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Abstract
For template-based modeling in the CASP8 Critical Assessment of Techniques for Protein Structure
Prediction, this work develops and applies six new full-model metrics. They are designed to
complement and add value to the traditional template-based assessment by GDT (Global Distance
Test) and related scores (based on multiple superpositions of Cα atoms between target structure and
predictions labeled “model 1”). The new metrics evaluate each predictor group on each target, using
all atoms of their best model with above-average GDT. Two metrics evaluate how “protein-like” the
predicted model is: the MolProbity score used for validating experimental structures, and a mainchain
reality score using all-atom steric clashes, bond length and angle outliers, and backbone dihedrals.
Four other new metrics evaluate match of model to target for mainchain and sidechain hydrogen
bonds, sidechain end positioning, and sidechain rotamers. Group-average Z-score across the six full-
model measures is averaged with group-average GDT Z-score to produce the overall ranking for
full-model, high-accuracy performance.

Separate assessments are reported for specific aspects of predictor-group performance, such as
robustness of approximately correct template or fold identification, and self-scoring ability at
identifying the best of their models. Fold identification is distinct from but correlated with group-
average GDT Z-score if target difficulty is taken into account, while self-scoring is done best by
servers and is uncorrelated with GDT performance. Outstanding individual models on specific targets
are identified and discussed. Predictor groups excelled at different aspects, highlighting the diversity
of current methodologies. However, good full-model scores correlate robustly with high Cα accuracy.
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Introduction
The problem of protein structure prediction is certainly not yet “solved”. However, enormous
progress has been made in recent years, with much credit due to the objective, double-blind
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assessments of the biennial CASP experiments1. In CASP8, even for difficult targets some
individual predictions were very accurate, and for relatively easy targets many groups
submitted good models, as seen for T0512 and its 354 predicted models in Figure 1. As
assessors, we had the task of evaluating the 55,000 models submitted for CASP8 template-
based modeling (TBM). Descriptions, statistics, and results for CASP8 are available at
http://www.predictioncenter.org/casp8/. The existence and relatively automated application2

of an appropriate, highly tuned, well accepted tool for assessing the overall success of TBM
predictions – the GDT-TS Z-score for Cα superposition3,4 – has allowed us to explore new
ways of adding information and value to the CASP TBM process. Specifically, since that
primary GDT assessment uses only the Cα atoms, we have developed a set of full-model
measures which take into consideration the other 90% of the protein that provides essentially
all of the biologically relevant interactions.

In the long run, correct predictions will satisfy the same steric and conformational constraints
that are satisfied by accurate experimental structures. One general question we addressed was
whether the time has yet come when evaluating full-model details can contribute productively
to achieving more correct predictions, by spurring methods development and by guiding local
choices during individual model construction. This is not a foregone conclusion, since too
much detail is irrelevant or even detrimental to judging model correctness if modeling remains
very approximate. Our second general aim was to increase the diversity and specificity of
assessment measures within the TBM category. The TBM prediction process encompasses
many somewhat independent aspects, and both targets and methods are highly diverse. It seems
likely, therefore, that future methods development could be catalyzed more effectively if more
extensive separate evaluations of distinct aspects (such as template/fold recognition or
sidechain rotamer correctness) were provided where feasible, in addition to the single, winner-
take-all assessment of predictor groups. It is not a new idea to penalize backbone clashes5,6
or to include sidechain or H-bond assessment7,5,8, but the quantity and quality of models in
CASP8 allow those things to be done more extensively than before and we have adopted a
different perspective. For instance, we consider steric clashes for all atoms, using a well-
validated physical model rather than an ad-hoc cutoff. These new full-model metrics provide
a model-oriented rather than target-oriented version of a “high-accuracy” (HA) assessment for
CASP8 predictions, as suggested for future development by the CASP7 HA assessor8. The
scope here is over models accurate enough to score in the top section of the bimodal GDT-HA
distribution, rather than over targets assigned as TBM-HA based on having a close
template9, as was done for the HA assessment in CASP78.

The work described here, therefore, even further broadens the scope of assessment techniques
and delves into finer atomic detail, by separately evaluating multiple aspects of TBM
prediction, by identifying outstanding individual models, and especially by examining
backbone sterics and geometry, sidechain placement, and hydrogen bond prediction in the
CASP8 template-based models. Ultimately, our goal is to encourage fully detailed and
“protein-like” models that can be used productively by experimental biologists. A relatively
large number of prediction groups are found to score well on various of these measures,
including the demanding new measures of full-model detail.

Methods
General Approach and Nomenclature

Previous assessments of CASP template-based models have focused primarily on GDT (global
distance test) from the program LGA (local-global alignment)3. GDT is an excellent indicator
of one structure’s similarity to another, applicable across the entire range of difficulty for TBM
(template-based modeling) targets and to a large extent for FM (free modeling) as well. Its
power derives primarily from its use of multiple superpositions to assess both high- and low-
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accuracy similarity, as opposed to more quotidian metrics like RMSD (root-mean-square
deviation) which use a single superposition. Specifically, a version of GDT using relatively
loose inter-atomic distance cutoffs of 1, 2, 4, and 8Å called GDT-TS (“total score”) has
traditionally been the principal metric for correctness of predictions. However, a variant using
stricter cutoffs of 0.5, 1, 2, and 4Å called GDT-HA (“high accuracy”) was used for much of
the CASP7 TBM assessment because of its enhanced sensitivity to finer structural details6,8.
We feel that GDT-HA probes a level of structural detail similar to our new measures (see
below) and, therefore, continue to use it widely here.

Despite the power of LGA’s traditional scores, they consider only the Cα atoms – in other
words, they ignore more than 90% of the protein. Many current prediction methods make use
of all the atoms, and many of this year’s CASP models are accurate enough to make a broader
assessment appropriate. Therefore, our primary contribution to CASP8 TBM assessment is
additional full-model structure accuracy and quality metrics that are to some degree orthogonal
to Cα coordinate superposition metrics like GDT. Our group has extensive experience in
structure validation for models built using experimental data, mainly from X-ray
crystallography and nuclear magnetic resonance (NMR), and has over the years developed
strong descriptors of what makes a model “protein-like”10,11,12,13. Here we seek to apply
some of those same rules to homology models in CASP8.

Two of the new full-model metrics evaluate steric, geometric, and conformational outliers in
the model, and are normalized on a per-residue basis. The other four measure match of model
to target on hydrogen bond or sidechain features, and are expressed as percentages. Raw scores,
for these or other metrics, are the appropriate way to judge quality of an individual model.
Averaging the raw scores of all models for an individual target provides a rough estimate of
that target’s difficulty (which varies widely). Finally, in order to combine the six new metrics
into a single full-model measure, or to evaluate relative performance between prediction
groups, the metrics were converted into Z-scores measured in standard deviations above or
below the mean, as has been standard practice in CASP for some time4. Group-average Z-
scores are not reported here for groups that submitted usable models for fewer than 20 targets.

In the descriptions that follow, 3-digit target codes are written starting with “T0” (ranging from
T0387 to T0514 for CASP8), while prediction groups are referred to by their brief names,
except when making up part of a model number (e.g., 387_1 is model 1 from group 387). Name,
identifying number, and participants for prediction groups can be looked up at
http://www.predictioncenter.org/casp8/, as well as definitions, statistics, and results for
CASP8. Groups are designated either as human or server. Server groups employ automated
methods and are required to return a prediction within 3 days; that server may or may not be
publicly accessible. Human groups need not use purely automated methods and are allowed 3
weeks to respond. Targets are also designated as either server or human (the latter are more
difficult on average); typically, servers submit models for all targets and human groups submit
for human targets only. When a target is illustrated or discussed individually, its 4-character
PDB code will also be given (e.g., 3DSM for T0512), and those coordinates can be obtained
from the Protein Data Bank14 at http://www.rcsb.org/pdb/.

Model File Pre-Processing
CASP8 TBM assessment involved evaluating over 55,000 whole-target predictions and over
77,000 target domain predictions (250–550 models per target, as shown for T0512 in Figure
1), which highlighted the importance of file management, clean formatting, and interpretable
content. It was discovered early in our work that a surprisingly high percentage of the prediction
files did not adhere to the PDB format14, even though CASP model files require only a very
simple and limited subset of the format, with some checks done at submission. The commonest
problems involved spacing, column alignment, or atom names, but there were a few global
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issues such as concatenated models, empty files, and even a set of files with the text “NAN”
in place of all coordinates. General-purpose software, including our structural evaluation tools,
must deal correctly with the full complexity of the PDB format and thus cannot be designed
for tolerance of these errors in the simpler all-protein mode of CASP. Therefore, as noted also
for CASP615, most format irregularities produce incorrect or skipped calculations, and the most
inventive ones occasionally cause crashes.

To address the reparable issues, we created a Python script to “preprocess” and correct most
of the formatting and typographical errors. Among the errors it can address are non-standard
header tags, new (version 3.x) vs. old (version 2.3) PDB format, nonstandard hydrogen names,
incorrect significant digits in numerical columns, and incorrectly justified columns,
specifically the atom name, residue number, coordinate, occupancy, and B-factor fields.
Unfortunately, due to the number and variety of model files, some formatting errors slipped
past the preprocessing. One example discovered only later was a set of models with interacting
errors both in column spacing and in chain-ID entries placed into the field normally containing
the insertion code; these produced incorrect results even from LGA, which is admirably tolerant
and only needs to interpret Cα records.

Beyond format are issues of incorrect or misleading content, which are nearly impossible to
stipulate in advance and were usually discovered either by accident or by aberrant results from
the assessment software. A few of the many cases in CASP8 TBM models were Cβs on
glycines, multiple atoms with identical coordinates, and sidechain centroids left in as “CEN”
atoms misinterpreted as badly clashing carbon atoms. Usually, format or content problems
result in falsely poor scores, which should concern the predictor but did not worry the assessor
except for distortions in the overall statistics. However, sometimes the errors produce falsely
good scores (such as low clashscores from missing or incomplete sidechains), making their
diagnosis and removal a very serious concern to everyone involved in CASP.

Hydrogen Atoms
Explicit hydrogens must be present for all-atom contact analysis to yield meaningful results.
The program Reduce was used to add both polar and non-polar H atoms at geometrically ideal
positions16. When H atoms were already present in the model or target file, we used them but
standardized their bond lengths for consistency in evaluation. For all files, we optimized local
H-bonding networks for the orientations of rotatable polar groups such as OH and NH3 and
for the protonation pattern of His rings, but did not apply MolProbity’s usual automatic
correction for 180° flips of Asn/Gln/His sidechains16.

Measure 1: MolProbity Score (MPscore)
The first two of the six new full-atom metrics, MolProbity score and mainchain reality score,
are based only on properties of the predicted model. Previous work on all-atom contact analysis
demonstrated that protein structures are exquisitely well packed, with interdigitating favorable
van der Waals contacts and minimal overlaps between atoms not involved in hydrogen
bonds10. Unfavorable steric clashes are strongly correlated with poor data quality, with clashes
reduced nearly to zero in the well-ordered parts of very high-resolution crystal structures17.
From this analysis – originally intended to improve protein core redesign, but since applied
also to improving experimental structures – came the clashscore, reported by the program
Probe10; lower numbers indicate better models.

In addition, the details of protein conformation are remarkably relaxed, such as staggered χ
angles11 and even staggered methyls10. Forces applied to a given local motif in the crowded
environment of a folded protein interior can result in a locally strained conformation, but
evolution seems to keep significant strain near the minimum needed for function, presumably
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because protein stability is too marginal to tolerate more. In updates of traditional validation
measures, we have compiled statistics from rigorously quality-filtered crystal structures (by
resolution, homology, and overall validation scores at the file level, and by B-factor and
sometimes by all-atom steric clashes at the residue level). After appropriate smoothing, the
resulting multi-dimensional distributions are used to score how “protein-like” each local
conformation is relative to known structures, either for sidechain rotamers11 or for backbone
Ramachandran values12. Rotamer outliers asymptote to < 1% at high resolution, general-case
Ramachandran outliers to < 0.05%, and Ramachandran favored to 98% (Fig. 2).

All-atom contact, rotamer, and Ramachandran criteria are central to the MolProbity structure-
validation web site13, which has become an accepted standard in macromolecular
crystallography: MolProbity hosted over 78,000 serious work sessions in the past year. To
satisfy a general demand for a single composite metric for model quality, the MolProbity score
(MPscore) was defined as:

where clashscore is defined as the number of unfavorable all-atom steric overlaps ≥ 0.4Å per
1000 atoms10; rota_out is the percentage of sidechain conformations classed as rotamer
outliers, from those sidechains that can be evaluated; and rama_iffy is the percentage of
backbone Ramachandran conformations outside the favored region, from those residues that
can be evaluated. The coefficients were derived from a log-linear fit to crystallographic
resolution on a filtered set of PDB structures, so that a model’s MPscore is the resolution at
which its individual scores would be the expected values. Thus, lower MPscores are better.

CASP8 marks the first use of the MolProbity score for evaluation of non-experimentally-based
structural models. It is a very sensitive and demanding metric, a fact also evident for low-
resolution crystal structures or for NMR ensembles. It must be paired with a constraint on
compactness, provided by the electron density in crystallographic use and approximately by
the GDT score in CASP evaluation. Crystal contacts occasionally alter local conformation, but
are too weak to sustain unfavorable strain. Those changes are much smaller than at multimer
or ligand interfaces. For CASP8 targets, potential problems between chains or at crystal
contacts were addressed as part of defining the assessment units9.

Measure 2: Mainchain Reality Score (MCRS)
To complement the MolProbity score, it seems desirable to have a model evaluation that (1)
only uses backbone atoms in its analysis and (2) takes account of excessive deviations of bond
lengths and bond angles from their chemically expected ideal values. For those purposes, the
mainchain reality score (MCRS) was developed, defined as follows:

where spike is the per-residue average of the sum of “spike” lengths from Probe (indicating
the severity of steric clashes) between pairs of mainchain atoms, rama_out is the percentage
of backbone Ramachandran conformations classed as outliers (as opposed to favored or
allowed; see Fig. 2), and length_out and angle_out are the percentages of mainchain bond
lengths and bond angles respectively that are outliers > 4σ from ideal18. The perfect MCRS is
100 (achieved fairly often by predicted models), and any non-idealities are subtracted to yield
less desirable scores. The coefficients were set manually to achieve a range of approximately
0–100 for each of the four terms, so that egregious errors in just one of these categories can
“make or break” the score. To counter this and achieve a reasonable overall distribution, we
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truncated the overall MCRS at 0 (necessary for about 14% of all models); note that 0 is already
such a bad MCRS that truncation isn’t unduly forgiving of the model. However, we did not
discover any models as charmingly dreadful as in the first figure of CASP6 TBM 5.

Measures 3,4: Hydrogen Bond Correctness (HBmc and HBsc)
The last 4 of these 6 new full-model metrics are based on comparisons between the predicted
model and the target structure. Knowing the importance of H-bonds in determining the
specificity of protein folds19, the CASP7 TBM assessors examined H-bond correctness
relative to the target6. We have followed their lead but separated categories for mainchain
(HBmc: mainchain-mainchain only) and sidechain (HBsc: sidechain-mainchain and sidechain-
sidechain), using Probe10 to identify the H-bonds.

Briefly, the approach was to calculate the atom pairs involved in H-bonds for the target, do the
same for the model, and then score the percentage of H-bond pairs in the target correctly
recapitulated in the model. Probe defines hydrogen bonding rather strictly, as donor-acceptor
pairs closer than van der Waals contact. That definition was used for all target H-bonds and
for mainchain H-bonds in the models, which often reached close to 100% match (see Results).
However, it is more difficult to predict sidechain H-bonds, since they require accurately
modeling both backbone and sidechains. Therefore, for HBsc model (but not target) H-bonds,
we also counted donor-acceptor pairs ≤ 0.5Å beyond van der Waals contact; this raised the
scores for otherwise good models from the 20–40% range to the 30–80% range. This extended
H-bond tolerance was readily accomplished using Probe atom selections of “donor, sc” and
“acceptor, sc” with the normal 0.5Å diameter probe radius, thus identifying these slightly more
distant pairs as well as the usual H-bond atom pairs. Note that both HBmc and HBsc measure
the match of model to target, since we (like the CASP7 assessors) explicitly required that a
model H-bond be between the same pair of named atoms as in the target H-bond.

CASP7 excluded surface H-bonds, but we did not. We believe the best strategy would be in
between those two extremes, where sidechain H-bonds would be excluded if they were in
regions of uncertain conformation in the target. However, surface H-bonds are generally under-
rather than over-represented in crystal structures (perhaps because of high ionic strength in
many crystallization media), so prediction of those recognizable in the target should be feasible.

Measure 5: Rotamer Correctness (corRot)
For sidechain rotamers, MolProbity works from smoothed, contoured, multidimensional
distributions of the high-quality χ-angle data11,13; the score value at each point is the
percentage of good data that lies outside that contour level. For each individual sidechain
conformation, MolProbity looks up the percentile score for its χ-angle values; if that score is
≥ 1%, it assigns the name of the local rotamer peak and if < 1%, it declares an outlier. Rotamer
names use a letter for each χ angle (t = trans, m = near −60°, p = near +60°), or an approximate
number for final χ angles that significantly differ from one of those 3 values. Using this
mechanism, we can define rotamer correctness (corRot) as the match of valid rotamer names
between model and target. Note that any model sidechain not in a defined rotamer (i.e., an
outlier) is considered non-matching, unless the corresponding target rotamer is also undefined,
in which case that residue is simply ignored for corRot. The sidechain rotamers used in
SCWRL20 are quite similar to the MolProbity rotamers, since both are based on recent high-
resolution data, quality-filtered at the residue level.

For X-ray targets, the target rotamer set consists of all residues for which a valid rotamer name
could be assigned (i.e. not < 1% rotamer score and not undefined because of missing atoms).
For NMR targets, we defined the target rotamer set to include only those residues for which
one named rotamer comprised a specified percentage (85, 70, 55, and 40% for sidechains with
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one, two, three, and four χ angles respectively) of the ensemble. We also considered requiring
a sufficient number of nuclear Overhauser effect (NOE) restraints for a residue for it to be
included, but concluded that in practice this would be largely redundant with the simpler
consensus criterion (data not shown).

Since incorrect 180° flips of Asn/Gln/His sidechains are caused by a systematic error in
interpreting electron density maps, there is no reason for them to be wrong by 180° in predicted
models, which could thus sometimes improve locally on the deposited target structure.
However, we found that applying automatic correction of Asn/Gln/His flips in targets by
MolProbity’s standard function yielded only 1% or less improvement in any group-average
corRot score. We therefore chose not to apply target flips for the final scoring.

Using rotamer names based on multidimensional distributions rather than simple agreement
of individual χ1, or χ1 and χ2, values7,5,8 has the advantage of favoring predictions in real
local-minimum conformations and with good placement of the functional sidechain ends.
However, a disadvantage is that matching is all-or-none; for example, model rotamers tttm and
mmmm would be equally “wrong” matches to a target rotamer tttt in our formulation, meaning
the corRot score is more stringent for long sidechains. An improved weighting system might
be devised for future use.

Measure 6: Sidechain Positioning (GDC-sc)
In order to apply superposition-based scoring to the functional ends of protein sidechains, we
developed a GDT-like score called GDC-sc (global distance calculation for sidechains), using
a modification of the LGA program3. Instead of comparing residue positions on the basis of
Cαs, GDC-sc uses a characteristic atom near the end of each sidechain type for the evaluation
of residue-residue distance deviations. The list of 18 atoms is given by the -gdc_at flag in the
LGA command shown below, where each one-letter amino-acid code is followed by the PDB-
format atom name to be used:

-3 -ie -o1 -sda -d:4 -swap -gdc:10

-gdc_at:V.CG1,L.CD1,I.CD1,P.CG,M.CE,F.CZ,W.CH2,S.OG,T.OG1,C.SG,Y.OH,
N.OD1,Q.OE1,D.OD2,E.OE2,K.NZ,R.NH2,H.NE2

or, alternatively with a new flag, just: -3 -ie -o1 -sda -d:4 -gdc_sc

Gly and Ala are not included, since their positions are directly determined by the backbone.
The -swap flag takes care of the possible ambiguity in Asp or Glu terminal oxygen naming.

The traditional GDT-TS score is a weighted sum of the fraction of residues superimposed
within limits of 1, 2, 4, and 8Å. For GDC-sc, the LGA backbone superposition is used to
calculate fractions of corresponding model-target sidechain atom pairs that fit under 10
distance-limit values from 0.5Å to 5Å, since 8Å would be a displacement too large to be
meaningful for a local sidechain difference. The procedure assigns each reference atom to the
relevant bin for its model vs. target distance: < 0.5Å, < 1.0Å, … < 4.5Å, < 5.0Å; for each bin_i,
the fraction (Pa_i) of assigned atoms is calculated. Finally the fractions are added and scaled
to give a GDC-sc value between 0 and 100, by the formula:

The goal was a measure sensitive to correct placement of sidechain functional or terminal
groups relative to the entire domain, both in the core and forming the surface that makes
interactions. The three sidechain measures (HBsc, corRot, and GDC-sc) are meaningful
evaluations only for models with an approximately correct overall backbone fold, and so we
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make use of them only for models with above-average GDT scores (see Model Selection,
below).

Databases, Statistics, and Visualizations
We have made extensive manual use of the comprehensive summaries, charts, tables, and
alignments provided on the Prediction Center web site21 for CASP8, now available at
http://www.predictioncenter.org/casp8/. A MySQL22 database was constructed for storing and
querying all the basic data needed for our TBM assessments. It was loaded with the full contents
of the Prediction Center’s Results tables (including rerun values for Dali23 scores where
format-error crashes had been incorrectly registered as zeroes), plus all of our own analyses
and scores on all targets, models, and groups. Statistical properties were calculated in the R
program24, and plots were made in pro Fit (Quantum Soft).

For model superpositions onto both whole targets and domain targets, we used the results from
the standard LGA sequence-dependent analysis runs3 provided by the Prediction Center. The
full set of superimposed models for each target was converted by a script into a kinemage file
for viewing in KiNG13 or Mage25,26, organized by LGA score and arranged for animation
through the models (e.g., Fig. 1). Structural figures were made in KiNG and plot figures in pro
Fit, with some post-processing in PhotoShop (Adobe). Once targets were deposited, their
electron density maps were obtained from the Electron Density Server27

(http://eds.bmc.uu.se/eds/). For many individual targets and models, multi-criterion kinemages
that display clashes, rotamer, Ramachandran, and geometry outliers on the structure in 3D were
produced in MolProbity13.

Model Selection and Filtering
Although predictors are allowed to submit up to five models per target, most statistics require
the choice of one model per group per target for assessment. The central GDT-TS assessment
in CASP has always used the first model, designated “model 1”; this is what predictors expect,
and the precedent was followed again in CASP8 for the official group rankings2. This has the
advantage of rewarding the groups that are best at self-scoring to decide which of their
predictions is best, a skill of real value to end users. However, using model 1 comes at the
expense of eliminating many of the very best models. So, for the full-model TBM assessments
in this paper, we have instead chosen to assess success at self-scoring separately (see Results),
allowing the main evaluations to use the best model (as judged by GDT-TS) for each group on
each target.

Superposition-based scores (GDT-HA, GDT-TS, GDC-sc) were computed on domain targets
because, as in past CASP TBM assessments, we wished not to penalize predictors that correctly
modeled domain architectures but incorrectly modeled relative inter-domain orientations.
Model quality and local match-to-target scores (MPscore, MCRS, corRot, HBmc, HBsc) were
computed on whole targets, because such scores are approximately additive even across
inaccurate domain orientations.

Some targets contain domains assigned to different assessment classes9; for example, 443-D1
is FM/TBM, 443-D2 is FM, and 443-D3 is TBM. For our scores computed on target domains,
any FM domains were omitted. For scores computed on whole targets, any targets for which
all domains were FM were omitted, but targets with at least one TBM or FM/TBM domain
were retained.

We eliminated from assessment all models for canceled or reassigned targets (T0387, T0403,
T0410, T0439, T0467, T0484, T0510) and from groups (067, 265, 303) that withdrew. The
full-model measures are inappropriate for “AL” submissions (done by only two groups), which
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consist of a sequence alignment to a specified template, with coordinates then generated at the
Prediction Center by taking the aligned parts from the template structure; therefore, only the
usual “TS” models are assessed here, for which at least all backbone and usually also sidechain
coordinates are directly predicted.

Predictors were allowed to submit a prediction model in multiple “segments”, which they
believed to be likely domain divisions in the true target but which did not necessarily coincide
with the official CASP8 domain boundaries9. Full-model scores additive across domains are
also additive across segments. GDT or GDC scores are fundamentally non-additive, however,
so we evaluated GDC-sc by domain, using whichever segment had the highest GDT-TS score
for that domain.

After the segment selection/combination, we required that each model contain at least 40
residues in order to avoid artifacts from essentially partial predictions. For all sidechain-
relevant metrics (including MolProbity score), a further filter was applied on a per-model basis
requiring that at least 80% of the model Cα atoms be attached to sidechains that included
coordinates for the residue-type-specific terminal atom defined for the GDC-sc metric (see
above). This avoids misleadingly high or low sidechain scores on incomplete models.

As previously noted28, the distribution of GDT scores is strongly bimodal. As illustrated in
Figure 3, models therefore fall under one of two clearly separable peaks in GDT-HA or GDT-
TS, separated by a valley at 33 for GDT-HA or at 50 for GDT-TS. These distributions are
discussed and used in the Results sections on full-model measures and on robust “right fold”
identification. This basic bimodal division also holds within most individual target domains
(though there is much variability between targets in the positions and shapes of the peaks),
implying that the TBM-wide bimodality is not caused by bimodality of target difficulty. This
property of the distributions suggests a possible cutoff for models that have an approximately
correct fold and are therefore appropriate for the more detailed, local quality assessment our
new metrics provide. Accordingly, we only considered the following: (1) models with GDT-
HA ≥ 33 for our domain-based metrics and (2) models with at least one domain with GDT-
HA ≥ 33 for our whole target-based metrics. (Note that each target has at most three domains
except for T0487 with five domains, so we increased its model requirement to two domains
with GDT-HA ≥ 33.) For full-model measures, this model-based GDT-HA cutoff was judged
preferable to the target-based system used for GDT-TS (server groups evaluated in all targets
and all groups on human targets2,6), because restricting assessment to the small number of
high-accuracy targets in the human category would yield only 24/88 human groups with a
statistically reasonable number of targets, whereas filtering by model can more than double
that number to 51/88.

Since NMR targets are ensembles of multiple models and are derived primarily from local
inter-atomic distance measurements, they require different treatment than crystal structures for
some purposes. Modifications adopted for the rotamer-match metric are described above. In
defining domain targets for the official GDT evaluations9, NMR targets were trimmed
according to the same 3.5Å cutoff on differences in superimposed Cα coordinates that was
used for multiple chains in x-ray structures. Although model 1 of the NMR ensemble was
usually used as the reference, in some cases another model was chosen as staying closer to the
ensemble center throughout the relevant parts of the entire target structure. The outer edges of
NMR ensembles typically diverge somewhat even when the local conformation is well defined
by experimental data. Except for GDC-sc, the full-model metrics are still meaningful despite
gradual divergence in coordinate space. Therefore we specified alternative “D9” target
definitions for many of the NMR targets, which were trimmed only where local conformation
became poorly correlated within the ensemble. This was manually judged using the
translational “co-centering” tool in KiNG graphics29. The resulting residue ranges were also
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used for CASP8 disorder assessment30. A D9 alternative target was defined for the T0409
domain-swap dimer target (see Results), by constructing a reconnected, compact monomer
version.

Results
Information Content of Full Model Measures

Structure prediction is progressing to a level of accuracy where models can be routinely used
to generate detailed biological hypotheses. To track this maturation, we have added new metrics
to TBM assessment to probe the fine-grained structure quality we think homology models can
ultimately achieve. In evaluating the suitability of these full-model metrics for CASP8
assessment, it is important to understand their relationship to traditional superposition-based
metrics. Any appropriate new metric of model quality should show an overall positive
correlation to GDT scores, but should also provide additional, orthogonal information with a
significant spread and some models scoring quite well.

Figure 4 plots each of the six full-model measures against either GDT-TS or GDT-HA, showing
strong positive correlation in all cases. (Note that the correlation is technically negative for
MPscore, but lower MPscore is better.) Plots 4a and 4b, including all models across the full
GDT range, show that detail is relatively uncoupled for the lower half of the GDT range but
well correlated for the upper half, in correspondence with the bimodal GDT distributions in
Figure 3 above. Therefore parts c-f of Figure 4 plot only the best models with GDT-HA ≥ 33.
Tables with the detailed score data on all the full-model measures, by target and group, are
available on our web site (http://kinemage.biochem.duke.edu) and at the Prediction Center.

The slope, linearity, and scatter vary: correlation coefficients for fits of models with the “right
fold” (see section below) to GDT-HA range from 0.24 for MPscore to 0.87 for GDC-sc. Large
dots plot median values of each measure within bins spaced by 3 GDT-HA units, to improve
visibility of the trends, although with high variability at the tails due to less occupied bins.
Taken together, these results show that as a general rule all aspects improve together, but
different detailed parameters couple in different ways to getting the backbone Cα atoms into
roughly the right place, as evidenced by the varying levels of saturation and scatter.

Not too surprisingly, GDC-sc has the tightest correlation to GDT-HA. It measures match of
sidechain end positions between model and target, for which match of Cα positions is a
prerequisite. The vertical spread of scores indicates some independent information, but less
than for the other full-model scores. However, GDC-sc shows the most pronounced upturn at
high GDT-HA, an effect detectable for most of the six plots. It will require further investigation
to decide to what extent this is caused by copying from more complete templates and to what
extent there is a threshold of backbone accuracy beyond which it becomes much more feasible
to achieve full-model accuracy. Taken together, the GDC-sc, corRot, and HBsc measures
assess the challenging optimization problem of sidechain placement in distinct ways, and they
can provide tools to push future CASP assessments in the direction of higher-resolution, closer-
to-atomic detail.

Interestingly, the model-only “quality” measures – i.e. MCRS and MPscore – also correlate
with correct backbone superposition scores (Fig. 3e–f). Seemingly, proteins must relax (in
terms of sterics and covalent geometry) into the proper backbone conformation, but details of
the relationships differ in revealing ways. MolProbity score has high scatter and relatively low
slope, but is linear over the entire range; it includes the clashscore for all atoms, an extremely
demanding criterion which improves at higher GDT-HA but still leaves much scope for further
gains. In contrast, mainchain reality score, which measures Ramachandran, steric, and
geometric ideality along the backbone, is often quite dire in poor models (e.g. over half of the
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residues with geometry outliers, sometimes by > 50σ), but it saturates to quite good values on
the upper end. The dearth of any really bad MCRS models for good GDT-HA suggests that
modeling physically realistic mainchain may be essential for achieving really accurate
predictions; however, as noted for GDC-sc, this relationship needs further study.

The H-bond recapitulation measures, developed from ideas introduced in CASP76, seem
clearly to be informative. The new separation of mainchain and sidechain H-bonds appears to
be helpful, since they show strongly correlated but distinctly different 2D distributions which
would be less informative if combined. In both cases, the diagnostic range is for models with
better than average GDT scores (Fig. 4a and b), and that range is therefore used in assessment.
At low GDT, almost no sidechain H-bonds are matched, whereas mainchain H-bonds show an
artificial peak due to secondary-structure prediction of α-helices without correct tertiary
structure. To correct this overemphasis, future versions of HBmc could somewhat down-weight
either specifically helical H-bonds or perhaps all short-range backbone H-bonds (i to i+4 or
less). The upper half of both H-bond measures shows the desirable behavior of a very strong
correlation and high slope relative to GDT, but with a large spread indicative of a significant
contribution from independent information.

Group Rankings on Full-Model Measures
Traditionally, CASP assessment has involved a single ranking of groups relative to each other,
to determine which approaches represent the current state of the art. A group’s official ranking
is arrived at by (1) determining the top 25 groups in terms of average GDT-TS (or GDT-HA)
Z-score on all first models with Z-score ≥ 0, then (2) performing a paired t-test for each of
those 25 groups against every other on common targets to determine the statistical significance
of the pairwise difference7,5,15,6,2.

The full-model assessment presented here is analogous to previous rankings in that we compute
group average Z-scores on models above GDT-HA raw score of 33 for the top 20 groups. It
differs in using the best model (by GDT-TS) rather than model 1, in using raw GDT rather
than Z-score for the model cutoff, and in evaluating the full model. A further difference from
recent versions is consideration of multiple dimensions of performance: the two model-only
and the four match-to-target full-model scores as well as GDT-TS or HA. Those 6 full-model
scores are combined with each other and the result averaged with GDT-HA Z for our final
ranking of high-accuracy performance. Table I lists the top 20 prediction groups on each of
the full-model measures, on the overall full-model average Z-score among groups in the top
half of GDT rank, and on the average of the full-model and the GDT-HA Z scores. A more
complete version of Table I, with specific scores for all qualifying groups, is available as
supplementary information. Figure 5 shows the combined performance on GDT and full-model
scores more explicitly by a two-dimensional plot of group-average full-model Z-score versus
group-average GDT-HA Z-score, with diagonal lines to follow the final ranking that combines
those two axes.

A small set of top-tier groups scored outstandingly well on most of the six model-only and
model-to-target metrics (Table I). Yasara is highest on model-only criteria and LevittGroup
on mainchain H-bonds, while Lee and Lee-server sweep the sidechain scores. Most of the same
top groups also excelled in Cα positioning (Fig. 5). DBaker is the clear overall winner on this
combined evaluation of Cα superposition and structure quality/all-atom correctness. Lee, Lee-
server, MultiCom, Sam-T08-h, and McGuffin are in the next rank on the combined measure
(Fig. 5), while Bates-BMM, IBT-LT, and Yasara are also notable for each scoring in the top
20 on 5 of the 6 full-model measures and once in the top 3 (Table I). An accompanying
paper31 discusses aspects of TBM methodology that can contribute to the differences in detailed
performance on this two-dimensional measure.
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To examine these relationships further, group-average Z-scores were plotted for the six new
quality and match-to-target measures individually against group-average Z-scores for GDT-
HA. In addition to trends seen in the all-model plots of Figure 4, group-average scores for
sidechain rotamer match-to-target (corRot) show two strong clusters, one at high and one at
low values (Figure 6). Through the range of −1 to +0.5 GDT-HA, corRot is nearly independent
of GDT-HA in both clusters. This suggests that many intermediate groups don’t pay attention
to sidechain placement and/or use poor rotamer libraries, leaving sidechain and backbone
modeling uncoupled. For the very best GDT-HA groups at the extreme right of the plot,
however, corRot is also excellent, which implies that proper sidechain modeling may in fact
be necessary for reliably achieving highly accurate backbone placement. There is no evidence
that excellence in any of the full-model metrics is achieved by a tradeoff with GDT scores –
rather they tend to improve together.

Robust “Right Fold” Identification
We also sought to assess which groups excelled at template or fold identification, to help
delineate the state of the art for that stage of homology modeling. To do so, we computed the
percentage of all of a group’s models with approximately the “right fold”, defined as GDT-
HA ≥ 33 (Fig. 3) as per our threshold for reasonably accurate models used above. However,
success rates on this metric are also dependent on average difficulty of attempted targets.
Therefore Figure 7 plots “right fold” percentage as a function of average target difficulty.
Prediction groups fall into three loose areas of target difficulty: those who predicted the harder
human targets (at left in Fig. 7), those who predicted all targets (center), and those who predicted
only the easier server targets (right). Table II lists the top groups in each of these three divisions.

Despite this clustering, the top of Figure 7 is roughly linear with an upward slope; groups along
this “outstanding edge” can be considered exemplary given their target choice. This distribution
suggests that groups play to their strengths by focusing on targets for which their specialties
will be most useful. In particular, note that server groups dominate for easier targets but human
groups comprise the top groups for average and more difficult targets (Table II). Within each
of the three areas of target difficulty, these relative rankings provide a meaningful measure of
reproducible success at correct template/fold identification. This score for the central set of
groups attempting essentially all targets, especially for the automated servers, can act as a
suitable accompaniment to the full-model, high-accuracy score shown in Table I and Figure
5.

Self-Scoring: Model 1 vs. Best Model
To complement our use of best models for the new assessment metrics, it is important to
measure separately the success of prediction groups in identifying which of their (up to five)
submitted models is the best match to the target. That ability is very important to end users of
predictions who want a single definitive answer, especially from publicly available automated
servers. This self-scoring aspect was assessed by first calculating for each group the randomly
expected number of targets for which their model 1 would be also their best model on the
traditional GDT-TS metric, nM1best,exp, accounting for different groups submitting different
numbers of models (including only groups that submitted at least two models per target on
average):
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where n̄models is the average number of models per target by the group in question. The actual
number of targets for which a group’s model 1 was also their best model can then be calculated
and converted to the number of standard deviations from that expected from random chance:

where “act” and “exp” subscripts denote actual and expected quantities.

Figure 8 plots this self-scoring metric for each group versus the average difference in GDT
among their sets of models. Most prediction groups are at least 3σ better than random at picking
their best model as model 1, but few are right more than 50% of the time. As seen in Figure 8,
servers turn out overwhelmingly to dominate the top tier of this metric, making up all of the 8
top-scoring groups and all but one of the top 20. Not surprisingly, groups do somewhat better
if their 5 models are quite different, but the correlation coefficient is only 0.3 and accounts for
only a small part of the total variance. Unfortunately, success at self-scoring is essentially
uncorrelated with high average GDT-TS score (correlation coefficient 0.048). It seems
plausible that the best self-scorers are the groups whose prediction procedure is fairly simple
and clearly defined, so that they can cleanly judge the probable success of that specific
procedure. Although we applaud the self-scoring abilities of these servers, we do not think that
these statistics convincingly uphold the traditional CASP practice of combining successful
prediction and successful self-scoring together into a single metric. Both aspects are very
important to further development of the field, but they seem currently to remain quite unrelated,
and we believe they should therefore be assessed and encouraged separately.

Model Compaction or Stretching
Large geometrical outliers on main-chain bond lengths and angles can result from difficulties
stitching together model fragments or from inconsistencies in building a local region, while
small but consistent non-ideal values can indicate overall scaling problems. Previous CASP
assessors have found that a few predictor groups built models with quite extreme compaction
across large regions5, which had the side-effect of achieving artificially high GDT scores. As
assessors we felt the need to check for such unrealistic distortions on a per-group basis by
measuring the average of signed bond length and angle non-idealities over all models
submitted; these deviations should average out to zero if there is no systematic directionality.
Among groups with poor values on the geometry components of the mainchain reality score,
the most skewed bond lengths found for any group had an average difference less than 1
standard deviation short. This represents less than a 1% compaction in the models, which seems
unlikely to produce any significant effect on overall GDT scores. Such small systematic
properties are unlikely to be intentional, although this phenomenon does highlight the
unintended consequences of focusing assessment too strongly on a single measure: prediction
methods can inadvertently become “trained” to optimize that metric at the expense of other
factors.

Local compaction or stretching is much more common, and in some cases could be an
informative diagnostic. The most interesting cases occur along individual β-strands,
occasionally compacted but more frequently stretched, to an extent that would match
compensation for a single-residue deletion. Trying to span what should be 7 residues with only
6, as in the example shown in Figure 9, produces a string of bond-length outliers at 10σ or
more, marked as stretched red springs. This response to avoiding prediction of the specific
deletion location keeps all Cα differences under 4Å, but gets the alternation of sidechain
direction wrong for half the residues on average. This is not an entirely unreasonable strategy,
but would not be part of an optimal predicted model and could not easily be improved by
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refinement. It would be preferable to assume the structural deletion occurs at one of the strand
ends, and to choose the better model of those two alternatives.

Modeling Insertions
One of the classic difficulties in template-based modeling is dealing with regions of inserted
sequence relative to any available template. Methods for modeling insertions have become
much more powerful in recent years, especially the flexible treatment of information from
many partial templates. That otherwise salutary fact made a systematic analysis of this problem
too complex for the time scale of this assessment. However, several individual examples were
studied.

A very large insertion usually amounts to free modeling of a new domain, such as the FM
domain 2 of T041632. Insertion or deletion of only one or two residues within a helix or strand
is presumably best treated by comparing relevant short fragments such as strands with β-bulges,
with attention to hydrophobicity patterns and to location of key sequence changes such as Gly,
Pro, and local sidechain-mainchain H-bonds. Anecdotally it seems there is still room for
improvement, with the greatly stretched β-strand of Figure 9 as one example.

The most obvious insertion modeling problems come from an intermediate number (~3–20)
of extra residues, which nearly always means insertion of a new loop or lengthening an existing
one. The problem of modeling new loops has two distinct parts: first is the alignment problem
of figuring out where in the sequence the extra residues will choose to pop out away from the
template structure, and second is the modeling of new structure for the part that loops out.
Evolutionary comparisons have taught us that the structural changes from insertions are almost
always quite localized and that they seldom occur within secondary structure33. Therefore the
alignment problem needs to compromise suitably between optimal sequence alignment and
the structural need to shift the extra piece of structure toward loops and toward the surface.

As an example, in T0438 loop 255-266 is an insertion relative to both sequence and structure
of 2G39, a good template declared as the parent for 9 distinct models from 7 different server
groups. Sequence alignment is somewhat ambiguous across a stretch of over 30 template
residues, and the 9 models place the insertion in 5 different locations: Δ0, Δ-4, Δ+2, Δ+4, and
Δ+10. Figure 10a shows the T0438 loop insertion (green) and the 9 different models (magenta).
Three models insert the loop in exactly the right place: one from AcompMod (002_1) and two
different pairs of identical models (each pair has all coordinates the same: 220_2 = 351_2 and
220_4 = 351_4) from related Falcon servers. However, none get the loop conformation quite
right.

During prediction, by definition no match-to-target measures are available, but model-only
measures could be used. To test this, the above 9 models were run through MolProbity13 and
local density of validation outliers was examined around the new loops. To increase signal-to-
noise, the cutoff for serious clashes was loosened from 0.4 to 0.5Å overlap. Nearly all models
have a steric clash at the loop base, between the backbone of the two residues flanking the
loop; those therefore do not distinguish between correct and incorrect placement, but show that
the ends of insertions are usually kept a bit too close together. The three correctly placed loops,
and one offset but entirely solvent-exposed insertion, have only 1 to 3 other outliers (backbone
clashes, Ramachandran outliers, bad sidechain rotamers, bond-length and bond-angle outliers,
or large Cβ deviations12) and are not notably different from the rest of the model. However,
the other 5 incorrectly placed insertions have between 16 and 28 other outliers and can easily
be spotted as among the one or two worst local regions in their models. Figure 10b shows
outliers for a correctly placed loop, and 10c shows outliers for an incorrectly placed one. For
this target, at least, it would clearly be possible during the prediction process to use local model-
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validation measures to distinguish between plausible and clearly incorrect predicted loop
insertions.

Outstanding Individual Models
To complement the group-average statistics, we have also compiled information on outstanding
individual models for specific targets. As represented by the three divisions in Table III,
outstanding models for a given target were identified in three rather different ways: (1) if their
trace stood out from the crowd, to the lower right on the cumulative GDT-TS plot21; (2) if they
involved correct identification of a tricky aspect such as domain orientation; or (3) if they had
outstanding full-model statistics within a set of models with high and very similar GDT scores.

Figure 11b illustrates the most dramatic cumulative GDT-TS plot, for T0460, with two
individual models very much better than all others: 489_3 (DBaker; green backbone in Fig.
11a) and 387_1 (Jones-UCL). The target is an NMR ensemble (2K4N), shown (black in Fig.
11a) trimmed of the disordered section of a long β-hairpin loop. This is an FM/TBM target,
because although there are quite a few reasonably close templates, they each differ substantially
from the target for one or more of the secondary-structure elements. Only the two best models
achieved a fairly close match throughout the target (GDT-TS of 63 and 54, vs. the next group
at 40–44); each presumably either made an especially insightful combination among the
templates or else did successful free modeling of parts not included in one or more of the better
templates.

T0395 has a long, meandering C-terminal extension relative to any of the evident templates,
and its backbone forms a knot (it is related to a set of still undeposited knotted targets from
CASP74); that extension was trimmed from the official T0395-D1 target9. However, two
models – 283_1 (IBT-LT) and 489_1 (DBaker) – placed the small C-terminal helix quite
closely and residues 236-292 fairly well, although neither predicted the knot. No other models
came anywhere close.

T0409 (3D0F) is a domain-swap dimer, so that the single chain is non-compact. An alternative
assessment was done using a reconnected model for a hypothetical unswapped compact
monomer, on which 485_3 (Ozkan-Shell) was the outstanding model.

As an additional note, T0467 was canceled because the ensemble submitted to the Prediction
Center was very loose; it is therefore not included in Table III. However, the PDB-deposited
ensemble (2K5Q) was suitably superimposed, and two outstanding models were identified:
489_1 (DBaker) and 149_2 (A-Tasser).

Figure 12 shows one of the cases where a few prediction groups assigned the correct orientation
between two target domains. T0472 (2K49) is a tightly packed gene-duplication of an α-βββ
sub-domain (ribbons in Fig. 12a). There are single-chain templates only for one repeat, and
template dimers show a variety of relationships. As can be seen in the alignment plot of Figure
12b, the top three models placed both halves correctly – 409_1 (Pipe_int-s), 135_1 (Pro-sp3-
Tasser), and 438_1 (Raptor-s) – while all other models align only onto one half or the other.
These three models have the best GDT-TS scores for the whole target and for domain 1 (which
requires placing the C-terminal helix against the first 3 β-strands), but are not the top scorers
for the TBM-HA domain 2.

It would be expected that a group especially good at modeling relative domain orientations
should have an outstanding GDT-TS Z-score for whole targets (as opposed to by-domain
targets). The top-scoring group on whole targets is DBaker, with an average Z of 1.001 vs. the
next-highest at 0.828 (Zhang). However, those high whole-target Z-scores are earned primarily
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on single-domain rather than two-domain targets, by unusually good modeling of difficult
loops or ends that were trimmed off the domain targets.

Another case of recognizing a non-obvious relationship is the four groups whose predictions
matched both T0498 and T0499. These are the nearest thing to a “trick question” in CASP8,
since they represent a pair of structures designed and evolved to have nearly identical sequences
(only 3 residues different) but very distinct folds: T0498 resembles the 3-helix bundle of
Staphylococcal protein A and T0499 resembles the ββ-α-ββ structure of the B-domain of
Staphylococcal protein G. Both sequences are confusingly close to that of protein G, but there
are possible templates (1ZXG and 1ZXH) from an earlier pair of less-similar designs34. The
four prediction groups that correctly matched both targets – Softberry, Feig, IBT-LT, and
DBaker – may well have done so by identifying that earlier work; however, we feel that making
effective use of outside information is an important and positive asset in template-based
modeling.

The final section in Table III includes only easier targets (mostly TBM-HA, server-only), where
many models have high and very similar GDT scores. Among those, there can be a wide spread
of full-model scores, and the listed examples were selected as clearly outstanding on combined
scores. Figure 13a shows such a plot for T0494, and parts b and c compare the conformational
outliers for one of these outstanding models (from Lee, McGuffin, and Lee-s) versus a model
with equivalent GDT score but poor full-model scores of both model-only and match-to-target
types. Such cases provide examples of “value added” beyond the Cαs to produce a predicted
model of much greater utility for many end uses.

Discussion
It has been a fascinating privilege to become deeply immersed in the complex and diverse
world of current protein structure prediction. The best accomplishments in CASP8 are truly
remarkable in ways that were only vague and optimistic hopes 15 years ago. Groups whose
work is centrally informed by the process of evolution can now often pull out from the vast
and noisy sequence universe the relevant parts of extremely distant homologs, and assemble
them to successfully cover a target. On the other hand, methods centrally informed by the
process of protein folding can often build up from the properties of amino acids and their
preferred modes of structural fragment combination, to model the correct answer for a specific
target.

Not surprisingly, however, such outstanding successes are not yet being achieved by most
groups, and not yet on most targets by anyone. The prediction process has many stages and
aspects that demand quite different methods and talents. Our assessments have striven to
separate out various of those aspects and to recognize and reward excellence in them. Indeed,
there is a new breadth in the groups singled out by the various new measures: in some cases
the same prediction methods that succeed best at the fundamental GDT Cα measures also
succeed well on other aspects, but in other cases new players are spotlighted who have specific
strengths that could become part of a further synthesis.

Full-model measures
We chose to emphasize local, full-model quality and correctness in this set of assessments in
the service of two long-range aspirations. One is that such quality is fundamental to many of
the biological uses of homology modeling; the second is that full-model quality will be an
essential attribute of the fully successful predictions this field will eventually achieve. The
results reported above show that the six new full-model measures exhibit the right behavior
for potentially useful assessments: (1) they each correlate robustly with GDT scores if
measured for models in the upper part of the bimodal GDT distribution, but their spread of
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scores indicates that they contribute independent information (Fig. 4); (2) a substantial number
of models, and of predictor groups, score well on them, but they are not trivially achievable;
and (3) for individual targets, examination of predicted models with high versus low combined
full-model scores reveals features convincingly diagnostic of better versus worse predictions
of the target (e.g., Fig. 13).

Therefore we conclude that the general approach of full-model assessment is suitable for
evaluating CASP template-based models. These new metrics have only had the benefit of one
cycle of intensive development and should continue to be improved; some suggestions for
desirable modifications are noted below. However, we feel strongly that template-based
modeling is ready for full-model assessment, by these or similar measures.

An especially salient point is that excellent scores on the model-only measures (MolProbity
and mainchain reality scores), as well as on the match-to-target full-model measures,
correspond with the best backbone predictions, both at the global and the local level within a
model. For the easiest targets this could result from copying very good templates, but not for
hard targets. It would be valuable in the future to study this relationship quantitatively and in
a method-specific manner, but current evidence strongly suggests the practical utility of using
physical realism to help guide modeling toward more correct answers.

Assessing components of the TBM process
High-accuracy assessment for CASP8 was carried out here over a scope defined by predicted
models with GDT-HA ≥ 33, rather than over a scope defined by targets designated as TBM-
HA; this general approach was suggested after CASP78. Three types of evaluations were done:
(1) “right fold” or right template identification for the initial step (Table II); (2) full-model
quality and correctness for the modeling step, in 6 components and overall (Table I); and (3)
individual outstanding high-accuracy models (listed in the last section of Table III). It is
important to note that each of these evaluations is inherently two-dimensional, in the sense of
needing to be considered jointly with another reference metric such as GDT-TS (Fig. 5), GDT-
HA (Fig. 6 and 13), or target difficulty (Fig. 7).

Some overall aspects of prediction can be studied for all models (such as Fig. 4a,b), but any
assessment of predictor-group performance must use one model per target (out of up to 5
possible submissions). The two reasonable choices are model 1 (as designated by the predictor)
or the best model (the most accurate by GDT-TS); this is an extremely contentious issue with
strong opinions on both sides. The official TBM group assessment by GDT-TS has always
used model 1 and continues to do so for CASP82; some groups have specifically molded their
practices to that expectation. FM assessment always looks for the best among all models, since
excellent free models are too rare to accept missing one. It is completely clear that having a
prediction define a single optimal model would be extremely valuable for end users, and also
that it will eventually be true for a mature prediction technology. Therefore self-scoring skill
should definitely be assessed and rewarded, but currently it seems surprisingly difficult.

To provide a counterpoint to the model 1 GDT evaluation, to seek out excellence wherever
feasible, and perhaps also because we find it difficult to ignore 80% of the available data, we
chose to use the best model in all of our full-model scores. Then, separately, we assessed the
ability of groups to pick their best model as model 1, measured across the entire range of targets.
Those results (Table II and Figure 7) show that self-scoring is very much better than random,
especially for some server groups, but that it is seldom correct more than 50% of the time and
is completely uncorrelated with average prediction quality. This is a considerably more
optimistic evaluation than found for refinement35 and less optimistic than found for high-
accuracy targets in CASP78. Overall, however, none of these studies show self-scoring to be
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at all reliable. We would strongly suggest that it be assessed prominently but separately from
other aspects of prediction.

As we gather has often been true for past assessors, some of our new ideas did not work as
well as expected. For instance, we expected that using Cβ rather than Cα atoms for a GDT
measure would be sensitive to alignment and orientation as well as placement, especially for
β-strands. However, the correlation with GDT-TS was far too tight to be useful, and we then
developed the more satisfactory GDC-sc measure using sidechain ends.

Many CASP score distributions are bimodal (e.g., Fig. 3) or otherwise highly non-normal, and
their shapes vary between targets. This problem is one reason why GDT Z-scores are usually
truncated at zero7,2 and one reason why our full-model measures omit models with GDT-HA
< 33. We experimented with “robust” statistics36 that use medians in place of averages and
median absolute deviation (MAD) scores in place of Z-scores, but the CASP distributions are
so far from being unimodal and Gaussian that the median/MAD statistics gave no noticeable
improvement and were not adopted. The full-model scores with model-level GDT-HA ≥ 33
filtering showed skewed but unimodal distributions and could acceptably be averaged into an
overall full-model Z-score.

On the other hand, several of the new TBM assessments have already shown broader
applicability by being incorporated into other aspects of CASP assessment. Our alternative
domain definitions for NMR targets were used in disorder assessment30, and the assessment
by the six full-model criteria turned out to demonstrate useful improvements obtained by
predictors in the model refinement section35.

Future suggestions – procedural
As former outsiders to the CASP process, we undoubtedly miss some of the underlying history
and subtleties, but hope that a fresh perspective can identify new trends and possibilities.

The need to diagnose and correct the many problems with model file format and content made
the process of evaluating submitted predictions more difficult, as well as potentially producing
incorrect assessment scores (see Methods: Model file preprocessing). For future CASP
experiments, we would urge more complete and explicit format and content specifications and
a much more thorough checking procedure at submission. Ultimately, this is in the predictor
groups’ best interests, both for an accurate evaluation within CASP and, more importantly, for
broader use in the scientific community. If a model file generated by structure prediction does
not follow normal format standards, end users cannot take advantage of general-purpose
molecular visualization, modeling, and analysis software to study that predicted model.

Many prediction assessment tools both internal and external to CASP are available and
routinely run by the Prediction Center, but there were several tools developed by previous
assessors that we either were not equipped to run (such as molecular replacement tests8) or
redeveloped for CASP8 use (such as H-bond match to target6). Of the newly developed full-
model measures, only the MolProbity score is publicly available in the form needed for
prediction assessment (at http://molprobity.biochem.duke.edu). We would encourage an effort
to provide all promising evaluation software in a form suitable for use by the Prediction Center,
by future assessors, and by individual predictors or users of models. We plan to contribute to
such an effort, for both format correction tools and full-model assessment measures.

As explained in Methods: Model Selection and Filtering, we found the standard rules for
trimming targets9 too strict in the case of NMR ensembles, especially for measures that are
more sensitive to local conformation and less to absolute coordinates. Even for superposition-
based metrics, more of the NMR ensemble could be meaningfully included if the 3.5Å cutoff
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were measured from a model chosen as the most centrally positioned representative rather than
between all pairs of models, and one or two outlier NMR models could be allowed where the
rest clustered satisfactorily. We feel also that a general decision should be made by CASP
predictors, assessors, and organizers as to whether TBM prediction has advanced to a level
where all well-ordered, compact, natural parts of a domain sequence should be assessed even
if no template covers that specific portion.

In order to support better assessment of separate aspects of template-based modeling, it would
be desirable to expand the methodological information the “parent” record is meant to provide.
As an important start, when server models are used they should be considered and declared as
templates. Prediction is now often done from complex combination of fragments, in which
case naming one or a few parent templates may be inappropriate. Additional keywords could
be defined to allow generic description of the methodologies and sources used, and gradually
after an adjustment period it could be required that something be entered for each submitted
model. The keywords should be neutral to group identities, and checks put in place to test for
incorrect claims; some automated comparisons between models and templates were done in
CASP57, and expansion of such a system to model-model comparisons would provide a good
check. With this carefully limited but crucial extra information, assessors would be in a position
to make much more focused and useful comparative evaluations.

It appears to us that the boundaries between FM, TBM, and HA target types are becoming
increasingly blurred, while distinctive styles and aspects of methodology are more evident than
ever. Pure FM targets with no structural templates whatsoever have nearly disappeared9,32,
but it is still of central scientific value to develop and test de novo prediction. In evaluating
high-accuracy details, we started out using target distinctions of TBM vs. TBM-HA and human
vs. server categories, but discovered we could achieve much better coverage and statistics by
separating on model characteristics than on target characteristics. (As explained at the end of
Methods, our high-accuracy assessments could include more than twice as many human groups
if defined by >20 good models than if defined by >20 easy targets.) The modest amount of
additional model-file information suggested above would further enable meaningful
assessments to be made both within and between methodologies.

Future suggestions – content
Several potential improvements in the full-model criteria are evident now, after their use in
CASP8. For mainchain H-bonds, the plot in Figure 4a makes it clear that H-bonds short-range
in sequence (≤ i to i+4) should be down-weighted somewhat. In general, many measures
including GDT scores could profit from investigating differential weighting by secondary-
structure type, since an overall fold is influenced about as much by a single β-strand as by a
single α-helix but the latter has about twice as many residues per unit length; relative weights
of 1:2:2 for helix:beta:coil would be reasonable default values to start from. For sidechain-
specific measures, it would be preferable to compromise between using all (as here and 8) and
omitting all6 surface sidechains. Our vote would be for down-weighting or omitting the subset
of sidechains that are fully exposed without good contacts to other structure within their own
domain.

More generally, some form of compactness measure would be desirable, although finding a
suitable one is more difficult than it sounds. As in CASP76, we limited contact analysis to
hydrogen bonding; however, more general forms should probably be explored again in the
future.

Finally, it is clear that our answer to the question posed in the Introduction is “Yes!” Template-
based modeling is indeed ready to benefit from full-model assessment, and so full-model
measures of some sort should definitely be continued in future CASPs.
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
All 354 predicted models for T0512-D1. Target backbone is in ribbon representation colored
blue to red in N- to C-terminal order; model Cα traces are in translucent gray. PDB code: 3DSM
(NESG, unpublished).
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Figure 2.
Empirical Ramachandran distribution12, one component in both MolProbity and mainchain
reality scores. The data points are ϕ,ψ backbone dihedral angles for all general-case residues
with maximum mainchain B-factor ≤ 30, from the Top500 quality-filtered set of crystal
structures; Gly, Pro, and pre-Pro residues are analyzed separately. Contours are calculated with
a density-dependent smoothing algorithm. 98% of the data fall within the favored region (inside
gray contour), 99.95% within the allowed or favored regions (inside black contour), and 0.05%
in the outlier region (outside black contour).
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Figure 3.
Bimodal distributions of GDT-HA and GDT-TS scores. All CASP8 TBM models were placed
into 33 equally spaced bins, separately for GDT-HA and for GDT-TS. The division between
“right fold” and “wrong fold” occurs at approximately GDT-HA of 33 (which we used for our
later analysis) and GDT-TS of 50. Note that bimodal distributions were also observed within
most individual targets (data not shown).
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Figure 4.
Distributions of the new full-model scores for individual models. Panels a–b include all models
regardless of GDT, whereas panels c-f include only best models with GDT-HA ≥ 33. Dual
linear fits are on models with GDT-TS < 55 vs. ≥ 55 in panels a-b and on models with GDT-
HA < 60 vs. ≥ 60 in panel e; these divisions were chosen manually to highlight visible inflection
points. Larger dots in panels c–f are median values for bins of 3 GDT-HA units; bins at high
GDT-HA include many fewer models, producing high variability for some measures (e.g.
corRot). The fit lines are well below the median points in panel e, because many points lie at
zero MCRS. Note that the y-axis for MPscore in panel f has been reversed relative to other
panels, because lower MPscores are better.
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Figure 5.
a) Group-average Z-score for the 6 full-model scores, plotted vs. group-average Z-score for
GDT-HA. b) Close-up of the upper-right quadrant from panel a, with the groups highlighted
that did well on the combined score from both axes (emphasized by the diagonal lines). Group
Z-scores are averaged over best models with GDT-HA ≥ 33; groups with a qualifying model
for < 20 targets are excluded.
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Figure 6.
Group-average Z-score for rotamer correctness, plotted vs. group-average Z-score for GDT-
HA. The horizontal line at corRot Z-score of 0 was drawn manually to visually highlight the
gap between group clusters on sidechain performance. Group-average Z-scores are for best
models with GDT-HA≥ 33; groups attempting < 20 targets are excluded.

Keedy et al. Page 27

Proteins. Author manuscript; available in PMC 2010 May 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7.
Percentage of models with roughly the “right fold”, plotted vs. difficulty of targets attempted.
The percentage of all of a group’s models with GDT-HA≥ 33 (“right fold”) is on the y-axis.
The average across a group’s attempted targets of all-model, all-group average GDT-TS (a
measure of target difficulty) is on the x-axis. All groups attempting at least 20 targets are
included. Names of several groups along the “outstanding edge” are labeled.
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Figure 8.
Ability of groups to self-select their best model as model 1. The difference from the percentage
expected based on random chance (correcting for different average numbers of models) is
plotted vertically (in units of standard deviations); range of scores within a group’s model sets
is plotted horizontally. For the best self-scorers, the group name and the percentage of “model
1s” that were actually “best models” are shown. Diamonds indicate server groups, which
dominate the top self-scorers; pluses indicate human groups.
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Figure 9.
An over-extended β-strand, with main-chain bond-length outliers up to 40σ, marked as
stretched-out red springs. T0487-D1, PDB code: 3DLB, argonaute complex37.
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Figure 10.
Evaluating loop insertion models for residues 255-266 of T0438. PDB code: 2G39 (MCSG
unpublished). a) Loop insertions (magenta) for the 9 distinct server models (backbone in
brown) that declared the template 2G39 (blue), as compared to the actual insertion in T0438
(green) relative to 2G39. b) Correctly aligned insertion for model 002_1 with few geometry
problems. c) Incorrectly aligned insertion with significant geometry problems. Red spikes are
steric clashes with ≥ 0.5Å overlap of van der Waals radii, green kinks are Ramachandran
outliers, gold sidechains are rotamer outliers, pink balls indicate Cβ atoms with excessive
deviations from their ideal positions12, blue and red springs are too-short and too-long bond
lengths, and blue and red fans are too-tight and too-wide bond angles.
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Figure 11.
Two outstanding predictions for the TBM/FM target T0460-D1. a) Cα traces are shown for the
target in black, for the 134/521 predicted models with LGA-S3 from 30 to 60 in peach, and for
the particularly exceptional model 489_3 (DBaker) in green. PDB code: 2K4N (NESG,
unpublished). b) Cumulative superposition correctness plot 21 from the Prediction Center
website. The percentage of model Cα atoms positioned within a distance cutoff of the
corresponding target Cα atom after optimal LGA superposition is shown (x-axis) for a range
of such distance cutoffs (y-axis); all models for T0460-D1 are shown in peach. Thus lines lower
and further to the right indicate predictions that better coincide with the target. The rightmost
lines are models 489_3 (DBaker, green) and 387_1 (Jones-UCL, blue).
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Figure 12.
Evaluation of relative sub-domain orientation for T0472 (PDB code: 2K49, NESG,
unpublished). a) Ribbon representation of the NMR ensemble for T0472. Note the twofold
pseudo-symmetry between the similar compact, sheet-to-helix bundles in the top-right and
bottom-left. b) Position-specific alignment plot for the whole target T0472, from the Prediction
Center website. Domain 1 is on the left, domain 2 on the right. Residues along the sequence
(x-axis) are colored white, red, yellow, and green for increasingly accurate alignment. Note
the top three models (y-axis), which are the only ones with good alignment in both sub-domains.
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Figure 13.
Differentiating models with equally good GDT scores, based on full-model performance for
both physical realism and match to target. a) Average full-model Z-score, plotted against raw
GDT-HA, on individual best models for target T0494-D1 (PDB code: 2VX3, SGC,
unpublished). b) Model 407_3 (Lee) has a GDT-HA of 65.9 and the best average full-model
Z-score on this target. c) Another model with essentially the same GDT-HA (65.2) has a much
lower full-model Z-score, including poorer match to target sidechains and H-bonds; the six
individual scores are listed. Mainchain-mainchain steric clashes, rotamer and Ramachandran
outliers, and Cβ deviations are flagged in color for parts b and c, which show a representative
portion of the model structures.
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Table III

Outstanding Individual Models on a Specific Target

target group_model

Outstanding on cumulative GDT-TS plot:

T0395 DBaker_1 IBT-LT_1

T0407-D2 IBT-LT_1 DBaker_3

T0409-D9 Ozkan-Shell_3

T0414-D1 Phyre_de_novo-s_1 Fams-ace2_3

T0419-D2 Tasser_2 Zhang_4

T0430-D2 Pcons_multi-s_4 Falcon-s_1

T0460-D1 DBaker_3 Jones-UCL_1

T0464 DBaker_5

T0467-D9 DBaker_1 A-Tasser_2

T0476 DBaker_1 Mufold-MD-s_2

T0478-D2 Falcon-s_1

T0482-D9 DBaker_3 Chicken-George_3

T0487-D4 DBaker_1 IBT-LT_1

T0495 Sam-T08-h_1

Outstanding on combining domains or related targets:

T0393-D1,D2 IBT-LT_1

T0398-D1,D2 Muster_1 Fams-ace2_5

T0429-D1,D2 Tasser_1,3 Raptor-s_3 DBaker_5

T0472-D1,D2 Pipe_int-s_1 Pro-sp3-Tasser_1 Raptor-s_1

T0498 & T0499 Softberry Feig IBT-LT DBaker

Outstanding on full-model metrics, among top GDT-HA:

T0390-D1 McGuffin Pcons-multi-s

T0392-D1 Pcons-multi-s MultiCom

T0396-D1 CpHModels-s IBT-LT

T0450-D1 FFASsubopt-s, flex-s Robetta-s

T0458-D1 FFASsubopt-s MultiCom-Cluster-s

T0490-D1 Lee, Lee-s McGuffin PoemQA

T0494-D1 McGuffin Lee, Lee-s

T0502-D1 Shortle

T0508-D1 Lee, Lee-s

T0511-D1 Lee, Lee-s

Notes: Server groups have “-s” appended to their names;

“-D9” targets were evaluated with alternative domain definitions
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