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Database search algorithms are the primary workhorses
for the identification of tandem mass spectra. However,
these methods are limited to the identification of spectra
for which peptides are present in the database, prevent-
ing the identification of peptides from mutated or alterna-
tively spliced sequences. A variety of methods has been
developed to search a spectrum against a sequence al-
lowing for variations. Some tools determine the sequence
of the homologous protein in the related species but do
not report the peptide in the target organism. Other tools
consider variations, including modifications and muta-
tions, in reconstructing the target sequence. However,
these tools will not work if the template (homologous
peptide) is missing in the database, and they do not at-
tempt to reconstruct the entire protein target sequence.
De novo identification of peptide sequences is another
possibility, because it does not require a protein data-
base. However, the lack of database reduces the accu-
racy. We present a novel proteogenomic approach,
GenoMS, that draws on the strengths of database and de
novo peptide identification methods. Protein sequence
templates (i.e. proteins or genomic sequences that are
similar to the target protein) are identified using the data-
base search tool InsPecT. The templates are then used to
recruit, align, and de novo sequence regions of the target
protein that have diverged from the database or are miss-
ing. We used GenoMS to reconstruct the full sequence of
an antibody by using spectra acquired from multiple di-
gests using different proteases. Antibodies are a prime
example of proteins that confound standard database
identification techniques. The mature antibody genes re-
sult from large-scale genome rearrangements with flexi-
ble fusion boundaries and somatic hypermutation. Using
GenoMS we automatically reconstruct the complete se-
quences of two immunoglobulin chains with accuracy
greater than 98% using a diverged protein database. Us-
ing the genome as the template, we achieve accuracy
exceeding 97%. Molecular & Cellular Proteomics 9:
1260–1270, 2010.

Database search algorithms, such as Sequest (1), Mascot
(2), and InsPecT (3), are the primary workhorses for the iden-
tification of tandem mass spectra. However, these methods
are limited to the identification of spectra for which peptides
are present in the database. It is well recognized that curated
protein databases are, at best, an imperfect template for the
extant peptides. For example, peptides arising from novel
splice forms or fusion proteins would be difficult to identify
using most protein databases.

Recent developments have extended the identifications to
peptides that have diverged from the database entry. By
allowing divergence, the methods enable the identification of
small-scale mutations, and post-translational modifications,
albeit with some loss of sensitivity (4–7). Among these tools,
MS-Blast is able to determine a homologous protein in the
related species but does not report the (diverged) protein in
the target organism. The other tools consider variations, in-
cluding modifications and mutations, in reconstructing the
target sequence. However, these tools will not work if the
template (homologous peptide) is missing in the database or
comes from a novel splice form. In addition, these tools do not
attempt to reconstruct the entire protein target sequence. De
novo identification of peptide sequences (8, 9) is another
possibility and does not require a protein database. However,
these methods are prone to error.

The issue of discovering spliced peptides (more generally,
eukaryotic gene structures) has been investigated using a
combination of approaches, loosely termed proteogenomics.
Often, these approaches start by creating specialized data-
bases of splice forms, combining evidence from protein (e.g.
NCBI nr (10)) and cDNA sequencing (11–13). To discover
novel splicing events, the tools also search databases derived
directly from the genome such as a six-frame translation or a
compact encoding of multiple putative splicing events (14–
17). For example, Castellana et al. (15) achieved this by con-
structing a database, represented as a graph (16), containing
many putative exons and exon splice junctions.

However, this approach also has its shortcomings. The
putative gene models are constructed based on prior as-
sumptions about splice junctions and proximal exons. In ad-
dition, recent genomic discoveries point to extensive struc-
tural variation in the genome in the form of large-scale
deletions, insertions, inversions, and translocations on the
genome that might fuse different genic regions or create
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nonstandard splice forms (18, 19). Indeed, many cancers are
characterized by such large-scale mutations of the genome
(20). Other examples of variation that confound standard da-
tabase identification techniques are immunoglobulins and an-
tibodies. Here, recombination events fuse disparate regions
of the genome, often inserting nontemplated sequence and
creating many novel gene structures in every individual. The
common theme in all of the scenarios described is that it is not
possible to maintain all possible encodings in a database to
allow for a standard proteogenomic search.

In this study, we sought to determine whether the imperfect
template provided by the genome can be still used as a basis
for peptide (and protein) identification. We are motivated in
our approach by the work of Bandeira et al. (21), who were
able to sequence monoclonal antibodies de novo, making no
use of a database at all. In their method, an all-to-all compar-
ison of spectra allowed the creation of spectral contigs, sim-
ilar to sequence contigs in shotgun sequencing projects. The
sequences of the spectral contigs were determined de novo.
Using full antibody sequences as references, they were able
to order the contigs and infer the missing sequence. Because
the construction and sequencing of the contigs was per-
formed completely de novo, Bandeira et al. (21) were able to
sequence highly divergent proteins or proteins for which there
is no database. However, the ordering of the sequenced
contigs relies on a database of full antibody sequences for
mapping. Sequences that cannot be mapped to an antibody
in the database may be discarded. In contrast, the templates
used in our method are not full proteins, but substrings of
proteins, such as exons, which are combinatorially chained
together to best explain the spectrometric evidence.

Liu et al. (22) have developed Champs, a method for se-
quencing a divergent protein using a homologous protein
database. In their method, a single reference protein was
chosen, and the de novo interpretations of spectra were
mapped to the reference. They were able to sequence a
protein with high accuracy using a reference protein with only
77% similarity to the target. Although Champs is able to map
peptides that differ from the reference by one or two amino
acids, it does not look for large insertions or deletions in the
target sequence, as in a novel splice form. In our work, use of
the database as an incomplete template lends additional con-
fidence to the target sequencing without substantially limiting
the ability to identify diverged sequences.

Here, we describe a novel method for template proteog-
enomics, implemented in the tool GenoMS. GenoMS takes as
input a collection of spectra (acquired from multiple protease
digests) and a collection of imperfect templates and con-
straints (defined under Experimental Procedures). It returns a
target protein sequence. At the heart of the approach is a
novel method of extending a target amino acid sequence by
recruiting and aligning spectra that match it partially. By using
spectral data sets with multiple protease digests, we are able
to identify many overlapping peptides. We then align the

overlapping spectra and produce an extended consensus
spectrum. We are able to extend 89% of the target amino acid
sequences. More than 40% of these extensions are three or
more amino acids.

We test the performance of GenoMS in reconstructing
monoclonal antibody sequences. Antibodies are an interest-
ing test case because of their highly variable nature and
because no complete antibody database exists. They are
composed of four polypeptide chains: two identical heavy
chains and two identical light chains (Fig. 1). An antibody’s
preference and efficiency in the detection and removal of
encountered antigens is heavily dependent on its amino acid
sequence. Consequently, antibodies are extremely diverse. A
principal way in which antibody diversity is achieved is
through genome rearrangement of the germline locus (Fig. 1).
An antibody’s heavy chain comprises four gene segments; a
variable (V) segment, a diversity (D) segment, a joining (J)
segment, and a constant (C) segment. Likewise, the light
chain is composed of three gene segments: a V segment, a D
segment, and a C segment. Each segment is chosen from
potentially hundreds present in the genome, and many com-
binations of gene segments may be joined. Imprecise bound-
aries with the possible insertion of additional nucleotides al-
low the creation of many sequences from a single germline
locus. Somatic hypermutation also plays a role in achieving
antibody diversity. Although antibody sequence may be de-
termined by sequencing the DNA of the source cell line, few
direct protein-sequencing options exist when the source is
unavailable or for ensuring antibody integrity. The antibody
structure provides enough complexity to serve as a test case
for template proteogenomics.

Using the technique of extending the peptide sequence
without reference to a database, we are able to reconstruct
the full protein sequence for the antibody raised against the B-
and T-lymphocyte attenuator molecule (aBTLA1) (21). We also
test our approach by using an available data set of spectra
acquired using multiple protease digests for bovine serum
album (BSA). The sequence of BSA is determined using the
bovine genome as a template database. Both chains of
aBTLA were sequenced using unrearranged gene segments
as templates. An independent reconstruction of the aBTLA
heavy chain was performed using the unrearranged heavy-
chain genomic locus as a template.

EXPERIMENTAL PROCEDURES

Our goal is to reconstruct the target amino acid sequence, using a
chain of templates. A template is defined as an amino acid sequence
that may be present in the target protein, although possibly in a
mutated or modified form. The target protein might contain multiple
templates chained together. We provide additional abstraction to
model constraints on the templates. First, the user can specify a

1 The abbreviations used are: aBTLA, antibody raised against the
B- and T-lymphocyte attenuator molecule; PRM, prefix residue mass;
HMM, hidden Markov model; AA, amino acid.
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partial order t13 t2 to enforce that template t1 must precede t2 in the
chain. Second, the user can provide mutual exclusion constraints on
(t1, t2), a pair of templates, to enforce that only one of the two
templates is in the chain. For example, in antibody sequences, all V,
D, J, and C genes are templates. The constraints help specify the
ordering of V, D, J, and C genes, and the exclusion of any pair of
genes from the same class (e.g. V).

An anchor is defined as a substring of a template that is present in
the target with no mutations. Each template may contain zero or more
anchors. Fig. 2 describes an overview of our algorithm. GenoMS
takes a collection of tandem MS spectra as input, along with a set of
templates and their constraints, and requires at least one anchor
sequence. It outputs a target protein sequence using a chain of
templates as a guide. There are three stages: template-chain selec-

tion, anchor extension, and sequence construction, all described
below.

Template-Chain Selection

We create a custom database of all template sequences and use the
database search tool InsPecT to search all spectra against the database
(3) (see supplemental Methods). The best templates to use as guides
are those that show a good match to the spectra. Coverage[t] is defined
as the number of amino acids on t that were confirmed by the database
search. Peptides that appear in multiple templates count toward the
coverage of all of them. This reuse is eliminated in the next step. The
goal of the template-chain selection phase is to select a chain of
templates with maximum coverage while satisfying all constraints.

FIG. 1. An overview of the produc-
tion of a mature immunoglobulin. Bot-
tom, the mature immunoglobulin protein
structure contains two identical light
chains and two identical heavy chains.
The germline heavy-chain and light-
chain loci (top) contain many different
gene segments. During heavy-chain
gene rearrangement, in B-cell differenti-
ation, one V, one D, and one J gene
segment are combined. For light-chain
gene formation, a V and a J gene seg-
ment are combined. The combined VDJ
or VJ segments are joined by splice
junction to a constant region.

FIG. 2. The template proteogenomic
method reconstructs a target protein
sequence using tandem mass spectra
and a template database in three
steps: template-chain selection, an-
chor extension, and sequence con-
struction. The template database spec-
ifies ordering and mutual exclusion
constraints between templates. A set of
templates is selected that obeys these
constraints based on peptides identified
on them. Anchors are peptides identified
by searching spectra against the tem-
plate database. Anchors are extended
by aligning spectra that overlap the an-
chor. Finally, the sequence is recon-
structed by merging the extended an-
chor sequences.

Template Proteogenomics

1262 Molecular & Cellular Proteomics 9.6

http://www.mcponline.org/cgi/content/full/M900504-MCP200/DC1


To find the chain of templates, we define a graph in which the
nodes are templates. There are two sets of edges. Directed edges
t1 3 t2 model the ordering constraints, while a set of undirected
edges, (t1,t2) � Ef, models the exclusion. In addition to the constraints
specified by the user, we also create forbidden edges between tem-
plates that share more than the minimum of two peptides or half of the
peptides belonging to one of the templates. A chain T � {t1,t2,�,tk} is
valid if (ti,tj �)Ef for all ti,tj in T, and t13 t23 �3 tk. The objective is
to compute a valid chain so that �i�1

k is maximized.
Solving this problem generally is hard. We use a heuristic method

based on dynamic programming to find a valid chain (see
supplemental Methods). Let Vj denote the maximum score of a valid
chain ending at tj, and Tj denote the corresponding chain. Then,

Vj � Coverage�tj� � max
i:Ti��tj� is valid

Vi (Eq. 1)

and Tj is constructed by chaining tj to the optimal Ti. The template-
chain determined by this heuristic is considered for subsequent
stages of GenoMS. For an antibody, the template chain will often link
V(D)JC together in that order. However, all templates are not required.
Missing templates will be filled in by anchor extension. Second, we
are not limited to a single chain. A variant of this heuristic can output
multiple chains when needed (e.g. alternative splicing).

Anchor Identification and Extension

Recall that the template chain was created by connecting tem-
plates that were well covered by target peptides. For each selected
template in the chain, anchors are created by merging overlapping
peptides. Anchors are ordered by their position on the chain. Spectra
not annotated using the database search are reconsidered in the
subsequent phases of the algorithm.

In the second step, we extend the sequence of each anchor.
Before extension, all spectra are first clustered to reduce the overall
number of spectra and improve spectrum quality (23). The clustered
spectra are converted to prefix residue mass (PRM) spectra (8). A
PRM spectrum is represented by a list of mass values, and a PRM-
score function � that computes the likelihood that a mass value is a
PRM. The procedure for extending the sequence of an anchor is
shown in ExtendAnchor below.

procedure EXTENDANCHOR

1. Recruit PRM spectra that overlap the N/C-terminal of the anchor

repeat
1.1 Align the recruited spectra
1.2 Construct a consensus spectrum from the aligned spectra
1.3 Recruit spectra that ovelap the N/C-terminal of the

consensus spectrum

while
2. Sequence the consensus spectrum

Recruiting PRM Spectra

All spectra that do not contribute to an anchor and have not already
been recruited are examined for overlap with each anchor. Any spec-
tra that have been recruited in previous rounds to the same terminus
of the anchor are eligible for recruitment in subsequent rounds of
recruitment for the terminus as well. We determine overlap by using a
modified spectral alignment method (24). When aligning a spectrum
to an anchor, we allow the spectrum to only partially overlap the
anchor (Fig. 3). Because the extended target sequence is determined
by aligning the recruited spectra, it is critical to reduce false-positive
recruitment and maintain enough coverage to reliably extend the
sequence.

We consider three parameters: the minimum additive score of the
spectral alignment, Q (24); the minimum number of overlapping
peaks, �, for a spectral alignment to be considered, and the exact
number of spectra recruited, NS. Q could be learned by the algorithm
independently for each experiment by looking at the alignment score
of spectra identified by InsPecT (supplemental Methods). We tested
for the dependence on � and NS using a training set of 206 uniformly
selected anchor ends from the aBTLA heavy-chain sequence
(supplemental Figs. 1 and 2). Values � � 4 and NS � 5 were chosen
to balance the accuracy (fraction of recruited spectra that are correct)
and sensitivity (fraction of true spectra recruited).

The recruited spectra and the anchor sequence must then be
aligned. The sequence helps to anchor the spectral alignment, and
the spectral alignment is then used to produce a consensus extension
of the sequence. We do this using hidden Markov models (HMMs).

Multiple Spectrum Alignment

Profile HMMs are a popular tool for performing multiple sequence
alignment (25). We alter the scheme slightly to perform multiple spec-
trum alignment. The use of HMMs for scoring peptide-spectrum
alignments has previously been proposed (26). A novel part of our
approach is that the HMM is not static, but is updated by model
surgery, as we extend the anchor sequence.

Recall that the anchor sequence can also be interpreted as a list of
PRMs [m1,m2,m3,�]. For example, the anchor VCAK corresponds to
the PRM list [0,99.07,259.21,330.28,458.32]. Intuitively, the HMM is
an automaton that generates these PRMs (Fig. 4A). In the absence of
noise, we have a set of Match states (M1,M2,�). The automaton starts
in Match state M1. In each Match state Mi, the PRM mi is emitted,
followed by a transition to the next Match state. An HMM is formally
described by a 5-tuple M � (�,A,B,�,�), where � is the set of states.
The HMM is initially in state �i � � according to the distribution �. In
state �i, M emits a symbol o � � according to the distribution Bi,o,
and transitions to state �j, according to the transition probability Ai,j.
To model measurement errors, the Match state Mj outputs a mass m
according to BMj,m

	 N(mj,�), where � (i.e. S.D.) is obtained by empir-
ically measured instrument accuracy. Noise peaks are modeled by
Insert states in between each adjacent pair of Match states, with the
emission probabilities defined by

FIG. 3. The partial alignment of a spectrum to an anchor se-
quence and consequent extension of the anchor sequence. Top,
a PRM spectrum is shown with a partial alignment to the theoretical
PRM spectrum of an anchor. The C terminus of the spectrum is not
aligned. Bottom, the overhanging peaks enable the extension of the
anchor sequence by two amino acids (QT).
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BIj,m�� e
	�m� if mj 
 m 
 mj�1

0 otherwise (Eq. 2)

Missing peaks in spectra are modeled by moving from a Match state
to a Delete state, where no symbol is emitted. The transition proba-
bilities Ai,j are initialized to favor match transitions, and penalize delete
transitions (supplemental Methods). All parameters are updated at
each iteration using a Bayesian approach described in the next
section.

In this generative model, each spectrum is produced by traversing
a (hidden) path through the states of the HMM. Reconstructing the
most likely path is equivalent to aligning the spectrum to the HMM
and can be determined using the Viterbi algorithm (27). An Insert state
is created after the final Match state for C-terminal extension or
before the initial Match state for N-terminal extension. Model surgery
is performed to generate additional Match states from these terminal
Insert states, which are used to reconstruct the template extension.
The procedure for learning the HMM by aligning recruited spectra is
shown in AlignSpectrum below.

procedure ALIGNSPECTRUM

1. Create an initial HMM using the anchor
2. For each recruited spectrum, S

2.1 Align S to the model using the Viterbi algorithm
2.2 Update model parameters
2.3 Perform model surgery

Updating Model Parameters—Transitions Ai,j are updated accord-
ing to


i 4
1

�kci,k � 1
(Eq. 3)

Ai, j 4
ci, j � �j � 
iAi, j�k�ci,k � �k� � 
i

(Eq. 4)

where ci,j is the number of aligned spectra with transition from �i to �j

and 
i is the “learning rate.” Low values of 
 favor the observed
transitions, whereas high values of 
 favor the current transition
probability. �j is the pseudocount for �j, described empirically by

�j � � 7 if �j is a Match state
1 otherwise (Eq. 5)

To update BMj,m
, the mean is recomputed in each step by using

spectral PRMs that were emitted in state Mj. The variance remains
unchanged.

Model Surgery—The initial HMM is constructed using the anchor
PRMs. The aligned spectra overlap only partially. The PRMs preced-
ing the N-terminal Match state (or succeeding the C-terminal Match
state in the case of right extension) are emitted by Insert states. The
observed masses emitted by an Insert state cluster around certain
PRM values, specifically at the preceding (or succeeding) PRMs of the
target sequence. Model surgery is used create a Match state that can
emit the cluster of PRMs (see Fig. 4B). In this way, the HMM is
extended to better represent the target sequence.

Let WI denote the set of mass values emitted by Insert state I.
Consider a subset W� � WI. Let �W� and �W� denote the mean of the
values in W� and the S.D., respectively. Define

Score�W�� � �
m � W�

	�m� (Eq. 6)

We compute

W* � arg max
W� � WI
�W�� � 2

�W� 
 0.25

Score�W�� (Eq. 7)

Note that the computation can be done efficiently by sorting the mass
values, and looking at intervals.

If Score(W*) exceeds the minimum PRM score �(m) for any spec-
trum, we add a new Match state with mean �W*, along with the
corresponding Delete and Insert states (Fig. 4B). All spectra are
realigned to the new HMM.

Building a Consensus Spectrum and Extending the Anchor
Sequence

The HMM, once learned from the recruited spectra, is used to
produce a consensus spectrum. The consensus PRM spectrum is
produced by finding the maximum likelihood path constrained to
those paths that begin at the initial Match or Delete state and end at
the final Match or Delete state. The peak emissions of this path,
omitting noise peaks emitted from Insert states, produce the consen-
sus spectrum. Each peak in the consensus spectrum is associated
with a peak score. The PRM score for the mass emitted from state
Mi is

��wi,	i��WMi
	i 
 ��WDi� (Eq. 8)

where WMi
is the set of peaks aligned to state Mi and WDi

is the set of
spectra aligned to state Di. � is a constant. The peak scores are
likelihoods, and � is the likelihood that a true peak will not be ob-
served. We chose � to be the average score of a PRM in the data set.
The consensus spectrum is then used as the anchor for subsequent
rounds of extension. The sequence of the final consensus spectrum,
once no more spectra can be recruited, is determined de novo by
constructing a spectrum graph allowing edges for single- and double-
amino acid masses (28). The sequence is then recovered from the
highest scoring path in the spectrum graph.

Protein Sequence Reconstruction

Once anchors have been extended until no spectra can be re-
cruited, the extended anchor sequences are merged into a single
protein sequence. If confident overlap between extended anchor

FIG. 4. The profile HMM used to align spectra and produce a
consensus spectrum. A, the spectrum profile HMM derived from the
anchor “VCAK” after aligning four spectra, all of which are aligned to
the state I5. The peaks aligned to that state are shown and suggest a
candidate Match state at mass 515.33 Da. B, the same HMM after we
performed model surgery to add the new Match state.
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sequences exists, then the sequences are merged (supple-
mental Methods). Each extended anchor sequence is considered for
merging with all eligible anchors; that is, the C-terminal extension of
an anchor can only be merged with the N-terminal of another anchor.
Likewise, if template ordering is provided, anchors can only be
merged in accordance with the template order constraints.

Confidence Estimates

The output of GenoMS is a sequence of mass intervals, some of
which are represented by amino acids in the final sequence, whereas
others, which can be explained by two AAs, are presented as masses.
Each interval is inferred from a pair of adjacent PRMs. All spectra that
were used to create an anchor or extend an anchor can be mapped
to the sequence of intervals. We compute the confidence of a mass-
interval as the fraction of overlapping spectra with PRMs mapping to
the two adjacent PRMs. Fig. 5 illustrates the computation of the
site-wise confidence from the set of mapped spectra.

For spectra that are identified using InsPecT and are used for
anchor creation, all mass intervals that are overlapped are also con-
sidered supported. In some cases, the confidence estimate is con-
servative, because many spectra may support a larger mass interval
that contains the correct one. For example, the first spectrum in Fig.
5 supports the large interval SR, but is not counted toward either
mass interval because it is missing the PRM between S and R. We use
pseudo-counts 1 and 1.5 for the number of supporting and overlap-
ping spectra, respectively.

Genomic Templates

Immunoglobulins are an excellent candidate for template proteog-
enomics, with templates selected from translated germline segments.
However, for other applications of protein sequencing, such as gene
annotation, a protein template database may be difficult to produce.
To handle these situations, GenoMS also accepts genomic sequence
as input. It automatically generates templates and constraints as
follows: the template database is a six-frame translation of a gene
locus, with each open reading frame (ORF) describing a template.
Templates that overlap or are on different strands are mutually ex-
clusive. Templates are ordered according to their genomic coordi-

nates. Once the template database and constraint are produced, the
same algorithm is used to reconstruct the target. For flexibility, we do
not consider splice-junction signals in selecting template boundaries.
However, users have the option to input customized template and
constraint files.

The output of the GenoMS from genomic templates is the se-
quence of the target protein, as well as the genomic coordinates of
the exons or gene segments selected as templates. In this way, the
precise exon and splice boundaries for a gene may be discovered.
Because template proteogenomics does not require the template
genome to be an exact match for the target protein, it is possible to
sequence the target protein of one species using the genomic tem-
plate database derived from the genome of a related and more
comprehensively studied species.

Constructing a Divergent Sequence Database

To assess the ability of GenoMS to sequence more divergent
proteins, we alter the template database to contain sequences with
less similarity to the target. We construct the divergence sequence
database from the known target protein sequence appended with the
Mouse IPI database (version 3.54), which contains 56,551 proteins
once immunoglobulin sequences are removed. We simulated degrees
of mutation by replacing regions of the target sequence with non-
sense amino acids, “XXXX.” The regions were selected at random
positions on the heavy chain, with a normal length distribution, with
mean 7, S.D. 2, and a minimum length of four amino acids, similar to
the hypervariable complementarity defining regions (29).

Mass Spectrometry Analysis

Spectral data sets derived from aBTLA described in Bandeira et al.
(21) were used for evaluating anchor extension and for full antibody
sequence reconstruction. The data set consisted of 44,985 tandem
MS from the heavy chain and 39,135 tandem MS from the light chain
acquired on either an LTQ-Orbitrap or LTQ-FTMS instrument. Heavy-
chain samples were prepared using four different protease digestions
(trypsin, chymotrypsin, pepsin, and AspN), whereas light-chain sam-
ples were prepared with three different proteases (trypsin, chymo-
trypsin, and AspN). To determine the gene structure of BSA 5,154
tandem MS spectra acquired on an Orbitrap instrument from three
digestion conditions using GluC, LysC, and trypsin (22) were used. All
spectra were first clustered to reduce the overall number of spectra
and improve spectrum quality (23) and converted to PRM spectra (8)
(supplemental Methods).

RESULTS

Anchor Extension—Anchor extension is the mainstay of our
algorithm. We measured the accuracy and length of extension
of arbitrary anchors by GenoMS. Certain discrepancies be-
tween the target sequence and the predicted sequence were
not considered errors, such as substitutions of amino acids
with similar mass or mass shifts caused by common post-
translational modifications (supplemental Methods).

From the known sequence of the aBTLA heavy chain, we
selected every possible 10 amino acid sequence as an an-
chor. Q was fixed at 70, which is approximately the score
cutoff chosen for the heavy chain. We then performed one
round of recruitment, alignment, and reconstruction, as de-
scribed above. Of the 413 anchors, 89% were extended. The
average extension length was 2.56 amino acids. Of the ex-
tendable anchors, 41% were extended by three or more

FIG. 5. A set of spectra is shown overlapping a region of the
predicted sequence. A spectrum supports a mass interval in the
predicted sequence if both adjacent PRMs to the interval are matched
in the spectrum. The confidence of each mass interval is the fraction
of overlapping spectra that support the interval (with pseudocounts).
The PRMs of the overlapping spectra that are necessary to support
the mass interval corresponding to “C” are circled.
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amino acids, whereas 12% were extended by five or more
amino acids. Across all extensions, 95% of the amino acids
were correctly predicted. Errors generally occurred in regions
with one or more prolines, which hinders peptide fragmenta-
tion. We found that the quality of the extension depends
greatly on the quality of the spectra. Beyond the two spectra
per extension required by the algorithm, we found no real
improvement with increased spectral counts.

The accuracy depends greatly on the position in the ex-
tension. Fig. 6 shows the accuracy as a function of the
position from the tail of the extension. To explain, consider
an anchor that is extended by two amino acids, g1g2, and
another that is extended by three amino acids, h1h2h3. The
accuracy at position 
1, the last position of the extension,
considers the accuracy (fraction of residues predicted accu-
rately) of g2 and h3. The accuracy at position 
2 is determined
by the accuracy of g1 and h2, whereas the accuracy at position

3 is only determined by the accuracy of h1. As expected, the
number of predictions decreases from 
1 onward, whereas the
accuracy increases. The length of extension depends upon
the availability of overlapping peptide spectra, which in turn
depends upon the protease mixtures. Our results indicate that
with a large number of overlapping peptides, the extensions are
accurate.

Complete Protein Sequence Reconstruction—The Interna-
tional Immunogenetics Information System (IMGT) GENE-DB
(30) contains immunoglobulin genes observed in human,
mouse, rat, and rabbit. We used the mouse genes in
GENE-DB as templates for full protein sequencing. These
templates contain sequences that are highly similar but not
identical to the specific aBTLA antibody used to acquire spec-
tra. The heavy chain sequence and light chain sequence of the
target, determined previously by Edman sequencing, are
443 and 221 AAs in length, respectively. We tested whether

GenoMS could reconstruct the aBTLA targets using the tan-
dem MS spectra and the GENE-DB templates.

We constructed a database, IgH-DB, containing all mouse
immunoglobulin heavy chain genes in GENE-DB (version
20090331), and a database, IgLK-DB, containing all mouse
immunoglobulin light chain genes in GENE-DB (version
20090320). IgLK-DB contained both � and � light chain genes.
Each V, D, J, and C segment was a template, and constraints
were created according to two rules. Templates of the same
type (e.g. V segments) were mutually exclusive, and the tem-
plates were ordered so that all V segments preceded D seg-
ments, D segments preceded J segments, and J segments
preceded C segments. IgH-DB contained 479 templates, and
IgLK-DB contained 177 templates. Templates with peptide
identifications for all protein reconstructions can be found in
the supplemental material.

Fig. 7A contains the results of full protein sequencing for the
heavy and the light chains. The gray boxes correspond to
anchors, annotated by the Genbank GI number and position
in the sequence. Arrows extending and linking anchors in Fig.
7 are annotated with the sequence that was determined by
anchor-extension and sequence-reconstruction. A red se-
quence indicates error in extension. If the arrow is continuous
from one anchor to the next, then there was sufficient overlap
in the extensions to allow merging of anchor sequences. Mass
gaps in the consensus spectrum that could not be resolved to
a single amino acid are indicated with brackets ([XX]). If the
mass gap correctly identifies a pair of amino acids from the
sequence, the mass in brackets is replaced by the amino acid
symbols in brackets.

Nearly all (99%) of the heavy chain sequence was recov-
ered with 99% accuracy. One pair of anchors had sufficient
overlap to be merged. The C-terminal extension of the third
anchor and the N-terminal extension of the fourth anchor also
overlap and could be merged by eye but not by our conserv-
ative merging criteria. The chain consisted of a template
from each V (gene IGHV2–3, GenBank accession number
AC090887), J (IGHJ4*01, GenBank accession num-
ber V00770), and C (IGHCG1*02, GenBank accession number
L35252) segment. No database sequence matched the D
gene, but the automated extension could reconstruct much of
it. The only error in the D gene sequence, which appears in the
C-terminal extension of the first anchor, has one incorrect
PRM. “[174]E” has the same mass as the correct sequence
“RF.” The incorrect intervals receive a lower site-level confi-
dence (0.62 and 0.73, respectively) than the rest of the se-
quence. The full sequences with site-level confidence from all
reconstructions can be found in the supplemental material.
The missing sequence occurred at the N terminus (three AAs)
because of modification of the leading glutamine to glutamic
acid.

Light chain templates were chosen in the same manner as
for the heavy chain. The V, J, and C templates correspond to
genes IgKV8–21*01 (GenBank accession number Y15982),

FIG. 6. The average accuracy of each position in the extension.
The accuracy of the extension degrades for positions close to the end
of the extension, whereas the number of predictions increases. Each
data point is annotated with the total number of anchors extended to
that position or further.
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IgKJ4*02 (GenBank accession number V00777), and IgKC*01
(GenBank accession number V00807) (Fig. 7A). Sequencing
construction determined 96% of the sequence with 99%
accuracy.

There was little gap between any of the anchors. A gap of
two amino acids between the end of the first anchor and the
start of the second anchor could be filled in correctly by
inferring the sequence from the template. The N-terminal

FIG. 7. The accuracy of extension as a function of the position from the end of the extended sequence. A, the aBTLA heavy chain and
light chains reconstructed from protein template databases. The gray rectangles are anchors; the arrows, annotated with sequence, are the
extended and merged sequences. Text above the anchors indicates the GI number of the template used, and coordinates within or below the
anchors indicate their position within the template. Red amino acids were incorrectly predicted. B, the aBTLA heavy chain identified using a
genomic template database. The anchors were identified using templates from the locus reverse strand. Anchor ordering and genomic position
is annotated with reference to the forward strand. The coordinates of each anchor on the chromosome are shown. Red portions of the anchors
are incorrectly incorporated anchor sequence. C, the heavy chain sequence produced by using increasingly divergent templates. The
reconstructions at 85, 75, and 65% similarity to the aBTLA heavy chain sequence are shown.
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extension of the first anchor “NN” has the same mass as the
correct sequence “DI,” but the internal PRM is off by 1 Da.
These two incorrect amino acids get very low site-level con-
fidence (0.08 and 0.16, respectively). Five amino acids are
missing between the end of the extension of the second
anchor and the start of the third anchor. This gap corresponds
to the joining boundary of the V and J gene segments. N-
terminal extension of the third anchor is prevented by the
incorrect incorporation of “L” during anchor construction as
the first AA in the anchor. The third and fourth anchors are
directly abutting, with no missed amino acids.

aBTLA Heavy Chain: Genomic Templates—We tested
whether the target could be reconstructed in the absence of
protein templates. The mouse heavy-chain genomic locus,
GenBank accession number NG005838, was used to con-
struct a template database, as described under Genomic
Templates. The database contained 87,265 templates. Spec-
trum identifications were filtered to a 1% false discovery rate.
Fig. 7B shows the reconstruction of the heavy chain. We
identified seven anchors comprising 95% of the target se-
quence. Each anchor was identified from a different ORF
template on the reverse strand except for the fifth and sixth
anchors, which were from the same ORF. Each ORF revealed
an exon in the final rearranged immunoglobulin heavy-chain
gene. Gaps between anchors, which are sequenced via an-
chor extension, determine the exact splice boundaries be-
tween exons.

The predicted target antibody sequence contained 443 AA,
with 98% accuracy. Two pairs of anchors could be merged.
The first anchor of the sequence was identical to the first
anchor identified against the IMGT database; consequentlym
the error at the C-terminal extension of the anchor is also the
same. The boundaries of two anchors were misidentified by
InsPecT. Four and three amino acids were incorporated into
the third and fifth anchors, respectively, and are denoted by
the red shaded portions of those anchors. The summed
masses of the incorrect amino acids were no more than 1 Da
different from the true sequence, but they prevented the N-
terminal extension of both anchors. The second anchor’s
C-terminal extension overlaps the correct portion of the third
anchor, but the incorrect anchor boundary prevents merging.

Protein Sequence Reconstruction with Template Diver-
gence—The template databases used contained sequences
that were highly similar to the target sequence, presenting us
with an easier test case. We tested accuracy by comparing
against a diverged template database. Various levels of diver-
gence (based on similarity to the original template) were cre-
ated by introducing nonsense mutations in the template da-
tabase (see Experimental Procedures). At each level of
similarity, 20 independent divergent database results were
averaged in Table I. Q varied between experiments, with a
mean of 68.9.

As the similarity of the database to the target decreases,
more of the sequence was determined by automated de novo

extension (Table I). Three reconstructions with 85, 75, and
65% database similarity to the target sequence are shown in
Fig. 7C. Table I demonstrates how the number of peptides
decreases with greater target sequence divergence.

The increasing number of anchors indicates the disjointed-
ness of the peptides. Although the accuracy is diminished as
the target sequence becomes more divergent, it is never
below 95%. As the amount of sequence recovered in anchors
decreases (“Anchor Sequence” in Table I), the portion of the
sequence recovered by extension increases. In Fig. 7C, the
longest extension in the case of 85% similarity is 14 AA, and
most of the anchor extensions could be merged. Once the
similarity drops to 65%, the longest extension is 22 AA, and
fewer extensions could be merged.

Gene Annotation—Liu et al. (22) published an algorithm for
sequencing a diverged protein using a homologous protein.
The target sequence used was BSA, and purified spectra
were derived from three protease digestions. The complete
BSA protein consists of 608 AAs; however, the first 25 resi-
dues are cleaved as a signal peptide. Therefore, we consider
only the 583 AAs following the cleavage site. Liu et al. (22)
were able to sequence the target protein with 100% accuracy
and over 99% coverage by using a close homolog in sheep
(�90% similarity). In contrast, our method does not require a
protein reference sequence but can build from the genome
directly.

In addition to sequencing the target protein, identifying
templates from a genomic template database gives the posi-
tions of exons in the gene whose product is the target protein.
We sequenced BSA using a database constructed from the
bovine genome. We created a genomic template database
from the six-frame translation of the BSA locus (GenBank
accession number NC_007304.3:91,461,065–91,479,638)

TABLE I
Target sequence reconstruction length and accuracy at various levels

of target divergence

“Sequence similarity” is the identity of the target sequence to the
closest mutated sequence in the database. “No. of peptides” and
“No. of anchors” refer to the number of unique peptides and anchors,
respectively, identified on the mutated templates. “Target Length”
refers to the length of the reconstructed sequence, whereas “Anchor
sequence” refers to the fraction recovered from the anchors. “Target
accuracy” is the percentage of amino acids predicted correctly. Al-
though the anchor sequence drops rapidly, a significant fraction of
the target is reconstructed accurately.

Sequence
similarity

No. of
peptides

No. of
anchors

Anchor
sequence

Target
length

Target
accuracy

% %

95% 527 4 90.7 429 99.1
90% 443 6 83.6 406 98.3
85% 364 8 77.1 402 97.6
80% 286 9 68.2 375 96.9
75% 245 10 62.8 368 95.1
70% 201 10 56.1 337 96.1
65% 181 10 52.2 324 95.3
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containing 559 templates. From the genomic template data-
base, we identified 91% of the sequence with 98% accuracy.
We recovered ORFs for 12 exons (Fig. 8). The lack of over-
lapping spectra prevented the merging of all but one pair of
anchors; however, some splice junctions could still be deter-
mined. For example, the N-terminal extensions “PCTEDY”
and “[LGE]YGFQNA” span the splice junctions between the
tenth and eleventh exons and the ninth and tenth exons,
respectively. This allows us to determine boundaries of the
splice junctions and infer the missing exon sequence from the
template.

DISCUSSION

Since the first sequencing of the human genome in 2001
(31), we have witnessed an explosion in the number of spe-
cies with partial and fully sequenced genomes. Gene and
proteome annotation, however, have not been able to keep
pace. Mass spectrometry and advancing computational tools,
as a complement to cDNA sequencing, have been shown to
greatly improve the accuracy and efficiency of the annotation
process (14, 15, 32). At their core, these methods rely on the
assumption that the genome is an adequate database for the
identification of peptides. It is nearly impossible to create a
database that encodes all possible gene splice variants as
well as small and large scale genome rearrangements. One
alternative is to use de novo methods (8, 33) for peptide and
protein sequencing. These algorithms make no such assump-
tions, but are plagued with low accuracy.

We have presented a novel method for protein sequencing
that draws from the strengths of both the database and de
novo approaches. Template proteogenomics improves upon
prior proteogenomic efforts by eliminating the need for cus-
tom databases that anticipate splice junctions and mutations
(16). Our method makes use of the genome as an imperfect
template and employs de novo techniques to sequence the
divergent portions of the protein. By using available sequence
information, we are able to increase confidence in the final
sequence while not relying on the existence of a complete and
accurate database.

Antibodies are highly diverse proteins that have con-
founded past attempts to construct a complete sequence
database. We are able to use known antibody gene segments
as templates to sequence proteins with up to 35% sequence
divergence from the templates. The utility of the template
proteogenomic method for gene annotation has also been

demonstrated. From the final protein sequence, we were able
to determine many exon boundaries and splice-junctions by
constructing a template database from the six-frame transla-
tion of the aBTLA heavy-chain locus.

The alignment of overlapping spectra derived from a mix-
ture of proteases lends additional confidence to full protein
sequence. However, the errant portions of the alignment pro-
vide useful information as well yet are often ignored. Post-
translational modifications may be identified by observing
both modified and unmodified spectra aligned. Complex pro-
tein mixtures containing both modified and unmodified spec-
tra, or spectra from alternatively spliced peptides, may be lost
when an alignment is reduced to a consensus spectrum. In
these scenarios, the correct output of the template proteog-
enomic method would be multiple sequences, not a single
protein. In future work, template proteogenomics will be ex-
tended to capture post-translational modifications and se-
quence higher complexity samples.
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