Table 2.
MG94 × REV IB |
MG94 × REV GB |
|||||||||||
Data | N | L | Log L | AICc | E[β – α] | Pr{β > α} | D | Log L | AICc | E[β – α] | Pr{β > α} | Δ AICc |
Sperm lysin | 25 | 134 | − 4,340.6 | 8,832.6 | − 0.02 | 0.34 | 5 | − 4,340.3 | 8,832.6 | 0.07 | 0.37 | 3.1 |
Primate COXI | 21 | 510 | − 11,985.6 | 24,095.9 | − 0.18 | 0.013 | 4 | − 11,975.5 | 24,077.7 | − 0.98 | 0.00 | 18.2 |
Drosophila adh | 23 | 254 | − 4,583.41 | 9,300.36 | − 0.91 | 0 | 3 | − 4,0583.57 | 9,296.58 | − 0.90 | 0 | 3.8 |
HIV-1 vif | 29 | 192 | − 3,334.37 | 6,826.98 | − 0.24 | 0.28 | 5 | − 3,331.17 | 6,828.82 | − 0.24 | 0.22 | − 1.9 |
β-globin | 17 | 144 | − 3,649.66 | 7,409.81 | − 0.78 | 0.06 | 4 | − 3,650.3 | 7,413.2 | − 0.77 | 0.08 | − 3.4 |
IAV HA | 349 | 329 | − 10,891.1 | 23,227.2 | − 0.86 | 0.12 | 7 | − 10,837.9 | 23,141.1 | − 0.52 | 0.27 | 86.0 |
Camelid VHH | 212 | 96 | − 16,382.2 | 33,672.3 | − 0.27 | 0.37 | 10 | − 16,283.6 | 33,514.9 | − 0.25 | 0.28 | 157.4 |
Encephalitis env | 23 | 500 | − 6,752.7 | 13,638.2 | − 0.95 | 0.02 | 4 | − 6,750.1 | 13,635 | − 0.95 | 0 | 3.3 |
Flavivirus NS5 | 18 | 342 | − 9,144.33 | 18,402.9 | − 0.65 | 0.01 | 4 | − 9,109.04 | 18,333.2 | − 0.96 | 0 | 69.7 |
Hepatitis D virus Ag | 33 | 196 | − 5,078.3 | 10,330.9 | − 0.56 | 0.44 | 5 | − 5,074.15 | 10,330.9 | − 0.56 | 0.30 | 0.03 |
NOTE.—The optimal number of rate classes D for the GB model was inferred using the step-up procedure described in this manuscript, whereas the total number of rate classes for the IB (dual model in Kosakovsky Pond and Muse 2005) analog were fixed at 3 synonymous × 3 nonsynonymous = 9. N refers to the number of sequences and L to the number of codons in each alignment. E[β – α] is the mean of the estimated β – α distribution, whereas Pr{β > α} is the cumulative probability of all rate classes with β > α in the respective distribution. ΔAICc is computed between the GB model with D rate classes and the 3 × 3 IB model.