j e

� hy;jpy;j ; ðA7Þ

where cy;j5
P

z cy;z;jand hy;j5
P

z hy;z;j.

For multiple unlinked loci, all sampled from the same
model {P,X}, let g index the set G that contains the indi-
vidual genealogies for each of the loci. Then,

fðGjP;XÞ5
Y
g

ð
Y
y

Y
j

p
cy;j;g
y;j e� hy;j;gpy;jÞ

5
Y
y

Y
j

p

P
g
cy;j;g

y;j e
�py;j

P
g
hy;j;g

5
Y
y

Y
j

p
Cy;j
y;j e�py;jHy;j ;

ðA8Þ

where Cy;j5
P

g cy;j;g and Hy;j5
P

g hy;j;g .

From (A6) and (A8), we see that the probability of a ge-
nealogy, or a set of genealogies drawn from the model, is
just a product of terms, one for each parameter in the
model. Expression (A8) also reveals that all the information
in the genealogies that is relevant for likelihood or Bayesian
calculations is contained in the C and H terms.

If the elements of X have independent uniform prior
distributions, such that the prior probability for parameter

py,j is given by fðpy;jÞ51=p#y;j, where p#y;jis the upper bound
on the prior distribution, then the prior probability of the
genealogy is

fðGjPÞ5
Z

fðGjP;XÞfðXÞdX

5
Y
y

Y
j

1

p#y;j

Z p#y;j

0

p
Cy;j
y;j e� py;jHy;j dpy;j

5
Y
y

Y
j

CðCy;j þ 1Þ � CðCy;j þ 1;Hy;jp#y;jÞ

H
ðCy;j þ 1Þ
y;j p#y;j

:

ðA9Þ

For a parameter that has an exponential prior with an
expected value of �py;j, the integration on the right side of
the product in (A9) is even simpler:

Z N

0

e�py;j=�py;j

�py;j
p
Cy;j
y;j e� py;jHy;j dpy;j

5 ðHy;j þ
1

�py;j
Þ� ðCy;j þ 1ÞCðCy;j þ 1Þ

�py;j
:

ðA10Þ
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