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Abstract

Over 30 years since their discovery, the origin of spliceosomal introns remains uncertain. One nearly universally accepted
hypothesis maintains that spliceosomal introns originated from self-splicing group-II introns that invaded the uninterrupted
genes of the last eukaryotic common ancestor (LECA) and proliferated by ‘‘insertion’’ events. Although this is a possible
explanation for the original presence of introns and splicing machinery, the emphasis on a high number of insertion events
in the genome of the LECA neglects a considerable body of empirical evidence showing that spliceosomal introns can
simply arise from coding or, more generally, nonintronic sequences within genes. After presenting a concise overview of
some of the most common hypotheses and mechanisms for intron origin, we propose two further hypotheses that are
broadly based on central cellular processes: 1) internal gene duplication and 2) the response to aberrant and fortuitously
spliced transcripts. These two nonmutually exclusive hypotheses provide a powerful way to explain the establishment of
spliceosomal introns in eukaryotes without invoking an exogenous source.
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Ever since the discovery of spliceosomal introns (Berget
et al. 1977; Chow et al. 1977; Evans et al. 1977; Goldberg
et al. 1977), an enormous number of multidisciplinary
studies have shed light on the evolutionary features of these
noncoding sequences and revealed peculiar links between
splicing and a number of other cellular processes (Proudfoot
et al. 2002; Reed and Hurt 2002). Yet, how (and why)
spliceosomal introns first appeared remains an unsolved
issue.

A Commonly Accepted View:
Spliceosomal Introns Originate from
Group-II Introns

Despite the several plausible attempts to explain the origin
of spliceosomal introns (Belshaw and Bensasson 2006;
Rodriguez-Trelles et al. 2006; Roy and Gilbert 2006), one
single hypothesis appears nearly universally accepted,
although essentially not verifiable. This hypothesis maintains
that spliceosomal introns, together with the spliceosome
(s)—a large ribonucleoprotein complex that is actively
involved in splicing (Burge et al. 1999; Brow 2002; Kuhn
and Kaufer 2003; Nilsen 2003)—originated from a class of
self-splicing introns (group-II) (Sharp 1985; Cech 1986;

Jacquier 1990; Cavalier-Smith 1991; Palmer and Logsdon

1991). Briefly, group-II introns of a-proteobacterial endo-

symbionts (presumably primordial mitochondria) of the last

eukaryotic common ancestor (LECA) are thought to have

first invaded the previously uninterrupted nuclear genes and

subsequently lost the ability of self-splicing, eventually

coming to be spliced in ‘‘trans’’ by the newly invented

spliceosomal machinery (Stoltzfus 1999). In line with this

presumptive mode of origin, group-II introns and spliceo-

somal introns share several structural and functional

similarities (Shukla and Padgett 2002; Valadkhan and

Manley 2002), and plausible steps have been suggested to

have allowed the conversion between the two classes of

introns (Lynch and Richardson 2002). Although group-II

introns provide a reasonable source for the original presence

of spliceosomal introns and of the splicing machinery in the

LECA, some aspects of the group-II introns origin

hypothesis remain unclear, especially the conjectured

widespread invasion of uninterrupted LECA genes. In

particular, although group-II introns have been reported in

the organelles of plants and lower eukaryotes (Bonen and

Vogel 2001) as well as in eubacteria and archea (Dai and

Zimmerly 2002, 2003; Rest and Mindell 2003; Toro 2003),

neither functional copies nor relics of such sequences have

ever been found in animal mitochondria or in eukaryotic
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nuclei. A major loss of group-II introns subsequent to
spliceosomal intron colonization cannot be entirely ruled
out, but the current absence of group-II introns from
eukaryotic nuclear genomes conflicts with the described
evidence for putative recent intron gains (Coulombe-
Huntington and Majewski 2007; Roy and Penny 2007;
Omilian et al. 2008).

Origin of Spliceosomal Introns from
Alternative Sources?

As opposed to widespread invasion of LECA genes by
group-II introns, other hypotheses have been proposed that
do not invoke an exogenous invading source. Transposable
elements have been suggested as one possible endogenous
source. After inserting into the coding sequence, a trans-
poson would be removed from the pre-mRNA either by
means of latent splice sites that may exist in the inserted
element or after the acquisition of splicing signals. The very
few spliceosomal introns that are known to derive from
mobile elements (Giroux et al. 1994; Iwamoto et al. 1999)
give limited support for the generality of this hypothesis.
Moreover, excision of transposable elements that are
inserted into genes is only rarely perfect (e.g., Giroux
et al. 1994; Greco et al. 2005) and in most cases generates
indels (e.g., Wessler 1989; Fridell et al. 1990; Giroux et al.
1994; Rushforth and Anderson 1996) so that the mutant
gene either partially or completely retains the wild-type gene’s
phenotype only if the open reading frame (ORF) of the
sequence downstream of the insertion site is not disrupted.

Spliceosomal introns have also been suggested to directly
arise from random primordial and canonical ancestral gene
sequences (the ‘‘split-gene model’’ and the ‘‘proto-splice site
model,’’ respectively). In particular, Senapathy (1986)
observed that the distribution of reading-frame lengths in
a random nucleotide sequence is exponential (but see
Hoglund et al. 1990), with a 600-nt upper limit that is in line
with a number of observed average exon sizes (Hawkins
1988; Yandell et al. 2006). Under the assumption that in the
most primitive unicellular eukaryotes a selective pressure
existed to generate longer coding sequences, the split-gene
model (Senapathy 1986, 1988) maintains that random
sequences that were populated with in-frame nonsense
codons, and intervened between short reading frames,
started to be excised by an already existing spliceosome. The
model proposes not only that the sequences excised
contained random clusters of in-frame nonsense codons
but also that the splice junction signal sequences and the
branchpoint sequence originate from nonsense codons
(Senapathy 1988). One implication of this model is the
existence of a nuclear scanning mechanism to recognize in-
frame termination codons. Although some of the split-gene
model’s propositions have been challenged (Stoltzfus et al.
1995), the hypothesis that nonsense codons may have
played a role in the origin of introns remains conceivable
(see below and Senapathy 1988; Harris and Senapathy 1990).

In the proto-splice site model (Dibb 1991), introns arise
at proto-splice sites, which contain the partially conserved
exon consensus sequence [C|A]AGYR adjacent to introns,
where ‘‘Y’’ is the point of intron insertion (Dibb and
Newman 1989). In this model, spliceosomal introns are
originally coding and began as a result of the evolution of
alternatively spliced isoforms of a transcript. In particular,
initially inefficient splicing occurring at proto-splice sites
would lead to the emergence of alternative transcript
isoforms with subsequent mutations that stabilize beneficial
isoforms. Splicing would become constitutive as a result of
this selective filter and the new intronic sequences would
drift so that any reinsertion in the mature transcript would
be deleterious. To deal with the possible criticism that
ancient proteins must have been very large if all introns
originated from coding sequences, the model also maintains
that only a limited number of introns would originate from
the hypothetical process described above, and intron
proliferation would largely proceed by insertion events
driven by the spliceosomal machinery through the mecha-
nism of reverse splicing (Tseng and Cheng 2008). Although
a number of this model’s observations appear to be
consistent with the insertion of introns at proto-splice sites
(Dibb and Newman 1989; Lee et al. 1991; Frugoli et al.
1998; Logsdon et al. 1998; Funke et al. 1999; Bhattacharya
et al. 2000; Kent and Zahler 2000; Sverdlov et al. 2003;
Coghlan and Wolfe 2004; Qiu et al. 2004; Sadusky et al.
2004; Sverdlov et al. 2004; Yoshihama et al. 2006; Omilian
et al. 2008), no convincing sequence similarity has been ever
observed between (putative) recent intron gains and avail-
able genomic sequences.

Finally, a related mechanism for intron origin that does
not invoke exogenous sequences proposes that tandem
duplication of a coding region containing an AGGT
sequence could elicit splicing by providing both a 5# donor
and a 3# acceptor sites (Rogers 1989). The validity of this
model is supported by a recent study in humans where the
authors found an excess of introns that contain perfect
matching sequences at their boundaries (Zhuo et al. 2007)
(see also Chabot et al. 2008; Roy and Irimia 2008), with
most of these introns being young and undergoing
alternative splicing. Interestingly, repeats and alternative
splicing have been also shown to be associated with the
origin of new exons in vertebrates (Zhang and Chasin 2006).

Empirical Observations in Favor of an
Endogenous Origin of Spliceosomal Introns

Hypotheses for the endogenous origin of introns have been
challenged, and sometimes discarded, on the basis both of
current data and perhaps our biased perception of how gene
structure has evolved over time, for example, the frequent
assumption that parallel evolution occurs at very low
frequency. Recent evidence for the parallel origin of unrelated
introns at nearly the same insertion site in Daphnia pulex

(Omilian et al. 2008) directly challenges this assumption.
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Although we may not know for certain how the first
introns originated, it is worth emphasizing that we do know,
by empirical observations, how individual spliceosomal
introns can originate. In plants, efficient splicing typically
requires an elevated intron AT content (Goodall and
Filipowicz 1989, 1991), probably because the latter favors
the association of splicing-enhancing RNA-binding proteins
(McCullough et al. 1993; Simpson and Filipowicz 1996).
Interestingly, elevated AT content is sufficient for splicing of
a nonintronic sequence via activation of flanking cryptic
splice sites in a legumin J gene construct (Simpson and
Brown 1993). Also, an AT-rich region in the 5# end of the
transferred DNA rolA gene of Agrobacterium rhizogenes,
unsurprisingly unspliced in the bacterium, undergoes efficient
splicing in Arabidopsis plants that are transgenic for this gene
(Magrelli et al. 1994). In Caenorhabditis elegans, de novo introns
can be created by recruitment of internal exonic sequences
(Irimia et al. 2008), whereas in humans, de novo introns have
been suggested to result from 1) fortuitous creation of splice
sites (Courseaux and Nahon 2001); 2) activation of cryptic
splice sites after the insertion of a transposable element (Sela
et al. 2007); 3) tandem duplications (Zhuo et al. 2007); and 4)
nucleotide substitutions that do not disrupt splice sites
(Gromoll et al. 2007).

Origin of Spliceosomal Introns by Internal
Gene Duplication and Intronization of
Translatable Sequences

Along the same lines of the previously mentioned endoge-
nous models, we propose here two nonmutually exclusive
hypotheses that do not invoke an ancient exogenous source
for intron origin but where introns constantly emerge 1)
following events of internal gene duplication (we call this the
‘‘internal gene duplication’’ model) (Gao X, unpublished
data); and 2) by ‘‘intronization’’ of translatable sequences (the
intronization model) (Catania and Lynch 2008).

The former hypothesis is observation driven. Briefly, by
surveying multiple eukaryotic genomes, we find that 8–17%
of genes display internally duplicated sequences and that
internal gene duplication is a steady-state birth-and-death
process whose rates are comparable to those reported for
events of whole-gene duplication (Lynch and Conery 2003).
Surprisingly, we find that 7–30% of internally duplicated
genes show new intron gains. These new introns derive only
in small part from the direct duplication of prior introns
within the same gene; the majority are represented by de novo
introns that likely emerged from the duplicated sequence after
both the spatial change and the acquisition of new/activation
of latent splice sites (Gao X, unpublished data).

The second model attempts to integrate the diverse body
of observations that have been reported to date on splicing
and interrelated mRNA-associated processes. In the intro-
nization model (Catania and Lynch 2008), the systems for
mRNA surveillance, capping, and cleavage/polyadenylation
interact to play pivotal roles in the physical establishment
and distribution of spliceosomal introns along a transcript.

In brief, the model is based on the cell’s ability to filter out
aberrant transcripts, whereas sparing those mRNAs where
the imperfect splice-site recognition of the spliceosome
machinery has fortuitously removed ORF-disrupting muta-
tions such as premature termination codons (PTCs). In the
model, we propose also that cleavage/polyadenylation
factors (CPFs) regularly access U-rich tracts along the
mRNA during transcription but are antagonized (or
interfered with) by splicing factors (SFs), when U-rich
regions are located within an intron. Under this scenario, the
interaction between SFs and CPFs modulates the likelihood
of imperfect splice-site recognition, thereby defining the
physical setting for the facilitation or inhibition of intron
colonization (Catania and Lynch 2008).

The Crucial Role of Cellular Surveillance
Systems in the Endogenous Origin of
Introns

Our endogenous models rest on several forms of gene
structural disruptions. Thus, we expect that transcript
surveillance systems, such as nonsense-mediated decay
(NMD), must play a significant role in the generation of new
endogenous introns. NMD is a virtually ubiquitous cellular
surveillance system in eukaryotes that recognizes and selectively
degrades so-called ‘‘nonsense’’ transcripts that contain PTCs
upstream of the true stop codon (Maquat 2004, 2006; Conti and
Izaurralde 2005; Lynch et al. 2006). Translation of these
nonsense transcripts would result in truncated polypeptides,
and the failure of NMD surveillance has been implicated in
a number of human diseases (Frischmeyer and Dietz 1999;
Holbrook et al. 2004). Nonsense transcripts can occur via
a variety of mechanisms, including point mutations, indels,
transposition/viral insertions, and splicing mistakes and other
errors during transcript processing (Mendell et al. 2004) as well
as during production of alternatively spliced transcripts (Green
et al. 2003; Lewis et al. 2003).

Regardless of the exact molecular mechanism by which
degradation of transcripts is initiated (Isken and Maquat
2008), the near ubiquity of general NMD mechanisms in
eukaryotes is consistent with the elevated frequency, as well
as the likely negative selective importance, of the basic
forms of gene structural disruptions that underlie our
endogeneous models of intron origin. On appearance,
transcripts featuring either internal duplications or de novo
intronization are stabilized via NMD degradation of PTC-
containing isoforms and the rapidity of fixation is dependent
on the accumulation of additional structural modifications
that stabilize non-PTC-containing isoforms.

Interconnection between Internal Gene
Duplication and Intronization and the Role
of Alternative Splicing

Although distinct, it is worth emphasizing that the two
mechanisms for endogeneous intron origins we present are

593

Catania et al. � The Endogenous Origin of Spliceosomal Introns



not mutually exclusive. If fortuitously an internal duplication
does not introduce a PTC, then a population of functional
transcripts is maintained without NMD. However, if (a
portion of) a duplicated exonic region acquires a PTC (see
Letunic et al. 2002), then NMD would degrade the primary
PTC-containing isoform and the mutated coding sequence
could undergo intronization (Catania and Lynch 2008).

A joint action of intronization and internal gene
duplication could be conjectured to contribute to maintain
optimal protein length. Specifically, because of the frequent
occurrence of events of internal gene duplication across
several eukaryotes (Kondrashov and Koonin 2001; Letunic
et al. 2002; Gao X, unpublished data), molecular mecha-
nisms must exist that assist the removal of the newly created
redundant sequences and thereby prevent proteins from
growing extremely large. Intronization could represent one
of these mechanisms. Once a duplicated sequence converts
into an intron, that intron could be lost through the frequent
but poorly understood process of intron loss, thus
contributing to reduce the increase in gene length resulted
by the prior event of duplication.

Finally, intronization of translatable sequences does not
occur instantaneously but is predicted to undergo a transient
phase involving alternative splicing (Catania and Lynch
2008). Under this view, intronization would not only
complement the established process of exonization, where
exons arise gradually from intronic sequences (Alekseyenko
et al. 2007), but could also be coupled with internal gene
duplication, in that young introns that are by-products of
tandem duplication have been found to often undergo
alternative splicing (Zhuo et al. 2007).

An interesting question associated with such a scenario—
in which sequences may gradually and reversibly shift from
an exonic to an intronic state over time (Figure 1)—is
whether the time interval between sequence type conversion
is comparable among eukaryotes. Although it remains
unclear how levels of alternative splicing varies across
lineages and what fraction of alternative isoforms are truly
functional and thus maintained by natural selection, it is
tempting to speculate that the duration of the processes of
exonization and intronization may vary across species. In
particular, the length of the transient phase of alternative
splicing could be expected to be reduced in species with large
Ne, where natural selection would more efficiently promote
the fixation of optimal splicing signals—under the assump-

tion that maintaining alternative splicing is typically mildly
deleterious. Under the aforementioned suggestion that
exonic sequences may intronize and be subsequently lost,
the relative fitness disadvantage that is typically associated
with introns (Lynch 2002) may be offset to a greater or lesser
degree by the simultaneously acquired selective advantage
associated with the production of shorter but potentially
more functional proteins. The latter idea is consistent with
the observation that 1) lineages having a large Ne contain
shorter protein length than lineages with relatively smaller
Ne (e.g., Xu et al. 2006) and 2) introns abound in lineages
with small Ne (Lynch and Conery 2003).

Conclusions

We have briefly outlined a number of observations,
published and novel (Gao X, unpublished data), as well as
a theoretical model (the intronization model, Catania and
Lynch 2008), which 1) are consistent with the idea that
spliceosomal introns may have originated endogenously and
that 2) shed a new light both on the evolution of the
eukaryotic gene structure and on the biological role of
alternative splicing. Also, our endogeneous models of intron
origin introduce additional mechanisms whereby gene
structural evolution can be mediated by NMD (Lynch and
Kewalramani 2003; Lynch et al. 2006; Scofield et al. 2007).
Finally, we have conjectured that introns may act as a link
between internal gene duplication and intronization, where
intron loss (successive to intronization) contributes to
counteract the expansion of gene length mediated by events
of internal gene duplication.
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