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mRNA-seq is a paradigm-shifting technology because of its superior sensitivity and dynamic range and its potential to
capture transcriptomes in an agnostic fashion, i.e., independently of existing genome annotations. Implementation of the
agnostic approach, however, has not yet been fully achieved. In particular, agnostic mapping of pre-mRNA splice sites has
not been demonstrated. The present study pursued dual goals: (1) to advance mRNA-seq bioinformatics toward unbiased
transcriptome capture and (2) to demonstrate its potential for discovery in neuroscience by applying the approach to an
in vivo model of neurological disease. We have performed mRNA-seq on the L4 dorsal root ganglion (DRG) of rats with
chronic neuropathic pain induced by spinal nerve ligation (SNL) of the neighboring (L5) spinal nerve. We found that
12.4% of known genes were induced and 7% were suppressed in the dysfunctional (but anatomically intact) L4 DRG 2 wk
after SNL. These alterations persisted chronically (2 mo). Using a read cluster classifier with strong test characteristics
(ROC area 97%), we discovered 10,464 novel exons. A new algorithm for agnostic mapping of pre-mRNA splice junctions
(SJs) achieved a precision of 97%. Integration of information from all mRNA-seq read classes including SJs led to genome
reannotations specifically relevant for the species used (rat), the anatomical site studied (DRG), and the neurological
disease considered (pain); for example, a 64-exon coreceptor for the nociceptive transmitter substance P was identified,
and 21.9% of newly discovered exons were shown to be dysregulated. Thus, mRNA-seq with agnostic analysis methods
appears to provide a highly productive approach for in vivo transcriptomics in the nervous system.

[Supplemental material is available online at http://www.genome.org. Sequence reads from this study have been sub-
mitted to the NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) under accession no. GSE20895. Soft-
ware is available for download from http://www.th-wildau.de/bioinformatics/wios/ and http://mayoresearch.mayo.edu/
mayo/research/beutler_lab/wios.cfm.]

Microarray-based transcriptome studies have provided a productive

approach to the discovery of therapeutic targets in neurological

disorders. For example, gene expression profiling of the dorsal root

ganglion (DRG) in chronic pain (Griffin et al. 2003) identified sev-

eral altered genes (Costigan et al. 2002), some of which were sub-

sequently shown to be key modulators of pain (Tegeder et al. 2006).

Gene expression analysis using microarray technology suffers from

well-known limitations including poor sensitivity and dynamic

range, a requirement for substantial requisite amounts of RNA, and

a limited capacity to identify new transcripts or RNA splice sites.

Given these limitations, it is unlikely that microarray analysis can

reveal the full extent of transcriptome reprogramming underlying

neurological disorders, such as chronic pain.

Ultra-high-throughput RNA sequencing has emerged as a

revolutionary technology with superior dynamic range and re-

producibility compared with microarrays (Marioni et al. 2008;

Mortazavi et al. 2008; Nagalakshmi et al. 2008; Wilhelm et al. 2008;

Wold and Myers 2008; Wang et al. 2009). Conceptually, ultra-high-

throughput mRNA sequencing (mRNA-seq) should be capable of

overcoming virtually all limitations of microarray technology by

permitting de novo capture of the full transcriptome of any ex-

perimental tissue. In practice, however, progress toward unbiased,

comprehensive transcriptome analysis by short mRNA reads has

been incremental. In fact, the development of these novel methods

of bioinformatic analysis has proved to be less straightforward than

might have been anticipated. In particular, pre-mRNA splice site

mapping has been challenging.

De novo (unbiased) genome-wide mapping of pre-mRNA

splice sites, termed ‘‘agnostic’’ here to emphasize the indepen-

dence from pre-existing data sets (such as annotations found in

databases), is not the norm. Published reports have relied on map-

ping mRNA-seq reads to reference databases of already known

splice sites and/or to a limited number of hypothesized sequences

(based on alternative exon joining) (Pan et al. 2008; Wang et al.

2008). While these approaches were pragmatically geared toward

first-generation Illumina data consisting of very short reads (25–36

bp), they had a limited capacity for discovery of new splice sites;

i.e., they were ‘‘biased’’ toward known sites. Trapnell et al. (2009)
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reported the TopHat software, which improved on previous strat-

egies by mapping splice junction reads to an extended set of exon

boundaries derived from empirical mRNA-seq data. TopHat

thereby implemented a partially agnostic strategy, as splice junc-

tions could be found independently of pre-existing annotations,

albeit only nearby exon candidate regions established by other

experimental data. TopHat also used other constraints like the GT-

AG motif, which makes identification of canonical splice sites

faster at the price of missing noncanonical events. The original

report validated the approach using very short reads (25 bp) em-

phasizing strategies to reduce run-time (Trapnell et al. 2009). A

report using a splice site model for prediction was published after

submission of the present study (Filichkin et al. 2010).

The present study applies mRNA-seq to an animal model of

neurological disease with the intent of determining if the extent of

transcriptome reprogramming in the nervous system exceeds the

breadth of previously documented alterations. Chronic pain was

chosen because it is a common neurological disorder, which is in-

completely understood at the functional genomic level. An impor-

tant goal of our study was to proceed in an agnostic fashion relying

only on the mRNA-seq data obtained and the nonannotated ref-

erence genome. Available transcript annotation data (exon–intron

boundaries and gene classes) were used only to assess the precision of

our methods for mapping exons and splice sites. Although the em-

phasis on bioinformatics was originally motivated by our interest

in nervous system transcriptomes and by our interest in investigat-

ing novel transcripts and mRNA splice forms in that context, the

resultant computational methods may be valuable for a variety of

mRNA-seq studies in mammalian transcriptomes with a read length

of at least 50 bp. Taken together, this study demonstrates how the

discovery potential of mRNA-seq can be strengthened by newly de-

veloped bioinformatics with a strong statistical foundation. Equally

importantly, mRNA-seq demonstrates that transcriptome reprog-

ramming in the nervous system may be more extensive than recog-

nized by microarray studies, raising the possibility that some neu-

rological disorders such as pain may be recast in the future as diseases

of altered gene expression amenable to transcription therapy.

Results

Single-DRG (L4) mRNA-seq

The L5 spinal nerve ligation (SNL) rat model of chronic neuro-

pathic pain was chosen because it induces stable allodynia for

months and separates unsevered and surgically compromised

portions of the peripheral nerves clearly by spinal nerve level, i.e.,

L4 (anatomically intact) versus L5 (ligated and then cut). Experi-

mental and sham control rats were prepared, and mechanical

allodynia was confirmed (Fig. 1A) by behavior testing as detailed in

our previous studies (Storek et al. 2008). L4 DRG were harvested

from animals sacrificed 2 wk and 2 mo after SNL and flash-frozen.

As illustrated in Figure 1A, total RNA was extracted (typical yield

1–1.5 mg per DRG); poly(A)-purified (twice); chemically fragmented

(Mortazavi et al. 2008); and reverse-transcribed using hexamer

priming. Eight sequencing libraries were constructed using cDNA

from independent animals (two SNL and two control for each time

point, 2 wk and 2 mo) and sequenced on an Illumina Genome

Analyzer II (GAII) as described (Bentley et al. 2008).

Genome-wide read mapping

Of 260 million high-quality mRNA-seq reads obtained, 142 million

(53%) were matched to a unique site in the rat genome; these were

termed uniquely matching reads (UMR) and were used to quantify

the expression of known genes (Fig. 1) and to discover new exons

(Fig. 2). There were 104 million (39%) nonmatching reads (NMR),

which were used for splice unction (SJ) discovery (Fig. 3), and there

were 20 million (8%) multiply matching reads (MMR) (i.e., align-

ing to more than one site in the reference genome), which were

useful in completing the annotation of complex genes (Fig. 4).

We obtained 2.6 3 108 (274,622,530) 50-bp-long cDNA se-

quence reads equaling 13 Gb, or ;4.7 whole-genome equivalents,

of sequence data. Of these 7,083,741 (2.58%) were discarded be-

cause of poor base call quality scores or unknown bases. The

remaining 267,538,789 reads were aligned to the full rat reference

genome (RGSC 3.4; mitochondrial genome included) using the

ELAND aligner software (Illumina) and allowing for #2 mis-

matches per 32 consecutive bases. We took advantage of the ex-

tended read length of 50 bp by requiring that the first and the last

32 bp both mapped to the same site (offset by 18 bp) in order to

declare a match. We found that 142,572,750 (53.3%) of all pro-

cessed reads matched a unique genomic site (termed UMR), and

were used to quantify the expression of known genes (Fig. 1) and to

discover new exons (Fig. 2). Additionally, 20,408,306 (7.6%) reads

matched to multiple (i.e., >1) sites in the genome (termed MMR).

Finally, 104,557,733 (39%) were NMR. Nonmatching mRNA-seq

reads may occur for several reasons, including pre-mRNA splicing,

which creates sequences that are not present in the genome, i.e.,

spanning splice junctions (alignment of NMR to splice sites is

discussed in a separate section below); exclusion of the Y chro-

mosome and omission of other sequences from the current rat

reference genome assembly RGSC 3.4; sequencing errors; and

genetic differences (single nucleotide polymorphisms, insertions,

deletions) between the rat strain employed (Sprague Dawley) and

the reference genome strain (Brown Norway). Accordingly, the set

of NMR was used for SJ discovery (Fig. 3), as described in detail

below.

The average read density across known mRNA transcripts

was 1.25-fold higher for 39 exons than 59 exons. A 39 bias is to

be expected with any mRNA detection method that employs a

poly(A) purification step. In our case, the median difference was

small, only 25%, because the library construction protocol

employed (chemical mRNA fragmentation followed by random

priming for cDNA synthesis) was designed to achieve even

coverage.

Transcriptome reprogramming

As a first step in our analysis, the expression of 10,367 Ensembl

known protein-coding genes (out of 17,738 annotated) was

quantified. Raw UMR counts for each gene (provided in Supple-

mental Table 1) correlated highly when controls were compared

(biological replicates). For these pairs Pearson correlation co-

efficients were always r = 0.99 (Supplemental Table 2). The corre-

lation among SNL-control pairs was lower (average 0.82), as was to

be expected if gene expression was altered after SNL. For sub-

sequent analyses, read counts were normalized to the total number

of reads obtained for each sample (multiples of 106). Results are

shown in Figure 1B–F (the remaining 7371 Ensembl known pro-

tein-coding genes were expressed at low levels). As shown in Figure

1, when SNL animals were compared with controls at the 2-wk

time point, 1268 to 1415 genes were induced, and 772 to 775 genes

were suppressed. A false discovery rate (FDR) of 0.5% (52 of 10,367

genes) in each group (i.e., ‘‘induced’’ and ‘‘suppressed’’), resulted in

a true-positive estimate of 1289 (12.4%) induced and 721 (7.0%)
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suppressed genes (statistical procedures and computations are de-

tailed further in Methods). In other words, nearly 20% of the L4

DRG transcriptome was reprogrammed to a new expression level

in response to SNL of the neighboring (L5) nerve root.

Alterations persist long term

Examining the same set of 10,367 genes, we found that 1432 to

1631 genes were induced and 1041 to 1160 were suppressed 2 mo

after SNL. Fewer total mRNA sequences were obtained for this time

point (one lane compared with four for the early time point),

resulting in a slight increase in the measurement variance and an

observed FDR of 0.7% (51 to 87 false-positive genes vs. 52 expected).

Accounting for the observed (i.e., higher) FDR, 1458 genes (14.1%)

were induced and 1027 (7.5%) were suppressed at 2 mo.

Of all genes induced $2-fold at 2 mo, 96% were induced $1.4-

fold at 2 wk. Similarly, of all genes suppressed by a factor of $2 (i.e.,

to less or equal than half of controls) at 2 mo, 97% were suppressed

by at least 1.4-fold at 2 wk. No genes were found to be induced or

suppressed by a factor of $2 at one of the two time points but

regulated in the opposite direction at the alternate time point.

While the study was not designed as a time-series experiment and

not powered to detect single genes (or very few) displaying dy-

namic regulation, the results strongly suggest that the large ma-

jority of transcriptome alterations persisted stably from 2 wk to

2 mo. Overall, >20% of measured genes were altered at 2 mo, dem-

onstrating that transcriptional reprogramming persisted in neu-

ropathic pain matching the chronicity of the condition (Fig. 1E,F).

Extent of DRG gene induction and suppression detectable
by mRNA-seq

Genes were induced up to >100-fold and were suppressed as much

as 10-fold in SNL animals (compared to sham controls). Ten genes

were induced 32- to 121-fold, 42 genes were induced $10-fold, and

212 were induced $4-fold; 165 genes were suppressed $4-fold (at

2 wk and/or 2 mo). The magnitude and breadth of changes docu-

mented appear generally more extensive than alterations detect-

able in comparable microarray studies of the DRG in pain (Bonilla

et al. 2002; Costigan et al. 2002; Valder et al. 2003; Davis-Taber and

Scott 2006; Rodriguez Parkitna et al. 2006). The principle of

quantification by mRNA-seq is digital counting, which is free of

background hybridization problems (or similar artifacts limiting

sensitivity) and does not suffer from saturation of probes (known

to diminish precision when quantifying high-expressing genes

in microarrays) (Wold and Myers 2008). The resulting superior

dynamic range of mRNA-seq established by the original studies

(Cloonan et al. 2008; Marioni et al. 2008; Mortazavi et al. 2008;

Nagalakshmi et al. 2008; Sultan et al. 2008; Wilhelm et al. 2008;

Wold and Myers 2008; Wang et al. 2009) was found here to be

immensely informative when applied to the nervous system.

Mapping nonannotated portions of the DRG transcriptome

Previous ‘‘genome-wide’’ nervous system transcriptome studies

have been based on microarrays and, therefore, have been re-

stricted to known mRNA. mRNA-seq is not bound to such limita-

tions. We found 6,224,094 RNA reads (4.7% of UMR) mapping to

nonannotated regions of the rat genome. Most of these occurred in

dense aggregates of many reads (dozens to thousands) that were

separated by long nontranscribed regions (Fig. 2A). To define

which read-aggregates resembled novel exons, we developed

a classifier. First, mRNA-seq reads were joined into ‘‘clusters’’ by

a 100-bp sliding window (Fig. 2B). Next, newly defined clusters

were compared with exons of well-expressed protein-coding genes

(a subset of the 10,367 genes described above) containing 97,646

exons. One-tenth of the exons were used for test development. Test

conditions were systematically varied requiring different average

read densities (from <1 to >100 UMR per 50 bp) to declare that

a cluster was an exon. Cluster classification results were compared

with the actual exon annotation, recording the frequency with

which an annotated exon was detected (true-positives) and how

often an exon was erroneously predicted in an intron region (false-

positives). A receiver operating characteristic (ROC) curve (Fig. 2C)

demonstrated that this was an effective classifier (area under the

curve 0.97). Optimal precision was achieved at a density cut-off

of >4 with a sensitivity of 92% and a specificity of 97% in the ex-

ploratory exon set (10% of all gold standard exons). The sensitivity

Figure 1. Expression of known genes altered in pain. (A) Experimental paradigm. (i ) Neuropathic pain was modeled in rats by L5 SNL (‘‘Chung model’’),
in which the L4 spinal nerve remains anatomically intact but the L4 DRG becomes dysfunctional, rendering the affected animal allodynic, i.e., the animal
responds to light touch as if it were a noxious stimulus. (ii ) Mechanical allodynia was confirmed prior to euthanasia by von Frey testing of the paw
withdrawal threshold, which was abnormal (1.4–2 g) after SNL and normal (8–10 g) in sham-operated controls. (iii ) Sequencing libraries were constructed
from pools of two L4 DRG from different animals for the 2-wk time point (hence two behavior measurements per sample) and from a single DRG for the
later time point (2 mo). RNA was isolated from the L4 DRG, poly(A)-purified, chemically fragmented, converted to a cDNA library, and sequenced. (iv)
Resulting sequencing reads (50 bp long) were mapped to the entire rat genome and categorized as uniquely matching reads (UMR), multi-matching reads
(MMR), and nonmatching reads (NMR) as detailed in Methods. (B) Gene-level analysis. Expression of each annotated gene was quantified by the total
number of UMR mapping to its exons. The gene Gas7 (ENSRNOG00000003492), shown as an example, has 13 annotated exons. Each dot in the graph
symbolizes 10 UMR observed. Sequencing depth at 2 wk was several-fold greater than at 2 mo, i.e., more reads were observed for each sample and gene,
requiring correction in the comparative analysis. Normalized UMR counts (i.e., number of reads of the given gene per 106 reads obtained) are given in the
left column, showing that the gene was induced 3.1-fold after SNL. (Each line marked as ‘‘SNL’’ or ‘‘Control’’ is an independent biological replicate.) (C )
Reproducibility between biological replicates across 10,367 known protein-coding genes. Quantification of expression was highly reproducible across
a wide range of gene expression levels because of the digital nature of the data. A tight correlation of read counts more than four orders of magnitude is
shown. Correlation among biological replicates was high as indicated by a Pearson correlation coefficient of r = 0.99. (Correlation coefficients between all
possible pairs in the study are shown in Supplemental Table 2). (D) Exon length versus average read coverage. A minimal exon length of 50 bp is required
for a read to ‘‘fit’’ fully into an exon. Efficient quantification of expression by UMR is achieved for exons of ;100 bp length or greater. Depicted is the
relationship between exon length and average read density (normalized to expression levels of individual genes) for the entire data set (all annotated
exons). (E ) Expression changes in known genes. Approximately 20% of genes were found to be dysregulated in the L4 DRG (after L5 SNL). Results are
shown here for 10,367 known protein-coding genes. The absolute number of genes found to be induced or suppressed by more than 1.7-fold is shown.
The analysis was designed with a predicted FDR of 0.5% (i.e., 52 genes predicted to be ‘‘induced’’ and ‘‘suppressed’’). The empirically determined FDR
supported the assumption (‘‘Control’’) demonstrating that more than 2000 genes were significantly altered in expression (as discussed in detail in Results
and Methods). The bar graphs shown are independent biological replicates for both time points studied (2 wk and 2 mo). (F) External validation by
published reports. A gene previously known to be strongly induced in the DRG in rat pain models (Bonilla et al. 2002; Costigan et al. 2002; Sun et al. 2002;
Valder et al. 2003; Davis-Taber and Scott 2006), Neuropeptide Y, was found by mRNA-seq to be among the most strongly induced genes at both time
points studied. A comprehensive list comparing mRNA-seq results with published reports is provided in Supplemental Table 5.
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was 91%, and the specificity was 97% when the classifier was ap-

plied to the validation set (the remaining 90% of exons). Clusters

meeting these criteria were termed ‘‘exon clusters.’’ Applying this

procedure to the entire genome, we found 92,628 exon clusters in

the 10,367 previously considered known protein-coding genes,

19,974 exon clusters in other annotated genes (e.g., weakly ex-

pressed protein-coding genes, RNA genes, or genes predicted on

the basis of orthologs), and 10,464 new exon clusters in non-

annotated regions of the genome (Fig. 2D). The new exon clusters

had a total length of 7,290,658 bp, i.e., taken together they covered

0.27% of the genomic sequence.

We evaluated the possibility that contrast could be used as an

additional criterion for classifying read clusters. Within the gold-

standard regions, true-positive clusters had on average a steeper

flank than false-positives. But the overlap was considerable (as seen

in Supplemental Fig. 1), suggesting that only about two out of

three clusters would be classified correctly. Improving a strong

classifier by combining it with a weak one usually fails to improve

the overall result—as one of us previously found in another area of

informatics research, speech recognition (P. Beyerlein, unpubl.).

‘‘Classic’’ genes—i.e., regions with well-defined start, end,

and exon boundaries—may not be the only source of RNA. ‘‘Dark

matter’’ (Johnson et al. 2005) regions of the genome may be

transcriptionally active; for example, it has been reported that up

to 94% of the human genome can be transcribed (The ENCODE

Project Consortium 2007). We found 968,726 UMR that mapped

neither to annotated areas of the genome nor to newly defined

clusters. These were labeled ‘‘dark matter reads.’’ Dark matter reads

were rare, comprising only 0.71% of UMR, and were dispersed

sparsely, covering 1.4% of the genome sequence at an average

density of 1.23. Given this sparsity, statistical inferences cannot be

derived from this portion of the data set, leaving DRG dark matter

transcription an uncertain possibility that will require even larger

sequencing efforts before we can arrive at a critical assessment.

Sequencing depth in the present study was ample for dis-

covery of new exons (resembling those of annotated genes) as

demonstrated by the test characteristics provided above (i.e., sen-

sitivity and specificity in the high-90s percentage range) and by the

high average read density, 433, for the newly discovered 10,464

exon clusters.

Agnostic splice junction discovery

Pre-mRNA (cis-)splicing is fundamental to defining transcriptomes.

Splicing determines how many different proteins (or regulatory

RNA) are derived from a set of neighboring exons, and which of

them should be grouped together in a single semantic unit, i.e.,

a gene. A remaining stated goal of mRNA-seq, for which no pub-

lished solution yet exists, is to determine pre-mRNA SJs de novo,

i.e., solely from the experimental data (mRNA-seq reads) without

use of existing annotations or information from other sources or

experiments.

In previous mRNA-seq studies, splicing was detected either by

mapping reads to known SJs or to limited sets of hypothetical

junctions derived by alternative (in silico) assembly of known

exons (Pan et al. 2008; Wang et al. 2009). These approaches were

the only practicable methods when mRNA-seq reads were very

short, i.e., 25–36 bp. Such methods are termed biased because only

the limited set of SJs that are predicted to exist can be experi-

mentally detected. Accordingly, previous studies could not dis-

cover new SJs in nonannotated sections of the genome nor could

they discover unsuspected SJs involving known genes (e.g., splic-

ing of newly discovered exons to known genes). In our study, the

length of sequences was longer (50 bp), thanks to improved tech-

nology, which allowed us to implement a computationally novel

approach for unbiased SJ discovery that overcame the shortcom-

ings of previous approaches. The new approach is termed ‘‘agnos-

tic’’ because it operates free of preconceived notions about exon

borders, mapping SJ de novo based solely on the information rep-

resented by the mRNA-seq data.

We reasoned that some reads would span SJ symmetrically,

i.e., the splice site would be exactly in the middle of the read. In

these instances the 25-bp sequence on each side of the junction

would map to a different location on the same chromosome in-

dicative of the positions and precise borders of two exons be-

longing to the same gene (Fig. 3A). Accordingly, the two 25-bp

ends (each of the two halves) of every 50-bp read obtained in the

study were mapped independently against the entire genomic

reference sequence, allowing us to identify 4,539,891 reads con-

taining an SJ exactly in the middle (1.7% of all sequences obtained

in the study); such reads were termed sjUMR (algorithmic defini-

tion provided in Methods).

We found that 97% of 25-bp halves of all sjUMR mapped

within the 123,066 UMR clusters defined above, providing a first

validation of the approach (examples are shown in Fig. 3B,C). In

other words, we confirmed that the overwhelming majority of

sjUMR connected bona fide exons and not random positions.

Next, sjUMR were grouped into clusters, termed SJ [read] clusters

(SJC), each of which consisted of all the sjUMR spanning the same

splice connection. From this analysis we identified 99,291 SJC

connecting two of the previously defined exon clusters. To validate

the predicted exon–exon splice connections, we determined if

exons connected by SJC belonged to the same gene. We found that

SJC that were located on one side in an exon cluster of an anno-

tated gene connected to another exon cluster of the same gene in

94% of instances. In 3% of cases, they connected to a previously

nonannotated exon cluster, and in another 3%, they connected

Figure 2. Mapping novel exons in nonannotated regions of the rat genome. (A) Typical UMR distribution. UMR mapped across nonannotated regions
of the genome in nonrandom patterns, often resembling exon–intron structure. Depicted are UMR (each gray line = one read) mapped across a non-
annotated region of chromosome 5. For comparison, UMR across an annotated region of chromosome 10 are shown along with the annotation of known
exons illustrating correspondence. (B) Aggregation of UMR into read ‘‘clusters’’ resembling exons. A 100-bp ‘‘sliding window’’ was moved across the
genome demarcating the beginning (UMR present, i.e., ‘‘filled’’ window) and end (UMR absent, i.e., ‘‘empty’’ window) of ‘‘UMR clusters.’’ Resulting UMR
clusters differed in read density. Clusters consisting of high piles of hundreds of reads provide strong evidence for an exon, while clusters with few reads
appear indeterminate. (C ) Classifier for UMR clusters: exon versus no-exon. The newly defined UMR clusters were dichotomized into ‘‘exons’’ and ‘‘no
exons’’ using average read density (read coverage) as a classifier. The ROC curve shown here was obtained by applying the classifier to an exploratory
subset of 10,367 (annotated) genes, varying read density from 0.25 to 100. Sensitivity and specificity are plotted for 26 different read densities. The
classifier was found to be a very precise test with an area under the curve of 0.97. At a read density of 4 (inflection point of the curve indicated as red circle),
the sensitivity of the test was 92% and the specificity was 97%. The favorable test characteristics were confirmed in the validation set (sensitivity 91%,
specificity of 97%). Applying the procedure to the full data set, 123,066 UMR exon clusters were found. (D) Location of UMR exon clusters. 10,464 new
exons were found (i.e., UMR clusters with density >4 in a nonannotated region); the remaining clusters overlapped known exons belonging either to the
10,367 genes quantified above or to other annotated genes.
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to an exon cluster belonging to an apparently unrelated gene.

While this indicates an error rate of 3%–6% ‘‘wrong’’ connections,

at least 94% of the connections described by SJC were confirmed

by the annotation as true connections, and up to 97% may, indeed,

be correct considering that a frequent type of newly discovered

exons are those belonging to (and thereby extending) a previously

discovered gene.

The majority of spliced introns in mammals (as well as most

lower eukaryotes) are flanked by a 59-GT. . .AG-39 consensus motif,

i.e., 59-GTat the beginning of the intron (directly following the last

base of the splice donor exon) and AG-39 at the end (directly pre-

ceding the first base of the splice acceptor exon). As an additional

means of external validation of the agnostic SJ discovery method,

we examined the frequency of the consensus motif. Among 65,108

unselected SJC consisting of 10 or more sjUMR, 97% flanked the

59-GT. . .AG-39 motif; this is virtually indistinguishable from the

frequency observed in annotated known protein-coding genes

(also 97%), further emphasizing the high degree of validity of our

agnostic splice site discovery algorithm.

SJC can consist of sjUMR with different offsets (i.e., different

start and end positions) appearing as ‘‘jitter’’ of sjUMR in a graph-

ical representation. While the observation of a jitter may at first

appear counterintuitive, it has two discernible causes, which were

taken into account for the final splice site prediction, as follows:

(1) Mismatches at the end of the sjUMR r1,. . .,r25. We allowed for

up to two mismatches when aligning reads to the reference ge-

nome; these mismatches were permitted to occur at the end of

r1,. . .,r25 or at the beginning of r26,. . .,r50. In other words, an sjUMR

could be a perfect match if cut into two unequal fragments r1,. . .,r23

and r24,. . .,r50 (or r1,. . .,r24 and r25,. . .,r50; r1,. . .,r26 and r27,. . .,r50;

r1,. . .,r27 and r28,. . .,r50); i.e., it is in fact an NMR aligning in a bona

fide fashion to the identified SJ; yet, given the 25 bp + 25 bp cut

method used, it aligns with mismatches. We resolved this by

simply trimming mismatched bases of such sjUMR, which resulted

in unambiguous SJs, which, in most cases were supported by ad-

ditional reads with the correct offset (not requiring trimming). (2)

A microhomology may exist between the 59-end of an intron and

the 59-end of the subsequent exon. In this case, the position of an

SJ based on any form of mRNA sequencing is ambiguous, albeit this

has no consequence for the predicted mRNA, which is the same

regardless of the SJ used. The 59-GT. . .AG-39 motif flanking 97% of

introns could be used to resolve the overwhelming majority of

such cases with single-base-pair precision.

Stable patterns of pre-mRNA splicing in chronic pain

Alteration in pre-mRNA splicing is a mechanism of cellular regu-

lation. We considered the possibility that splicing might be altered

in the DRG of animals with chronic pain as compared to controls.

To test this possibility, we compared the usage of alternative splice

sites with the same statistical approach used above for comparison

of gene expression levels. Based on a false discovery rate analysis

of the 573 best-supported alternative splice events, >99% of al-

ternative splicing choices were changed <2.79-fold. When SNL and

control samples were compared, only four to seven alternative

splice events fell outside the 99% control range compared with five

to six (1% of 573) expected false-positive events. Reads crossing the

splice junctions at other locations (22 + 28, 23 + 27, 24 + 26, 26 +

24, 27 + 23, 28 + 22) were then added to the analysis to improve the

degree of support by using all data. As a result the 99% confidence

interval was tightened (�1.37 to 1.37 on a log2 scale), but the

outcome remained principally unaltered—four to six alternative

splice events now fell outside the 99% control range compared

with an unchanged expected false-positive number of events (five

to six). Thus, no differences were found to suggest that alterations

in splicing were a common mechanism of gene regulation in pain.

De novo transcriptome annotation: Integration of all
mRNA-seq read classes and agnostic SJ discovery

Applying the newly defined SJC to annotating previously non-

annotated portions of the rat genome, we found that 3420 of the

10,464 nonannotated exon clusters (newly discovered as described

above) were connected to annotated genes by SJC. We found 421

groups of exons consisting solely of newly discovered nonannotated

exon clusters connected by SJC, i.e., transcriptional units resembling

new genes. Of these, 90 were homologous to nonannotated regions

of the mouse genome and 320 to known mouse genes. No ho-

mology was found for the remaining 11 (BLASTN E-value # 0.01).

Comparison with the human genome led to a smaller fraction of

known homologs, 269, which was to be expected because of the

greater phylogenetic distance. Integrating information from UMR,

sjUMR, MMR, and NMR read classes provided complex genome

annotation/reannotation including discovery of large novel genes.

For example, we mapped a 64-exon-long homolog of UNC-80,

which was previously not annotated in the rat genome. While our

study was under way, a mouse form of UNC-80 was prominently

reported as a novel substance-P and neurotensin coreceptor (Lu

et al. 2009). Substance P has long been recognized as a critical

peptide neurotransmitter at the spinal level in chronic pain.

Down-regulation of the rat UNC-80 homolog after SNL may con-

tribute to allodynia through alterations in peptide activity in the

DRG. The case of UNC-80 serves as an example of how de novo

transcriptome annotation may be highly informative in identifi-

cation of novel candidate regulators that would not have been

identifiable by previous technologies such as microarrays or qPCR.

Newly discovered transcripts are dysregulated in pain

Of the newly discovered exons, 9.0% were significantly induced

and 12.9% were suppressed in SNL animals compared with sham

controls, a rate comparable to the rate of altered regulation of

known genes described above, further suggesting that at least some

of the newly discovered genes will ultimately prove to be impor-

tant regulators in chronic pain.

Figure 3. Agnostic splice junction (SJ) mapping. (A) Agnostic, i.e., de novo genome-wide SJ discovery from split reads (25 bp + 25 bp). NMR were
split into 25-mer halves, which were matched independently to the genome reference sequence. Reads whose halves each matched uniquely to the
genome defined SJs de novo; these were termed uniquely mapping splice junction reads (sjUMR). (B) SJ validation on known genes and their application to
define connections of novel exons and exon borders. (Green) SJ-spanning uniquely mapping reads (sjUMR; mapped as described in the Methods section).
Most SJs were supported by multiple sjUMR (28.6 on average), as depicted here by piles of green lines. (Top panel) A known gene (Pitpnb
ENSRNOG00000000665) is shown here, demonstrating how sjUMR mapped precisely to the border of exons as annotated in the reference genome.
(Bottom panel) sjUMR connecting novel UMR clusters to groups, thereby defining new genes. In some instances, UMR cluster borders fall into introns (as
a result of the inclusiveness of the sliding-window algorithm), as depicted here (right sides of second and third cluster). In those cases, exon borders were
defined precisely by sjUMR. Note (top panel, second exon) that very short (<50 bp) exons that were undetectable by UMR could be defined through
mapping of SJ reads.
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Figure 4. Integrating information from UMR, sjUMR, MMR, and NMR read classes for complex genome (re-)annotation. (A) UMR- and sjUMR-based
definition of new exon groups. A novel gene candidate was identified on chromosome 9 through several UMR clusters (satisfying the classifier criterion of
a read density > 4), which were connected through splice junctions defined by sjUMR. Expression of exons was coregulated (suppressed by 70% after
SNL). An open reading frame encoding 409 amino acids was noted lacking a start and stop codon, suggesting that an incomplete gene fragment was
identified consisting of nine exons. (B) sjUMR validation of a low-read density UMR cluster as a novel exon. Consistent with the limited sensitivity of the
UMR cluster classifier (91%), a UMR read cluster with a read density of 3.9 was initially not classified as an exon (because its density was <4); but sjUMR-
based SJs defined it unambiguously as a novel exon connecting the above gene fragment to a series of 18 39-located UMR clusters. Note that the cluster
density was low because a region of scattered intron reads was added to the read cluster by the sliding window, an imprecision that was rectified by
agnostic splice site mapping, which defined precise exon borders. Through the step depicted in this panel, the candidate gene was extended to 28 exons.
(C ) NMR-derived contig bridge. A faulty or missing section in the reference genome can be indicated by runs of N (ambiguous bases) as encountered 39 of
the 28 exons assembled above (50 scattered N). Such missing sections in the reference are also an important reason why some mRNA-seq reads do not
match. Accordingly, we found that in such cases, contigs of NMR can be assembled bridging faulty sequences, as shown here. As a result of the NMR
contig-bridge, the gene candidate could be expanded to 49 exons. (D) MMR candidate exons discriminated by sjUMR. Exon copy numbers >1 in the
reference sequence result in clusters of MMR (blue) matching collectively to more than one site. A case of two such MMR clusters in close proximity (within
<2 kb; note duplicated region indicated by yellow bar) was observed 59 of the above gene candidate. As shown here, the ambiguity was resolved by sjUMR;
this led to a 59 extension of the gene candidate by another 15 exons, which resulted in a complete gene with start and stop codon consisting of 64 exons.
(E ) A summary of the novel 64-exon gene is shown encoding a 3313-amino-acid-long protein (14,084-bp mRNA). While the study was under way,
a homologous mouse protein with important CNS relevance was reported (‘‘large previously unknown protein’’) (Lu et al. 2009), termed UNC-80, which
serves as a substance-P and neurotensin coreceptor. Down-regulation of the rat UNC-80 rat homolog after SNL may contribute to allodynia through
alterations in peptide activity in the DRG.
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Discussion
mRNA-seq is a paradigm-shifting technology for transcriptomics.

The present study developed novel bioinformatics analysis

methods focusing on genome-wide exon discovery and agnostic

pre-mRNA splice site mapping, both of which were supported by

rigorous statistical validation. Taking advantage of this meth-

odological progress, we have conducted an mRNA-seq study in a

neurological disease model demonstrating an unprecedented

breadth of nervous system transcriptome reprogramming extend-

ing to previously unmapped mRNA.

The acquisition of 13 Gb of raw transcriptome sequence (267

million 50-bp reads) permitted precise quantification of more than

10,000 genes in an important site of the nervous system, the DRG,

for two conditions and two time points (Fig. 1). The results in-

cluded discovery of novel genes (Fig. 2), allowed agnostic mapping

of pre-mRNA splice sites (Fig. 3), guided discovery of large genes

(Fig. 4), and demonstrated that one in five genes, including pre-

viously unmapped genes with novel candidate neural regulator

roles, were significantly altered, some by as much as 100-fold, in

animals with neuropathic pain (Fig. 1; Supplemental Table 3).

Using mRNA-seq, we discovered an order of magnitude more

gene expression changes than were expected based on previous

microarray studies performed on DRG in similar rat pain models

(Bonilla et al. 2002; Costigan et al. 2002; Valder et al. 2003; Davis-

Taber and Scott 2006; Rodriguez Parkitna et al. 2006). At the same

time, the results obtained using mRNA-seq cross-validated results

obtained in microarray experiments by others.

A x2 test performed on 330 genes, which were reported in the

microarray literature (as up- or down-regulated) and quantified in

our experiments, demonstrated a highly significant positive cor-

relation, P < 10�10 (Supplemental Table 4). Of those genes, 67 were

up-regulated and 61 down-regulated in both data sets. There was

no instance of regulation in the opposite direction, further sup-

porting our results. A number of genes, which were found in

published studies to be regulated, were found unchanged in our

data set. This was not unexpected. The published microarray

studies have all used a model of nerve injury at the level of the

sciatic nerve, which contains sensory fibers from three anatomical

levels (L4–L6). In published studies, DRG from the L4 and L5 levels

were pooled. In the process two qualitatively different types of

DRG alterations were sampled and pooled—direct injury (den-

drites anatomically damaged) and indirect effects, i.e., pure neural

dysfunction (dendrite anatomically intact). We performed a spinal

nerve ligation (SNL) at L5 and harvested the L4 DRG selectively for

mRNA-seq analysis. Therefore, our analysis focused selectively on

the dysfunctional but anatomically intact L4 DRG. Accordingly, it

could be expected that we would not detect expression changes

related to direct nerve injury, which may account for the majority

of the 202 genes found to be unaffected in our model. Cases of

concordance included well-known examples like neuropeptide Y

and activating transcription factor-3 (ATF3). ATF3 was found in our

study to be induced 11-fold in the L4 DRG 2 wk after L5 SNL,

consistent with the ;10-fold induction of ATF3 that had been

described in DRG microarray studies (Costigan et al. 2002; Valder

et al. 2003; Davis-Taber and Scott 2006). An overview of the re-

lationship with the microarray literature is presented in Supple-

mental Table 4. A gene-by-gene comparison is provided in Sup-

plemental Table 5. Both are based on all positive findings available

from all published DRG microarray studies (Bonilla et al. 2002;

Costigan et al. 2002; Valder et al. 2003; Davis-Taber and Scott 2006;

Rodriguez Parkitna et al. 2006). While the referenced microarray

studies relied on less selective injury models (a mixture of direct

axonal injury and indirect dysfunction of unsevered neurons) and

required pools of many DRG (from different anatomical levels and

multiple animals), mRNA-seq provided single-DRG sensitivity,

allowing us to perform the present study in the surgically selective

L5 SNL model (Chung et al. 2004). The neural structure investi-

gated, the L4 DRG, was anatomically intact (unsevered L4) in all

animals but was dysfunctional in the experimental group driving

abnormal behavior, i.e., allodynia, which was experimentally

validated (Fig. 1A). Thus, mRNA-seq demonstrated that tran-

scriptome reprogramming in an intact site of the nervous system

(L4 DRG) is a genomic correlate of altered behavior, i.e., hind paw

withdrawal in response to soft von Frey hairs (allodynia).

The mRNA-seq library construction methods used (Mortazavi

et al. 2008) did not preserve strand information. Detected expres-

sion changes may therefore in some cases be due (at least in part) to

alterations in transcription of the opposite strand as observed in

the FANTOM3 data set (Katayama et al. 2005).

New computational methods were developed for nearly every

aspect of our analysis, especially novel exon discovery and ag-

nostic splice-site mapping, which proved critical for the discovery

aspect of the study. New programs were developed (in C, Java, and

Perl; available at http://www.th-wildau.de/bioinformatics/wios/ or

http://mayoresearch.mayo.edu/mayo/research/beutler_lab/wios.

cfm), which should facilitate implementation of the analysis para-

digms presented here into other mRNA-seq studies.

Rigorous validation of the analysis tools through comparison

of mRNA-seq results with ‘‘gold standard’’ reference annotations

and the computation of comprehensive statistics supporting the

approach was a major focus of our study. We demonstrated that

gene quantification was reproducible, confirming original reports

on mRNA-seq technology (Mortazavi et al. 2008). We demon-

strated that new exon discovery could be achieved with high

sensitivity and specificity (91% and 97%, respectively; ROC curve >

0.968 shown in Fig. 2C). We developed an approach to agnostic SJ

discovery and showed that splice junctions could be mapped ge-

nome-wide with great precision (94%–97% with one validation

approach and 97% with another).

We previously reported the use of mRNA-seq in a study of

cerebellar RNA from humans with schizophrenia (Mudge et al.

2008). While this constituted a first foray into neurobiology,

conclusions from the study were limited because of the absence of

an experimental intervention or effective controls, as well as by the

lack of bioinformatics innovation toward new transcript and pre-

mRNA splice site discovery, and the very short read length of first-

generation mRNA-seq technology employed. To overcome these

limitations, we designed the present study with newer technology,

i.e., library construction requiring <1 mg of mRNA and sequencing

to a read length of 50 bp. Using a widely accepted, well-controlled

animal model of an important neurological disorder, the rat SNL

model of chronic neuropathic pain, the present study could trace

all transcriptome changes observed to a specific experimental

manipulation in the nervous system.

A limited pathway analysis is presented in Supplemental

Figure 2. Annotations of represented genes are provided in Sup-

plemental Table 12. The pathway links extracellular neuroim-

munological alterations (supported by our data) through multiple

cytosolic intermediaries with a large number of transcriptional

events. Suppression of neuroimmunological activation by DRG-

directed gene therapy with immunosuppressive cytokines such

as interleukin 10 is known to suppress neuropathic pain (Beutler

et al. 2005), as would be predicted from the pathway shown in

Agnostic capture of neural transcriptomes
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Supplemental Figure 2. The decision to stay otherwise clear of net-

work analyses was deliberate. Most known ‘‘pathways’’ are cancer-

centric, reflecting the area where most primary data of molecular

interaction have been accumulated. Regarding nervous system path-

ways, sources from different anatomical sites are often combined

to construct a pathway. Pathway depictions usually imply linearity,

which may not reflect the complexity of regulatory feedback loops

and interdependence of events. Furthermore, the true initiating

events for complex transcriptional reprogramming may be chroma-

tin remodeling events, whose study in the nervous system has just

begun. Comprehensive pathway recognition in neuroscience exper-

iments may be enhanced as it becomes easier to capture genome-scale

data sets for defined sites and conditions.

In the future, neurological diseases such as pain might be

investigated as problems of transcriptional reprogramming by

integrating complete capture and quantification of the various

classes of RNA with a genome-wide characterization of the chro-

matin state, for example, through chromatin immunoprecipita-

tion with massively parallel sequencing (ChIP-seq) (Johnson et al.

2007) or through determining DNA methylation (Brunner et al.

2009). Such approaches may ultimately lead to the identification

of targets for transcription therapy that might employ molecules

exerting an analgesic effect by inducing or suppressing specific

gene expression programs. Investigation of these various con-

ceptual layers are currently merging at the technological level

through the adoption of short read sequencing techniques such

as mRNA-seq.

Methods

Base calling and alignment of sequencing reads
to the reference genome
The Illumina analysis software pipeline program Bustard was used
for base calling. ELAND v1.3 was used to map reads to the Rattus
norvegicus reference genome assembly RGSC 3.4 (release 50; ftp://
ftp.ensembl.org/pub/release-50/). The maximum read length di-
rectly processed by ELAND (i.e., without additional computing
steps) is 32 bp. Our reads were 50 bp long, r1,. . .,r50. We extracted
two 32-bp substrings—r1,. . .,r32 and r19,. . .,r50—and aligned those
individually allowing for up to two substitutions, i.e., base pair
mismatches (MM). We then combined the alignment result for the
two substrings classifying r1,. . .,r50 as a UMR if r1,. . .,r32 and
r19,. . .,r50 matched once with an offset of 18 bp (50 � 32 bp) be-
tween r1 and r19; as a MMR if the event occurred more than once;
and as a NMR if it did not occur. We compared our approach with
the GERALD pipeline for processing of 50-bp reads (‘‘ELAND ex-
tended’’), which aligns r1,. . .,r32 to establish the uniqueness of the
match followed by counting the number of MM in the remaining
fragment to exclude that r1,. . .,r50 is nonmatching. While equally
specific, this approach was less sensitive, overcalling MMR at the
expense of UMR. Direct comparison showed that our modified
approach increased the fraction of UMR by 1.8% (4.7 million) of
all reads. Furthermore, we validated a subset of the results with
another alignment tool, Bowtie (Langmead et al. 2009), which
detected UMR with a sensitivity of 96%, an expected result (Sup-
plemental Table 6).

Induction and suppression of 10,367 known
protein-coding genes

For a given sample of mRNA-seq reads S (e.g., all reads obtained for
a single DRG), the read count for an individual gene c(g, s) is the

sum of read counts for the set E of all exons e1. . .en annotated by
Ensembl (RGSC 3.4, release 50) as belonging to the gene g, i.e.,

cðg; sÞ = +
e2g

cðe; sÞ:

A read was counted as belonging to an exon if its start position
fell within annotated exon boundaries. ‘‘Known protein-coding’’
(kpc) Ensembl genes were considered in this part of the analysis,
requiring a c(g, s) $ 100 for at least two samples at the early time
point (2 wk), thereby excluding low-expressing genes that contribute
only noise. As a result 10,367 genes were included in the analysis.
c(g, s) were normalized to the total number of UMR in each re-
spective sample s:

nðg; sÞ = ½cðg; sÞ+ 1� 3 106

+
g

½cðg; sÞ + 1�
;

i.e., the count of reads for a gene per 1 million reads in the respective
sample. A count of 1 was added to c(g, s) as a discounting step pre-
cluding the possibility of division by 0 in subsequent operations.

To validate mRNA-seq for the quantification of gene expres-
sion changes, a comparison with quantitative reverse transcriptase
polymerase chain reaction (qRT-PCR) was performed. Fold-changes
of gene expression measured by Taqman qRT-PCR were highly
correlated (r = 0.956, slope 0.984) with mRNA-seq, as shown in
Supplemental Figure 3, indicating the validity of mRNA-seq as
a method for quantifying relative changes of transcript levels.

To estimate the number of induced and suppressed genes in
SNL animals compared to controls, the FDR concept was applied.
The relative change r of the normalized expression of a given gene
n(g, s) between two samples r(g, s1, s2) was calculated as:

rðg; s1; s2Þ= log2

nðg; s1Þ
nðg; s2Þ

� �
;

i.e., the fold-change on a log2 scale, where +1 corresponds to
doubling of gene expression and �1 to a reduction by half.

Next, the ratio r(g, s1, s2) of each of the 10,367 genes was de-
termined, with s1 and s2 corresponding to two biological replicates,
i.e., either two control or two SNL animals. Under ideal conditions,
all ratios on the log2 scale should be 0 (i.e., a change of 13, which is
‘‘no change’’). Examining the actual distribution of these control
ratio distributions, we found that the respective medians were very
close to 0, their shape was symmetric, and the average 99% con-
fidence interval was 60.8096, i.e., only 0.5% of control expression
ratios r(g, s1, s2) were higher or lower than the confidence interval
cut-off, corresponding to a FDR of 52 genes induced and sup-
pressed among the total of 10,367. Next, we determined the
number of genes induced and suppressed after SNL by calculating
r(g, s1, s2) with s1 and s2 corresponding to SNL and control samples,
repeating the procedure for independent biological replicates. Re-
sults are shown in Figure 1E.

Validation of mRNA-seq with qPCR

mRNA-seq was performed using two quality-control standards, the
universal human reference RNA (Stratagene) and human brain ref-
erence RNA (Ambion). Fold-change differences among 755 tran-
scripts quantified by mRNA-seq were calculated as described above
and compared with established Taqman qRT-PCR data (Shi et al.
2006) as shown in Supplemental Figure 3.

Pathway analysis

Data were analyzed through the use of Ingenuity Pathways Anal-
ysis (Ingenuity Systems; http://www.ingenuity.com). A network is
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a graphical representation of the molecular relationships between
genes and gene products. Genes or gene products are represented
as nodes, and the biological relationship between two nodes is
represented as an edge (line). All edges are supported by at least one
reference from the literature, from a textbook, or from canonical
information stored in the Ingenuity Pathways Knowledge Base.
Human, mouse, and rat orthologs of a gene are stored as sepa-
rate objects in the Ingenuity Pathways Knowledge Base, but are
represented as a single node in the network. The intensity of the
node color (Supplemental Fig. 2) indicates the degree of up- (red) or
down- (green) regulation. Nodes are displayed using various shapes
that represent the functional class of the gene product. Annotation
of genes is provided in Supplemental Table 12.

Novel gene discovery

A read histogram was constructed for each chromosome c by
counting the number of reads covering a given base position x,
denoted as hc(x), resulting in a group of chromosome-spanning
histograms hc(�)(c = 1, . . . ,21) with single base position resolution
covering the genome. For this analysis, data from all samples were
pooled:

+
c

+
x

hcðxÞ = 7;128;637;500:

A sliding window with length l was shifted over the genome
integrating the area under the curve of the read histogram hc(x) in
the interval [ p, p + l], i.e.,

wcðp; p + lÞ = +
p+l

x=p

hcðxÞ:

When wc(p, p + l) is zero, the consecutive interval of length l
has no reads. An interval [a, b] on the chromosome c, for which all
values wc(a, a + l), wc(a + 1, a + 1 + l), wc(a + 2, a + 2 + l), . . ., wc(b� l, b)
are non-zero, is called a read cluster. We denote this read cluster
with Ka,b,c. Setting the window length l = 100, we defined 882,913
Ka,b,c. In other words, we identified 882,913 read clusters consist-
ing of one or several neighboring reads; clusters were separated by
sections devoid of reads (no read within 100 bp).

Because an individual read cluster by this definition could
consist of as little as a single read and as many as thousands, we
reasoned that only some, i.e., those with many reads, would be
strong predictors of exons. Therefore, we introduced read density
as a measure to characterize clusters further. For each read cluster
Ka,b,c, we calculated the read density as follows:

dðKa;b;cÞ =
1

b� a
+
b

x=a

hcðxÞ:

Next, we developed a classifier dichotomizing clusters into a set of
exon-like clusters F and its complement based on read density,
whereby

dðKa;b;cÞ > D! Ka;b;c 2 F

dðKa;b;cÞ # D! Ka;b;c =2F:

To establish the test characteristics of the procedure, we tested it for
D = 0, . . ., 100 on a training set as described in the Results section,
constructing the ROC curve shown in Figure 2C, which suggested
D = 4 as a cut-off for optimal precision. Sensitivity and 1-minus-
specificity values for each tested read density are provided in
Supplemental Table 7.

De novo mapping of mRNA splice junctions

Pre-mRNA is processed to mRNA such that intron sequences are
removed and neighboring exon sequences joined together creat-
ing novel SJ sequences that are not found in the genome reference
sequence. mRNA-seq reads derived from splice junctions typically
do not match to the genome sequence, and thus were classified
as NMR in the alignment described above. Previous mRNA-seq
studies have mapped SJs using a limited sequence database con-
sisting of annotated splice sites and predicted sites obtained by in
silico alternative exon joining. These approaches were the only
practicable way of using very short sequence reads (25–32 bp) for
this goal, but they were unable to predict SJs de novo genome-
wide. We sought to overcome this limitation.

We based SJ discovery on reads classified as NMR. We focused
on reads traversing the SJ exactly in the middle of the read, because
we reasoned that those reads would on average have the best bal-
ance of sequence information available for mapping each end in-
dependently. Thus, every NMR r1,. . .,r50 was split into the two
fragments r1,. . .,r25 and r26,. . .,r50, which were independently
aligned with ELAND to the entire genome (as described above for
32-bp sequences). Alignment results for such sequence pairs
r1,. . .,r25 and r26,. . .,r50 were combined by applying known con-
straints of splicing biology (specifically, the upper 99th percentile
of intron lengths and an assumption of a single-molecule pre-
mRNA structure) and selecting only those cases that consisted of
pairs matched to a single site. We found 4,539,891 such reads;
124,403 of these consisted of pairs mapping with a negative dis-
tance, i.e., deletions. After removing deletions, 4,415,488 reads
remained. In other words, we identified reads that as a 50-mer
r1,. . .,r50 did not match (i.e., NMR) but whose 25-mer halves
(r1,. . .,r25 and r26,. . .,r50) each matched uniquely to the genome,
thereby defining an SJ. These reads were termed splice junction
UMR (sjUMR). We identified 4,415,488 sjUMR (1.7% of all reads)
by the 25 bp + 25 bp cut method.

Novel sjUMR were then combined into SJ clusters (SJC) each
covering the same SJ; 154,577 SJC were found; i.e., in our data set,
each SJC was supported by an average of 28.6 sjUMR. SJC were
validated and used to establish connectivity between known and/
or novel exons as detailed in the Results section and illustrated in
the figures. We defined 421 new genes consisting solely of newly
discovered exons and SJC. The full sequence and genome position
of the entire data set are provided in Supplemental Tables 8–11.
The relative frequency of noncanonical splice sites observed was
provided in Supplemental Table 13.
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