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Abstract

Contrary to the increasing amount of knowledge regarding the functional roles of glycine-rich RNA-binding proteins

(GRPs) in Arabidopsis thaliana in stress responses, the physiological functions of GRPs in rice (Oryza sativa)
currently remain largely unknown. In this study, the functional roles of six OsGRPs from rice on the growth of E. coli

and plants under cold or freezing stress conditions have been evaluated. Among the six OsGRPs investigated,

OsGRP1, OsGRP4, and OsGRP6 were shown to have the ability to complement cold-sensitive BX04 E. coli mutant

cells under low temperature conditions, and this complementation ability was correlated closely with their DNA- and

RNA-melting abilities. Moreover, OsGRP1 and OsGRP4 rescued the growth-defect of a cold-sensitive Arabidopsis

grp7 mutant plant under cold and freezing stress, and OsGRP6 conferred freezing tolerance in the grp7 mutant plant,

in which the expression of AtGRP7 was suppressed and is sensitive to cold and freezing stresses. OsGRP4 and

OsGRP6 complemented the defect in mRNA export from the nucleus to the cytoplasm in grp7 mutants during cold
stress. Considering that AtGRP7 confers freezing tolerance in plants and harbours RNA chaperone activity during

the cold adaptation process, the results of the present study provide evidence that GRPs in rice and Arabidopsis are

functionally conserved, and also suggest that GRPs perform a function as RNA chaperones during the cold

adaptation process in monocotyledonous plants, as well as in dicotyledonous plants.
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Introduction

RNA-binding proteins are ubiquitous cellular proteins that

regulate gene expression principally at the post-transcrip-

tional level, which involves pre-mRNA splicing, nucleocy-

toplasmic mRNA transport, mRNA stability and decay,

and translation (Dreyfuss et al., 1993; Simpson and

Filipowicz, 1996). RNA-binding proteins are characterized

by the presence of several conserved motifs and domains,
including the RNA-recognition motif (RRM), glycine-rich

domain, K homology domain, RGG-box, and zinc-finger

motif (Burd and Dreyfuss, 1994; Lorković and Barta, 2002).

The RNA-binding proteins that harbour RRMs at the

N-terminus and a glycine-rich region at the C-terminus are

referred to as the glycine-rich RNA-binding proteins (GRPs).

The presence of GRPs in a variety of plant species

(Carpenter et al., 1994; Ferullo et al., 1997; Moriguchi et al.,

1997; Horvath and Olson, 1998; Aneeta et al., 2002; Stephen

et al., 2003; Nomata et al., 2004; Shinozuka et al., 2006) and

the regulation of their expression patterns by a number of

external stimuli (Sachetto-Martins et al., 2000) have been

amply reported. In particular, an increase in the expression
of GRP genes under low temperatures has compelled us to

hypothesize that GRPs might be involved in the responses of

plants to cold stress conditions.

As a component of a focused effort to understand the

biological roles of GRPs in plants under stress conditions,

the functional roles of AtGRPs in Arabidopsis plants have
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been extensively investigated under a variety of stress

conditions. It is reported that AtGRP2, AtGRP4, and

AtGRP7, the three AtGRPs of eight AtGRP family

members in Arabidopsis, have different impacts on seed

germination, seedling growth, and stress tolerance of

Arabidopsis plants under diverse stress conditions (Kwak

et al., 2005; Kim et al., 2007a, 2008). In particular, AtGRP2

and AtGRP7 but not AtGRP4 accelerated seed germination
and seedling growth under low temperatures and conferred

freezing tolerance to Arabidopsis plants. Moreover, it has

been shown that AtGRP7 has an RNA chaperone activity

during the cold adaptation process in Escherichia coli (Kim

et al., 2007b), and confers freezing tolerance via the

regulation of mRNA export in the guard cells (Kim et al.,

2008). The results reported in this series of founding studies

are clearly reflective of GRP’s prominent roles in the
responses of plants to diverse environmental factors in

dicotyledonous plants such as Arabidopsis.

Despite increasing knowledge regarding the functional roles

of GRPs in Arabidopsis, our current understanding of the

biological functions of GRPs in monocotyledonous plants,

including rice, is severely limited. A recent proteomic analysis

of RNA-binding proteins revealed the existence and regula-

tion of RNA-binding proteins in dry seeds of rice (Masaki
et al., 2008). The rice genome encodes at least six GRPs,

which share a high degree of sequence homology in the

ribonucleoprotein1 (RNP1) and RNP2 regions, but vary in

the length of the C-terminal glycine-rich domain (Table 1; see

Supplementary Fig. S1 at JXB online). The six OsGRPs are

designated as OsGRP1 to OsGRP6 (Table 1). The results of

sequence analyses showed that OsGRP1 (Os01g68790) and

OsGRP6 (Os12g31800) are closely related to AtGRP2, and
OsGRP3 (Os03g46770) and OsGRP5 (Os05g13630) are the

most homologous to AtGRP7. Although the overall homol-

ogy is relatively low, OsGRP2 (Os03g56020) and OsGRP4

(Os04g33810) are the most homologous to AtGRP3 and

AtGRP2/7, respectively (Table 1). Considering that a particu-

lar type of AtGRPs confers cold and freezing tolerance to

Arabidopsis plants, it is of interest comparatively to assess the

roles of OsGRPs on seed germination and seedling growth in
plants under low temperature conditions. This article provides

compelling evidence that GRPs in rice and Arabidopsis are

functionally conserved, and that they perform a function as

RNA chaperones during cold adaptation processes in mono-

cotyledonous plants, as well as in dicotyledonous plants.

Materials and methods

Plant materials, stress treatments, and expression analysis

The rice (Oryza sativa) used in this study was of the Dongjin
variety. Three-week-old rice seedlings grown in soil at 2762 �C
under a 16/8 h light/dark photocycle were subjected to cold stress
at 4 �C for up to 3 d. Total RNA was extracted from the frozen
plant samples using the Plant RNeasy extraction kit (Qiagen), and
the transcript levels of each gene were determined via real-time
RT-PCR with the gene-specific primers provided in Supplementary
Table 1 at JXB online. All experimental conditions for real-time
RT-PCR and data analysis were essentially as described by Kim
et al. (2005). The transcript levels of each gene were measured in
both stressed and unstressed control plants at each time point to
determine accurately the expression levels of OsGRPs upon cold
stress treatment. The experiment was repeated at least three times,
and similar results were obtained.

Vector construction and Arabidopsis transformation

To complement grp7 knockout plants with OsGRPs, the coding
region of OsGRP cDNA was cloned into the XbaI/BamHI site of
the pCambia3301 vector. The transformation of Arabidopsis was
conducted via vacuum infiltration using Agrobacterium tumefaciens
GV3101. The seeds were harvested and plated on MS medium
containing phosphinothricin (50 lg ml�1) as a selection marker.
After the further selection of transgenic lines, T2 or T3 lines were
utilized for phenotypic investigation. Expression of OsGRP in grp7
mutant plants was analysed via RT-PCR with the gene-specific
primer listed in Supplementary Table S1 at JXB online.

Germination and seedling growth assays under low temperatures

The A. thaliana wild-type, grp7 knockout, and transgenic plants
used in this work were of the Nossen-0 ecotype. Plants were grown
at 23 �C under long-day conditions (16/8 light/dark photocycle) at
;100 lE m�2 s�1. Arabidopsis plants were grown in either MS
medium (Murashige and Skoog, 1962) or soil at 23 �C. The
germination assays were conducted on three replicates of 30–40
seeds each, essentially as described by Kim et al. (2005). The seeds
were sown on MS medium supplemented with 1.5% sucrose, and
the plates were maintained for 3 d at 4 �C in darkness, then
transferred to normal growth conditions. To characterize the
effects of cold stress on germination, the MS plates were placed in
an incubator maintained at 11 �C under white light. A seed was
regarded as germinated when the radicle protruded through the
seed coat. To determine the effects of cold stresses on the seedling
growth of the plants, the seeds were fully germinated for 3 d at
normal growth temperature, and the seedlings were transferred to
a growth chamber maintained at 8–11 �C.

Electrolyte leakage tests

The electrolyte leakage test was conducted essentially as previously
described (Kim et al., 2007a, 2008). Briefly, the fully developed

Table 1. Compilation of OsGRPs investigated in this study

Gene name Accession no. Length (aa) Localizationa Homology (%)b

OsGRP1 Os01g68790 150 chloroplast AtGRP2 (60)

OsGRP2 Os03g56020 141 mitochondria/cyto AtGRP3 (24)

OsGRP3 Os03g46770 162 nucleus AtGRP7 (73)

OsGRP4 Os04g33810 137 nucleus/mitochondria AtGRP2/7(29/27)

OsGRP5 Os05g13620 104 nucleus AtGRP7 (42)

OsGRP6 Os12g31800 258 nucleus/mitochondria AtGRP2 (53)

a Cellular localization predicted via PSORT (http://psort.ims.u-tokyo.ac.jp) and TargetP (http://www.cbs.dtu.dk/services/TargetP) programs.
b The most homologous Arabidopsis counterparts and their sequence homology (%) predicted via ClustalW program.
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rosette leaves from 4-week-old Arabidopsis plants were placed in
a test tube containing 100 ll distilled water, an ice crystal was
added to the tube, and the temperature of the water bath was
decreased to –10 �C at a rate of 1 �C per 30 min. The conductivity
of the solution was measured with a conductivity meter (Cole-
Parmer Instrument Co.). The ratio of electrolyte content prior to
and after autoclaving was utilized as an indicator for membrane
damage after freezing treatment. The experiment was repeated at
least five times.

Cold shock test and transcription anti-termination assay in E. coli

The coding region of OsGRP cDNA was cloned into the NdeI/
BamHI site of the pINIII vector. For the cold shock test, the
cold-sensitive BX04 cells obtained from Dr M Inouye
(Xia et al., 2001) were transformed with each vector and
grown in Luria-Bertani (LB) medium containing ampicillin and
kanamycin. The overnight cultures were subjected to serial
dilution, spotted on LB medium, and incubated under low
temperature. For transcription anti-termination assay, the
E. coli RL211 cells (Landick et al., 1990) that were transformed
with each pINIII construct were grown in liquid medium and
spotted on LB-carbenicillin plates with or without chloram-
phenicol.

Nucleic acid-melting assay

The nucleic acid-melting assay was conducted essentially as
previously described by Kim et al. (2007b). The molecular beacon
was labelled with a fluorophore (tetramethyl rhodamine) and
a quencher (dabcyl) as previously described (Phadtare et al.,
2002). The recombinant GST-OsGRP fusion proteins were
expressed using pGEX-4T-3 vector (Amersham Pharmacia Bio-
sciences) in BL21 DE3 cells, and were purified with glutathione
Sepharose 4B resin. Fluorescence measurements were conducted
on a Spectra Max GeminiXS spectrofluorometer (Molecular
Devices) with excitation and emission wavelengths of 555 nm and
575 nm, respectively.

Poly(A) mRNA in situ localization assay and analysis of cellular

localization of OsGRP

Poly(A) mRNA in situ hybridization was conducted essentially
as described (Gong et al., 2005; Kim et al., 2008). Briefly, the
leaf samples of 2-week-old Arabidopsis plants were fixed in
a fixation buffer (120 mM NaCl, 7 mM Na2HPO4, 3 mM
NaH2PO4, 2.7 mM KCl, 0.1% Tween 20, 80 mM EGTA, 5%
formaldehyde, 10% DMSO, and 50% heptane). The samples
were hybridized in hybridization buffer (Sigma-Aldrich) contain-
ing 5 pmol of 45-mer oligo(dT) labelled with fluorescein at the
5#-end at 50 �C in darkness. The samples were immediately
observed under an Olympus 1X71 FV500 confocal laser-
scanning microscope (Olympus America Inc.) with a 488 nm
excitation laser and a 522/DF35 emission filter. Each experiment
was repeated at least three times, and similar results were
obtained. To determine the cellular localization of OsGRP1 and
OsGRP4, the cDNA encoding each protein was fused in-frame
with GFP, and the OsGRP1-GFP or OsGRP4-GFP fusion
protein was expressed under the control of the CaMV 35S
promoter in Arabidopsis. The cellular expression of OsGRP1 and
OsGRP4 was investigated via a confocal microscope. Root
samples were mounted on microscope slides and observed with
a Zeiss LSM510 laser scanning confocal microscope (Carl Zeiss,
Inc.) equipped with an inverted Zeiss Axiovert 100M micro-
scope. Excitation and emission wavelengths were 488 and 505 to
545 nm, respectively.

Results

Transcript levels and cold stress-responsive expression
of OsGRPs in rice

The transcript levels of six OsGRPs in the aerial part of

3-week-old rice seedlings were determined via quantitative

real-time RT-PCR analysis with the gene-specific primers

listed in Supplementary Table S1 at JXB online. Among the

six OsGRPs in rice, OsGRP2 showed the lowest level of
expression, and the expression levels of OsGRP1, OsGRP4,

OsGRP5, and OsGRP6 were approximately 50–200-fold

higher than that of OsGRP2. By comparison, OsGRP3

showed the highest level of expression; its transcript level

was approximately 1900-fold higher than that of OsGRP2

(Fig. 1A). The expression patterns of OsGRPs were then

assessed in rice under cold stress conditions. An attempt

was made first to determine whether cold stress had been
adequately applied to the rice by determining the expression

of pBC121 (accession no BAA01630) and OsDREB1A

(accession no AF300970), both of which are known to be

highly induced in rice by chilling treatment (Binh and

Fig. 1. Expression patterns of OsGRPs. (A) Total RNA was

extracted from 4-week-old rice seedlings and the relative

expression levels of six OsGRPs were analysed via real-time

RT-PCR. OsGRP transcript levels are presented as the relative

values to the expression of OsGRP2. (B) Expression patterns of

OsGRPs in rice subjected to cold stress (4 �C) for 6, 12, 24, 48,

and 72 h were analysed via real-time RT-PCR and presented as

the relative expression (fold) of the non-stressed controls. The

mean values and standard errors (bar) were obtained from three

independent experiments.
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Oono, 1992; Dubouzet et al., 2003). When the 3-week-old

rice seedlings were subjected to cold stress (4 �C), the

transcript levels of pBC121 were increased by 2-fold, 4-fold,

and 6-fold at days 1, 2, and 3 of cold treatment, re-

spectively, and the transcript level of OsDREB1A was

increased by 10-fold at day 1 of the cold treatment (data

not shown). While the transcript level of actin was not

modulated by cold stress, the transcript levels of each
OsGRP in rice were modulated to a different degree by cold

stress (Fig. 1B). The levels of OsGRP1, OsGRP2, OsGRP4,

OsGRP5, and OsGRP6 expression were increased by more

than 2-fold by cold stress, while the transcript level of

OsGRP3 was reduced during 48 h of cold treatment, then

increased to the pre-stressed levels 3 d after cold treatment.

It was noted that the expression of OsGRPs is modulated

less significantly by cold stress as compared with that of the
Arabidopsis counterpart, in which AtGRPs transcript levels

are increased by more than 4-fold by cold stress (Kwak

et al., 2005).

The rice OsGRPs complement the cold sensitivity of
E. coli mutant cells

Cold shock proteins (CSPs) in prokaryotes have been

determined to function as RNA chaperones during cold

stress (Jiang et al., 1997; Phadtare et al., 1999). In an effort
to determine whether OsGRPs have RNA chaperone

activity during the cold adaptation process, OsGRPs were

assessed with regard to their abilities to complement a cold-

sensitive BX04 E. coli which lacks four endogenous CSPs

and is highly sensitive to cold stress (Xia et al., 2001). When

the BX04 cells harbouring each construct were incubated at

37 �C, all cells grew well with no noticeable differences (see

Supplementary Fig. S2 at JXB online). By contrast, when
the cells were subjected to cold shock at 20 �C, the growths

of BX04 cells were significantly different, depending on the

expression of each OsGRP (Fig. 2A). The BX04 cells

expressing either OsGRP1 or OsGRP6 grew well at low

temperatures, and the colony-forming ability of these cells

was comparable with that of the positive control cells

expressing CspA, a bacterial RNA chaperone. The BX04

cells expressing either OsGRP3 or OsGRP4 grew better
than the cells expressing only the pINIII vector, but grew

relatively less well than the cells expressing OsGRP1 or

OsGRP6. No complementation ability was observed for

OsGRP2 and OsGRP5. These results show that specific

types of rice OsGRPs are capable of suppressing the cold-

sensitivity of E. coli at low temperatures, which indicates

that these OsGRPs exhibit an RNA chaperone activity

during the cold adaptation process.

The rice OsGRPs possess DNA- and RNA-melting
capabilities

To determine whether the OsGRPs capable of comple-

menting the cold sensitivity of bacterial cells have an RNA

chaperone activity, their nucleic acid-melting activities

were evaluated in vitro and in vivo. The recombinant

GST-OsGRP1, GST-OsGRP4, and GST-OsGRP6 fusion

proteins expressed in E. coli were purified (see Supplementary

Fig. S3A at JXB online), and their in vitro DNA-melting

activities were evaluated by measuring the fluorescence
intensity of a molecular beacon. The addition of GST-

OsGRP1, GST-OsGRP4, or GST-OsGRP6 proteins resulted

in a significant increase in fluorescence, whereas the addition

of GST alone resulted in no fluorescence (see Supplementary

Fig. S3B at JXB online). The DNA-melting activity of

OsGRP1, OsGRP4, and OsGRP6 was comparable to that

of CspA. To determine whether OsGRP1, OsGRP4, and

OsGRP6 possess RNA-melting activity in vivo, their tran-
scription anti-termination activity was then evaluated in E.

coli. An E. coli RL211 strain (Landick et al., 1990) harbours

a chloramphenicol resistance gene downstream from a trpL

terminator, and serves as an efficient system for the testing

of transcription anti-termination activity and RNA-melting

activity of putative RNA chaperones (Bae et al., 2000;

Phadtare et al., 2002; Nakaminami et al., 2006). As shown

in Fig. 2B, the RL211 cells expressing either OsGRP1,
OsGRP4, or OsGRP6 grew well on growth media contain-

ing chloramphenicol, whereas RL211 cells harbouring

OsGRP5 did not grow on chloramphenicol plates. The

RL211 cells expressing OsGRP3 which showed partial

complementation ability in BX04 cells (Fig. 2A) grew well

on growth media containing chloramphenicol. These results

show that the OsGRPs capable of complementing the cold

sensitivity of bacterial cells harbour nucleic acid-melting

Fig. 2. Complementation ability and transcription anti-termination

activity of OsGRPs. (A) The diluted cultures (10�1 to 10�5 dilution)

of the BX04 cells harbouring each OsGRP, CspA (positive control),

or pINIII vector (negative control) were spotted on LB-agar plates

and incubated at 20 �C. The pictures were taken 5 d after

incubation. (B) Liquid cultures of RL211 cells harbouring each

construct were spotted on LB agar with (+) or without (–)

chloramphenicol (Cm), and the cells were grown at 37 �C.
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activity, which further confirms that these OsGRPs exhibit

an RNA chaperone activity during the cold adaptation

process.

The rice OsGRPs rescue the growth-defect of cold-
sensitive Arabidopsis grp7 mutant plants

As OsGRPs possess an RNA chaperone activity during the

cold adaptation process in E. coli, it is of keen interest to

determine whether OsGRPs confer cold or freezing toler-

ance in plants. The function of OsGRPs was evaluated in

plants under cold and freezing stress conditions via

a functional complementation of OsGRPs to the cold-

sensitive AtGRP7 Arabidopsis mutant plant (grp7). It has

been reported that AtGRP7 plays diverse roles in different
cellular processes including stress response, circadian regu-

lation, and floral transition (Staiger et al., 2003; Schöning

et al., 2007; Kim et al., 2008; Streitner et al., 2008). As

AtGRP7 has been shown to exhibit an RNA chaperone

function during the cold adaptation process in E. coli (Kim

et al., 2007b) and the loss-of-function grp7 mutant was

found to be sensitive to cold stress (Kim et al., 2008), the

grp7 mutant is a valuable plant system to examine the
function and RNA chaperone activity of putative RNA

chaperones. The transgenic Arabidopsis plants that ectopi-

cally express OsGRP1, OsGRP4, or OsGRP6 were gener-

ated, and the expression of OsGRPs in a grp7 background

was confirmed via RT-PCR analysis (see Supplementary

Fig. S4 at JXB online). Five to six independent transgenic

lines were investigated, and similar results were observed.

When the plants were grown at normal growth temperature,
the germination and seedling growth of grp7 and OsGRP-

expressing grp7 plants did not differ noticeably from each

other (data not shown). However, when the seeds of the

plants were germinated at low temperatures (11 �C), it was
apparent that the grp7 mutant expressing either OsGRP1,

OsGRP4, or OsGRP6 germinated earlier than the control

grp7 did (Fig. 3).

The impact of OsGRP1, OsGRP4, and OsGRP6 on the
seedling growth and freezing tolerance of the plants was

then examined under cold and freezing stress conditions.

When the Arabidopsis plants were grown for 5 weeks at

8 �C, it was observed that the root growth of OsGRP1- or

OsGRP4-expressing plants was superior to that of the

control plants (Fig. 4). In comparison, no noticeable differ-

ences in root growth were observed between the OsGRP6-

expressing plants and grp7 plants under low temperature
conditions (Fig. 4). The contribution of OsGRP1, OsGRP4,

or OsGRP6 to the enhanced freezing tolerance of Arabidop-

sis plants was further evaluated by measuring electrolyte

leakage from the leaves of the plants (Fig. 5). It was shown

that the leaves from OsGRP1-, OsGRP4-, or OsGRP6-

expressing grp7 plants show much lower rates of electrolyte

leakage than was observed in the leaves from grp7 plants.

These results demonstrate that OsGRP1-, OsGRP4-, or
OsGRP6-expressing grp7 plants are more tolerant to cold

and freezing stress, thereby implying that OsGRP1,

OsGRP4, and OsGRP6 have the ability to rescue grp7

Arabidopsis plants from cold or freezing damage.

OsGRP is involved in mRNA export from the nucleus to
the cytoplasm during cold stress

To understand the cellular function of OsGRPs during cold

stress, their cellular localization was analysed via confocal

microscopy and their potential roles in the export of

mRNAs from the nucleus to the cytoplasm were analysed

via poly(A) mRNA in situ hybridization assay as previously

described (Gong et al. 2005; Kim et al., 2008). The
prediction of the cellular localization of OsGRPs using the

PSORT and TargetP programs indicates that OsGRP1 and

OsGRP4 may be localized to the chloroplasts and the

nucleus or mitochondria, respectively (Table 1). Analysis of

the cellular localization of OsGRP-GFP fusion proteins

Fig. 3. Germination of the wild-type, mutant, and transgenic

seeds under cold-stress conditions. Seed germination of the wild-

type (WT), grp7 mutants, (A) OsGRP1-expressing lines (C1-5,

C1-7, and C1-9), (B) OsGRP4-expressing lines (C4-2, C4-7, and

C4-11), and (C) OsGRP6-expressing lines (C6-4 and C6-5) was

measured in MS medium at 11 �C, and the germination rate was

scored on the indicated days. Mean values and stand errors were

obtained from three independent experiments (n¼30–40).
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showed that OsGRP1 is localized to the chloroplast and

OsGRP4 is localized mainly to the nucleus (see Supplemen-

tary Fig. S5 at JXB online). Poly(A) mRNA in situ

hybridization assay showed that the nuclei of the cells of

the grp7 mutant plants grown under normal growth
conditions did not show any noticeable fluorescence signals

(Fig. 6), which indicates that mRNAs transcribed in the

nucleus were efficiently exported to the cytoplasm. When

the plants were subjected to 4 d of cold stress at 0 �C, the
nuclei of leaf cells in grp7 plants exhibited strong fluores-

cence signals, indicating that mRNA export was impaired in

the mutant cells. Contrary to the strong fluorescent signals

in the nuclei of grp7 mutant plant cells under cold stress, no
significant fluorescent signal was detected in the nuclei of

the cells of OsGRP4- or OsGRP6-expressing grp7 plants

under cold stress (Fig. 6). These results show that OsGRP4

and OsGRP6 complement the defect in mRNA export from

the nucleus to the cytoplasm in grp7 mutant during cold

stress.

Discussion

Despite the increasing amounts of reports evaluating the

stress-responsive roles of GRPs in dicotyledonous plants

including Arabidopsis, the reports demonstrating the bi-

ological functions of GRPs in monocotyledonous plants,

including rice, under stress conditions are severely limited.

The results of our current study provide clear evidence that,
among the six OsGRP family members, OsGRP1, OsGRP4,

and OsGRP6 are capable of complementing the growth

defect of a cold-sensitive E. coli mutant during cold shock.

Interestingly, specific OsGRP family members with E. coli

complementation ability during cold stress also confer cold

Fig. 4. Cold tolerance of the wild-type, mutant, and transgenic

plants. Root length of the wild-type (WT), grp7 mutant,

(A) OsGRP1-expressing lines (C1-5, C1-7, and C1-9), (B) OsGR-

P4-expressing lines (C4-2, C4-7, and C4-11), and (C) OsGRP6-

expressing lines (C6-4 and C6-5) was measured in MS medium

5 weeks after incubation at 8 �C.

Fig. 5. Freezing tolerance of the wild-type, mutant, and transgenic

plants. Electrolyte leakage of the leaves taken from the wild-type

(WT), grp7 mutant, (A) OsGRP1-expressing lines, (B) OsGRP4-

expressing lines, and (C) OsGRP6-expresing lines was measured

in a range of temperature from –1 to –10 �C. Mean values and

stand errors were obtained from five independent experiments.
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or freezing tolerance in plants. These data are in good

agreement with our previous results showing that, in

Arabidopsis, AtGRP2 and AtGRP7, which could comple-

ment the cold sensitivity of E. coli (Kim et al., 2007b)

enhanced the freezing tolerance of Arabidopsis plants (Kim

et al., 2007a, 2008), whereas AtGRP4, which had no ability

to complement the cold sensitivity of E. coli (Kim et al.,
2007b) did not enhance the cold or freezing tolerance of

Arabidopsis plants (Kwak et al., 2005). These findings show

that the abilities of GRPs to confer cold or freezing

tolerance in E. coli and plants are conserved between

Arabidopsis and rice.

The molecular mechanism by which OsGRPs confer cold

tolerance in plants remains to be clearly elucidated. Because

it is believed that GRPs are involved in post-transcriptional
gene regulation, including nucleocytoplasmic mRNA trans-

port, mRNA stability, and translation, it appears likely that

OsGRPs perform a function in these cellular processes. It

has been previously demonstrated that AtGRP2 and

AtGRP7, which successfully complemented the growth

defect of a cold-sensitive E. coli mutant and enhanced the

freezing tolerance of Arabidopsis plants, possess an RNA

chaperone activity (Kim et al., 2007a, b). By contrast,
AtGRP4, the overexpression of which did not increase cold

or freezing resistance in Arabidopsis plants (Kwak et al.,

2005), exhibits no RNA chaperone activity (Kim et al.,

2007b). Interestingly, OsGRP1, OsGRP4, and OsGRP6,

which demonstrated the highest level of complementation

ability in cold-sensitive E. coli mutant cells (Fig. 2), share

the highest levels of sequence homology with AtGRP2 and

AtGRP7 (Table 1). On the basis of these previous

observations and current findings, it is proposed that

OsGRP1, OsGRP4, and OsGRP6 exhibit RNA chaperone

activity during the cold adaptation processes in cells. The

complementation ability of OsGRP1, OsGRP4, and

OsGRP6 in grp7 mutant plants is indicative of its role as

an RNA chaperone in plants.

Considering that the specific types of OsGRPs possess

RNA chaperone activity during the cold-adaptation pro-
cess, the next crucial question is to understand the

molecular mechanisms of RNA chaperone action. Several

other studies have shown that RNA processing or nucleo-

cytoplasmic transport perform pivotal roles in the responses

of plants to cold stress (Lee et al., 2006; Zhu et al., 2007),

and a DEAD box RNA helicase, a potential RNA

chaperone, is essential for the export of mRNAs from the

nucleus to the cytoplasm and cold stress tolerance in
Arabidopsis (Gong et al., 2005). It has recently been

demonstrated that AtGRP7 confers freezing tolerance in

Arabidopsis plants via the regulation of mRNA export from

the nucleus to the cytoplasm under cold stress conditions

(Kim et al., 2008). The notion that OsGRP4 and OsGRP6,

which show the highest level of sequence homology with

AtGRP2 and AtGRP7 and that have been determined to be

localized to the mitochondria and to both the nucleus and
the cytoplasm, respectively (Vermel et al., 2002; Kim et al.,

2008), were determined or predicted to be localized to the

nucleus or mitochondria (see Supplementary Fig. S5; Table

1) suggest that OsGRP4 and OsGRP6 play a similar

function as AtGRP2 or AtGRP7 does. Our current findings

demonstrate that OsGRP4 and OsGRP6 are involved in

mRNA export from the nucleus to the cytoplasm under

cold stress conditions as AtGRP7 does (Fig. 6). It is
proposed that OsGRP4 and OsGRP6 confer cold tolerance

in rice by functioning as RNA chaperones to regulate

mRNA export from the nucleus to the cytoplasm during

cold stress. These observations indicate that the molecular

mechanism of the action of the GRPs is conserved between

Arabidopsis and rice during the cold-adaptation process.

The findings that OsGRP1 is localized to the chloroplast

and harbours RNA chaperone activity led us to propose
that OsGRP1 confers cold tolerance in rice by regulating

RNA metabolism in the chloroplast. Considering that

numerous nuclear-encoded RBPs take part in chloroplast

gene expression by regulating transcription, RNA splicing,

RNA editing, RNA degradation and translation (Barkan

and Goldschmidt-Clermont, 2000; Schmitz-Linneweber and

Small, 2008), it is highly likely that OsGRP1 is one of the

nuclear-encoded chloroplast RBPs that play a role during
the stress-adaptation process.

The identification of AtGRPs and OsGRPs as RNA

chaperones would not only reveal the cellular roles of RNA

chaperones during the process of stress adaptation in plants,

but might also provide a potential means for the de-

velopment of stress-tolerant crops. The complementation

ability of GRPs in cold-sensitive E. coli and the enhance-

ment of cold and freezing tolerance in GRP-overexpressing
Arabidopsis plants suggest that GRPs can be utilized to

improve plant performance under stress conditions. It has

Fig. 6. Poly(A) mRNA in situ localization analysis. Poly(A) mRNA

distribution was measured in 2-week-old grp7 mutant, OsGRP4-

expressing mutant, and OsGRP6-expressing mutant plants grown

at 23 �C and in the plants subjected to cold stress (0 �C) for 4 d.

Strong fluorescent signals were detected only in the nuclei of the

leaf cells of grp7 plants subjected to cold stress. Bars¼100 lm.

Glycine-rich RNA-binding proteins in Arabidopsis and rice | 2323

Supplementary Fig. S5


been demonstrated recently that CspA and CspB, the

bacterial RNA chaperones, could be employed to improve

the cold or drought stress tolerance of agricultural crops

including rice and maize, in which the effective RNA

chaperone activity of CSP is critical for providing tolerance

to stresses (Castiglioni et al., 2008). The results of this study

open new avenues of research involving the use of RNA

chaperones as a means to improve plant performance under
stress conditions. We are currently attempting to determine

whether AtGRPs and OsGRPs harbouring RNA chaperone

activity can confer stress tolerance in rice.

In conclusion, the results of the current study provide clear

evidence that GRPs in rice and Arabidopsis are functionally

conserved, and also suggest that GRPs perform a function

as RNA chaperones during the cold-adaptation processes in

both monocots and dicots. As our knowledge regarding the
cellular functions of GRP family members in the stress

responses of monocotyledonous plants remains far from

sufficient, our discovery of the conserved functions of

specific members of GRPs in Arabidopsis and rice provides

new opportunities for the mechanistic examination of their

cellular roles during stress adaptation processes. Further

studies should be targeted toward a characterization of the

GRP-target RNA interactions and the GRP-mediated
regulation of RNA metabolism, which is an indispensible

step in the formulation of a more comprehensive picture of

the cellular functions of GRPs in both monocotyledonous

and dicotyledonous plants under stress conditions.
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